Properties

Label 441.6.a.c
Level $441$
Weight $6$
Character orbit 441.a
Self dual yes
Analytic conductor $70.729$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 441.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(70.7292645375\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 5 q^{2} - 7 q^{4} + 94 q^{5} + 195 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - 5 q^{2} - 7 q^{4} + 94 q^{5} + 195 q^{8} - 470 q^{10} - 52 q^{11} + 770 q^{13} - 751 q^{16} - 2022 q^{17} - 1732 q^{19} - 658 q^{20} + 260 q^{22} + 576 q^{23} + 5711 q^{25} - 3850 q^{26} - 5518 q^{29} - 6336 q^{31} - 2485 q^{32} + 10110 q^{34} - 7338 q^{37} + 8660 q^{38} + 18330 q^{40} - 3262 q^{41} + 5420 q^{43} + 364 q^{44} - 2880 q^{46} + 864 q^{47} - 28555 q^{50} - 5390 q^{52} - 4182 q^{53} - 4888 q^{55} + 27590 q^{58} - 11220 q^{59} + 45602 q^{61} + 31680 q^{62} + 36457 q^{64} + 72380 q^{65} + 1396 q^{67} + 14154 q^{68} - 18720 q^{71} - 46362 q^{73} + 36690 q^{74} + 12124 q^{76} + 97424 q^{79} - 70594 q^{80} + 16310 q^{82} - 81228 q^{83} - 190068 q^{85} - 27100 q^{86} - 10140 q^{88} - 3182 q^{89} - 4032 q^{92} - 4320 q^{94} - 162808 q^{95} - 4914 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−5.00000 0 −7.00000 94.0000 0 0 195.000 0 −470.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 441.6.a.c 1
3.b odd 2 1 147.6.a.f 1
7.b odd 2 1 63.6.a.b 1
21.c even 2 1 21.6.a.c 1
21.g even 6 2 147.6.e.c 2
21.h odd 6 2 147.6.e.d 2
28.d even 2 1 1008.6.a.a 1
84.h odd 2 1 336.6.a.i 1
105.g even 2 1 525.6.a.b 1
105.k odd 4 2 525.6.d.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.6.a.c 1 21.c even 2 1
63.6.a.b 1 7.b odd 2 1
147.6.a.f 1 3.b odd 2 1
147.6.e.c 2 21.g even 6 2
147.6.e.d 2 21.h odd 6 2
336.6.a.i 1 84.h odd 2 1
441.6.a.c 1 1.a even 1 1 trivial
525.6.a.b 1 105.g even 2 1
525.6.d.c 2 105.k odd 4 2
1008.6.a.a 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(441))\):

\( T_{2} + 5 \) Copy content Toggle raw display
\( T_{5} - 94 \) Copy content Toggle raw display
\( T_{13} - 770 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 5 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 94 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 52 \) Copy content Toggle raw display
$13$ \( T - 770 \) Copy content Toggle raw display
$17$ \( T + 2022 \) Copy content Toggle raw display
$19$ \( T + 1732 \) Copy content Toggle raw display
$23$ \( T - 576 \) Copy content Toggle raw display
$29$ \( T + 5518 \) Copy content Toggle raw display
$31$ \( T + 6336 \) Copy content Toggle raw display
$37$ \( T + 7338 \) Copy content Toggle raw display
$41$ \( T + 3262 \) Copy content Toggle raw display
$43$ \( T - 5420 \) Copy content Toggle raw display
$47$ \( T - 864 \) Copy content Toggle raw display
$53$ \( T + 4182 \) Copy content Toggle raw display
$59$ \( T + 11220 \) Copy content Toggle raw display
$61$ \( T - 45602 \) Copy content Toggle raw display
$67$ \( T - 1396 \) Copy content Toggle raw display
$71$ \( T + 18720 \) Copy content Toggle raw display
$73$ \( T + 46362 \) Copy content Toggle raw display
$79$ \( T - 97424 \) Copy content Toggle raw display
$83$ \( T + 81228 \) Copy content Toggle raw display
$89$ \( T + 3182 \) Copy content Toggle raw display
$97$ \( T + 4914 \) Copy content Toggle raw display
show more
show less