Defining parameters
| Level: | \( N \) | \(=\) | \( 441 = 3^{2} \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 441.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 31 \) | ||
| Sturm bound: | \(336\) | ||
| Trace bound: | \(13\) | ||
| Distinguishing \(T_p\): | \(2\), \(5\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(441))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 296 | 88 | 208 |
| Cusp forms | 264 | 83 | 181 |
| Eisenstein series | 32 | 5 | 27 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(72\) | \(15\) | \(57\) | \(64\) | \(15\) | \(49\) | \(8\) | \(0\) | \(8\) | |||
| \(+\) | \(-\) | \(-\) | \(76\) | \(19\) | \(57\) | \(68\) | \(19\) | \(49\) | \(8\) | \(0\) | \(8\) | |||
| \(-\) | \(+\) | \(-\) | \(76\) | \(27\) | \(49\) | \(68\) | \(25\) | \(43\) | \(8\) | \(2\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(72\) | \(27\) | \(45\) | \(64\) | \(24\) | \(40\) | \(8\) | \(3\) | \(5\) | |||
| Plus space | \(+\) | \(144\) | \(42\) | \(102\) | \(128\) | \(39\) | \(89\) | \(16\) | \(3\) | \(13\) | ||||
| Minus space | \(-\) | \(152\) | \(46\) | \(106\) | \(136\) | \(44\) | \(92\) | \(16\) | \(2\) | \(14\) | ||||
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(441))\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(441))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(441)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 2}\)