Defining parameters
Level: | \( N \) | \(=\) | \( 441 = 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 441.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 31 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(2\), \(5\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(441))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 296 | 88 | 208 |
Cusp forms | 264 | 83 | 181 |
Eisenstein series | 32 | 5 | 27 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(7\) | Fricke | Dim. |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(15\) |
\(+\) | \(-\) | \(-\) | \(19\) |
\(-\) | \(+\) | \(-\) | \(25\) |
\(-\) | \(-\) | \(+\) | \(24\) |
Plus space | \(+\) | \(39\) | |
Minus space | \(-\) | \(44\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(441))\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(441))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(441)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 2}\)