Properties

Label 441.4.p.c.80.8
Level $441$
Weight $4$
Character 441.80
Analytic conductor $26.020$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 441.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(26.0198423125\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 48 x^{14} + 1647 x^{12} - 27620 x^{10} + 336765 x^{8} - 1200006 x^{6} + 3242464 x^{4} - 1762200 x^{2} + 810000\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{8} \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 80.8
Root \(4.21355 - 2.43270i\) of defining polynomial
Character \(\chi\) \(=\) 441.80
Dual form 441.4.p.c.215.8

$q$-expansion

\(f(q)\) \(=\) \(q+(4.21355 - 2.43270i) q^{2} +(7.83601 - 13.5724i) q^{4} +(6.38217 + 11.0542i) q^{5} -37.3274i q^{8} +O(q^{10})\) \(q+(4.21355 - 2.43270i) q^{2} +(7.83601 - 13.5724i) q^{4} +(6.38217 + 11.0542i) q^{5} -37.3274i q^{8} +(53.7832 + 31.0517i) q^{10} +(46.8633 + 27.0565i) q^{11} -8.85528i q^{13} +(-28.1181 - 48.7020i) q^{16} +(-34.4587 + 59.6841i) q^{17} +(141.898 - 81.9246i) q^{19} +200.043 q^{20} +263.281 q^{22} +(-81.3807 + 46.9852i) q^{23} +(-18.9642 + 32.8469i) q^{25} +(-21.5422 - 37.3122i) q^{26} -119.620i q^{29} +(-85.6311 - 49.4391i) q^{31} +(21.6577 + 12.5041i) q^{32} +335.310i q^{34} +(-47.0949 - 81.5708i) q^{37} +(398.595 - 690.387i) q^{38} +(412.626 - 238.230i) q^{40} +259.347 q^{41} +5.01418 q^{43} +(734.443 - 424.031i) q^{44} +(-228.601 + 395.949i) q^{46} +(28.6747 + 49.6660i) q^{47} +184.536i q^{50} +(-120.187 - 69.3901i) q^{52} +(-407.058 - 235.015i) q^{53} +690.718i q^{55} +(-290.999 - 504.025i) q^{58} +(-112.979 + 195.685i) q^{59} +(-370.650 + 213.995i) q^{61} -481.082 q^{62} +571.564 q^{64} +(97.8884 - 56.5159i) q^{65} +(-81.9267 + 141.901i) q^{67} +(540.037 + 935.372i) q^{68} -79.8529i q^{71} +(-666.447 - 384.774i) q^{73} +(-396.874 - 229.135i) q^{74} -2567.85i q^{76} +(-267.408 - 463.165i) q^{79} +(358.909 - 621.648i) q^{80} +(1092.77 - 630.912i) q^{82} +438.520 q^{83} -879.684 q^{85} +(21.1275 - 12.1980i) q^{86} +(1009.95 - 1749.29i) q^{88} +(12.8242 + 22.2121i) q^{89} +1472.71i q^{92} +(241.644 + 139.513i) q^{94} +(1811.23 + 1045.71i) q^{95} -1381.00i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + 32q^{4} + O(q^{10}) \) \( 16q + 32q^{4} + 72q^{10} - 188q^{16} + 612q^{19} + 528q^{22} - 20q^{25} - 1128q^{31} - 1196q^{37} + 3204q^{40} + 328q^{43} - 1392q^{46} - 4452q^{52} - 3372q^{58} + 1632q^{61} + 5432q^{64} + 308q^{67} - 4068q^{73} - 2176q^{79} + 10188q^{82} - 4608q^{85} + 708q^{88} + 2916q^{94} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.21355 2.43270i 1.48972 0.860088i 0.489785 0.871843i \(-0.337075\pi\)
0.999931 + 0.0117558i \(0.00374206\pi\)
\(3\) 0 0
\(4\) 7.83601 13.5724i 0.979502 1.69655i
