Properties

Label 441.6.a.be
Level $441$
Weight $6$
Character orbit 441.a
Self dual yes
Analytic conductor $70.729$
Analytic rank $1$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,6,Mod(1,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 441.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(70.7292645375\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 146x^{6} + 5453x^{4} - 40868x^{2} + 3844 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5}\cdot 7^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{2} + ( - \beta_{2} + 3) q^{4} + \beta_1 q^{5} + (\beta_{6} - \beta_{4}) q^{8} + ( - 3 \beta_{7} - \beta_{5}) q^{10} + ( - 2 \beta_{6} - 8 \beta_{4}) q^{11} + (4 \beta_{7} + 3 \beta_{5}) q^{13}+ \cdots + ( - 1736 \beta_{7} + 5613 \beta_{5}) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 20 q^{4} - 828 q^{16} - 2384 q^{22} - 2392 q^{25} - 19136 q^{37} - 41184 q^{43} - 13152 q^{46} - 88872 q^{58} - 210812 q^{64} - 42336 q^{67} - 251072 q^{79} - 567664 q^{85} - 88752 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 146x^{6} + 5453x^{4} - 40868x^{2} + 3844 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 13\nu^{6} + 2930\nu^{4} - 324365\nu^{2} + 1463438 ) / 82236 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2\nu^{6} + 227\nu^{4} - 2060\nu^{2} - 90946 ) / 2937 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 61\nu^{6} - 8392\nu^{4} + 271357\nu^{2} - 970822 ) / 11748 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 2911\nu^{7} - 428788\nu^{5} + 16393987\nu^{3} - 135790882\nu ) / 5098632 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -343\nu^{7} + 49210\nu^{5} - 1771861\nu^{3} + 11849026\nu ) / 364188 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 3931\nu^{7} - 597424\nu^{5} + 24375907\nu^{3} - 205795858\nu ) / 2549316 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -722\nu^{7} + 105443\nu^{5} - 3895061\nu^{3} + 26260934\nu ) / 182094 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{6} - 2\beta_{5} - 6\beta_{4} ) / 14 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 6\beta_{3} + 49\beta_{2} + 14\beta _1 + 1764 ) / 49 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 42\beta_{7} + 75\beta_{6} - 208\beta_{5} - 254\beta_{4} ) / 14 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 460\beta_{3} + 3969\beta_{2} + 1988\beta _1 + 125538 ) / 49 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 5110\beta_{7} + 5965\beta_{6} - 22868\beta_{5} - 18346\beta_{4} ) / 14 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 46030\beta_{3} + 328055\beta_{2} + 211218\beta _1 + 10203466 ) / 49 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 516166\beta_{7} + 502907\beta_{6} - 2290332\beta_{5} - 1527254\beta_{4} ) / 14 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.13708
0.308653
6.71178
9.54020
−6.71178
−9.54020
−3.13708
−0.308653
−8.12599 0 34.0317 −17.4201 0 0 −16.5098 0 141.556
1.2 −8.12599 0 34.0317 17.4201 0 0 −16.5098 0 −141.556
1.3 −1.72287 0 −29.0317 −73.1337 0 0 105.150 0 126.000
1.4 −1.72287 0 −29.0317 73.1337 0 0 105.150 0 −126.000
1.5 1.72287 0 −29.0317 −73.1337 0 0 −105.150 0 −126.000
1.6 1.72287 0 −29.0317 73.1337 0 0 −105.150 0 126.000
1.7 8.12599 0 34.0317 −17.4201 0 0 16.5098 0 −141.556
1.8 8.12599 0 34.0317 17.4201 0 0 16.5098 0 141.556
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 441.6.a.be 8
3.b odd 2 1 inner 441.6.a.be 8
7.b odd 2 1 inner 441.6.a.be 8
21.c even 2 1 inner 441.6.a.be 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
441.6.a.be 8 1.a even 1 1 trivial
441.6.a.be 8 3.b odd 2 1 inner
441.6.a.be 8 7.b odd 2 1 inner
441.6.a.be 8 21.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(441))\):

\( T_{2}^{4} - 69T_{2}^{2} + 196 \) Copy content Toggle raw display
\( T_{5}^{4} - 5652T_{5}^{2} + 1623076 \) Copy content Toggle raw display
\( T_{13}^{4} - 65076T_{13}^{2} + 966836836 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - 69 T^{2} + 196)^{2} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} - 5652 T^{2} + 1623076)^{2} \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( (T^{4} - 50336 T^{2} + 486820096)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} - 65076 T^{2} + 966836836)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} + \cdots + 1776617078404)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + \cdots + 1304566014976)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + \cdots + 4889971523584)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + \cdots + 71690156736016)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + \cdots + 45\!\cdots\!36)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 4784 T - 63573584)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} + \cdots + 87\!\cdots\!16)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 10296 T + 26247376)^{4} \) Copy content Toggle raw display
$47$ \( (T^{4} + \cdots + 43\!\cdots\!44)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + \cdots + 88\!\cdots\!96)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + \cdots + 75\!\cdots\!96)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + \cdots + 29\!\cdots\!16)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 10584 T - 608314736)^{4} \) Copy content Toggle raw display
$71$ \( (T^{4} + \cdots + 10\!\cdots\!56)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + \cdots + 34\!\cdots\!64)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 62768 T - 3517390336)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} + \cdots + 19\!\cdots\!44)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + \cdots + 65\!\cdots\!00)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + \cdots + 76\!\cdots\!56)^{2} \) Copy content Toggle raw display
show more
show less