Properties

Label 441.6.a.bd
Level $441$
Weight $6$
Character orbit 441.a
Self dual yes
Analytic conductor $70.729$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,6,Mod(1,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 441.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,182,0,0,0,0,0,686,0,0,-154] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(70.7292645375\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 187x^{4} + 9570x^{2} - 135576 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 63)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{3} + 30) q^{4} + (\beta_{2} + 2 \beta_1) q^{5} + (\beta_{4} + 2 \beta_{2} + 21 \beta_1) q^{8} + (8 \beta_{5} + 7 \beta_{3} + 112) q^{10} + ( - 2 \beta_{4} + 3 \beta_{2} - 24 \beta_1) q^{11}+ \cdots + (7 \beta_{5} - 2149 \beta_{3} + 72891) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 182 q^{4} + 686 q^{10} - 154 q^{13} + 1898 q^{16} + 9422 q^{19} - 9146 q^{22} + 7526 q^{25} + 23422 q^{31} + 27804 q^{34} + 18182 q^{37} + 69258 q^{40} - 43686 q^{43} - 25332 q^{46} + 34272 q^{52}+ \cdots + 433048 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 187x^{4} + 9570x^{2} - 135576 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} - 139\nu^{3} + 3318\nu ) / 84 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 62 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{5} + 181\nu^{3} - 6888\nu ) / 42 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{4} - 139\nu^{2} + 3388 ) / 14 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 62 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} + 2\beta_{2} + 85\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 14\beta_{5} + 139\beta_{3} + 5230 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 139\beta_{4} + 362\beta_{2} + 8497\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−10.6223
−7.08933
−4.88952
4.88952
7.08933
10.6223
−10.6223 0 80.8340 −67.4751 0 0 −518.731 0 716.743
1.2 −7.08933 0 18.2586 82.2041 0 0 97.4172 0 −582.772
1.3 −4.88952 0 −8.09260 −42.7504 0 0 196.034 0 209.029
1.4 4.88952 0 −8.09260 42.7504 0 0 −196.034 0 209.029
1.5 7.08933 0 18.2586 −82.2041 0 0 −97.4172 0 −582.772
1.6 10.6223 0 80.8340 67.4751 0 0 518.731 0 716.743
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 441.6.a.bd 6
3.b odd 2 1 inner 441.6.a.bd 6
7.b odd 2 1 441.6.a.bc 6
7.d odd 6 2 63.6.e.f 12
21.c even 2 1 441.6.a.bc 6
21.g even 6 2 63.6.e.f 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.6.e.f 12 7.d odd 6 2
63.6.e.f 12 21.g even 6 2
441.6.a.bc 6 7.b odd 2 1
441.6.a.bc 6 21.c even 2 1
441.6.a.bd 6 1.a even 1 1 trivial
441.6.a.bd 6 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(441))\):

\( T_{2}^{6} - 187T_{2}^{4} + 9570T_{2}^{2} - 135576 \) Copy content Toggle raw display
\( T_{5}^{6} - 13138T_{5}^{4} + 51437073T_{5}^{2} - 56228247936 \) Copy content Toggle raw display
\( T_{13}^{3} + 77T_{13}^{2} - 783976T_{13} - 60080636 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 187 T^{4} + \cdots - 135576 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots - 56228247936 \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 17\!\cdots\!76 \) Copy content Toggle raw display
$13$ \( (T^{3} + 77 T^{2} + \cdots - 60080636)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 14\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( (T^{3} - 4711 T^{2} + \cdots - 3713875508)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 11\!\cdots\!84 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 75\!\cdots\!56 \) Copy content Toggle raw display
$31$ \( (T^{3} - 11711 T^{2} + \cdots + 85806884751)^{2} \) Copy content Toggle raw display
$37$ \( (T^{3} - 9091 T^{2} + \cdots + 32349623604)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 13\!\cdots\!64 \) Copy content Toggle raw display
$43$ \( (T^{3} + \cdots - 1643621929904)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 19\!\cdots\!64 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 16\!\cdots\!64 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 31\!\cdots\!04 \) Copy content Toggle raw display
$61$ \( (T^{3} + \cdots - 5346133312352)^{2} \) Copy content Toggle raw display
$67$ \( (T^{3} + \cdots + 7112548657724)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 30\!\cdots\!44 \) Copy content Toggle raw display
$73$ \( (T^{3} + 50029 T^{2} + \cdots + 937824660612)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} + \cdots - 111559545344717)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 11\!\cdots\!64 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 60\!\cdots\!96 \) Copy content Toggle raw display
$97$ \( (T^{3} + \cdots + 546802680855102)^{2} \) Copy content Toggle raw display
show more
show less