\(5\) 6.38217 + 11.0542i 0.570839 + 0.988721i 0.996480 + 0.0838295i \(0.0267151\pi\)
−0.425642 + 0.904892i \(0.639952\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 37.3274i 1.64965i
\(9\) 0 0
\(10\) 53.7832 + 31.0517i 1.70077 + 0.981942i
\(11\) 46.8633 + 27.0565i 1.28453 + 0.741623i 0.977673 0.210133i \(-0.0673897\pi\)
0.306856 + 0.951756i \(0.400723\pi\)
\(12\) 0 0
\(13\) 8.85528i 0.188924i −0.995528 0.0944620i \(-0.969887\pi\)
0.995528 0.0944620i \(-0.0301131\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −28.1181 48.7020i −0.439345 0.760968i
\(17\) −34.4587 + 59.6841i −0.491615 + 0.851502i −0.999953 0.00965543i \(-0.996927\pi\)
0.508339 + 0.861157i \(0.330260\pi\)
\(18\) 0 0
\(19\) 141.898 81.9246i 1.71334 0.989199i 0.783383 0.621540i \(-0.213492\pi\)
0.929960 0.367660i \(-0.119841\pi\)
\(20\) 200.043 2.23655
\(21\) 0 0
\(22\) 263.281 2.55144
\(23\) −81.3807 + 46.9852i −0.737785 + 0.425960i −0.821263 0.570549i \(-0.806730\pi\)
0.0834783 + 0.996510i \(0.473397\pi\)
\(24\) 0 0
\(25\) −18.9642 + 32.8469i −0.151713 + 0.262775i
\(26\) −21.5422 37.3122i −0.162491 0.281443i
\(27\) 0 0
\(28\) 0 0
\(29\) 119.620i 0.765961i −0.923756 0.382981i \(-0.874898\pi\)
0.923756 0.382981i \(-0.125102\pi\)
\(30\) 0 0
\(31\) −85.6311 49.4391i −0.496123 0.286437i 0.230988 0.972957i \(-0.425804\pi\)
−0.727111 + 0.686520i \(0.759137\pi\)
\(32\) 21.6577 + 12.5041i 0.119643 + 0.0690760i
\(33\) 0 0
\(34\) 335.310i 1.69133i
\(35\) 0 0
\(36\) 0 0
\(37\) −47.0949 81.5708i −0.209253 0.362437i 0.742227 0.670149i \(-0.233770\pi\)
−0.951479 + 0.307712i \(0.900437\pi\)
\(38\) 398.595 690.387i 1.70160 2.94725i
\(39\) 0 0
\(40\) 412.626 238.230i 1.63105 0.941686i
\(41\) 259.347 0.987883 0.493941 0.869495i \(-0.335556\pi\)
0.493941 + 0.869495i \(0.335556\pi\)
\(42\) 0 0
\(43\) 5.01418 0.0177827 0.00889133 0.999960i \(-0.497170\pi\)
0.00889133 + 0.999960i \(0.497170\pi\)
\(44\) 734.443 424.031i 2.51640 1.45284i
\(45\) 0 0
\(46\) −228.601 + 395.949i −0.732727 + 1.26912i
\(47\) 28.6747 + 49.6660i 0.0889921 + 0.154139i 0.907085 0.420947i \(-0.138302\pi\)
−0.818093 + 0.575086i \(0.804969\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 184.536i 0.521947i
\(51\) 0 0
\(52\) −120.187 69.3901i −0.320518 0.185051i
\(53\) −407.058 235.015i −1.05497 0.609090i −0.130937 0.991391i \(-0.541798\pi\)
−0.924038 + 0.382301i \(0.875132\pi\)
\(54\) 0 0
\(55\) 690.718i 1.69339i
\(56\) 0 0
\(57\) 0 0
\(58\) −290.999 504.025i −0.658794 1.14106i
\(59\) −112.979 + 195.685i −0.249299 + 0.431798i −0.963331 0.268314i \(-0.913533\pi\)
0.714033 + 0.700112i \(0.246867\pi\)
\(60\) 0 0
\(61\) −370.650 + 213.995i −0.777982 + 0.449168i −0.835715 0.549164i \(-0.814946\pi\)
0.0577325 + 0.998332i \(0.481613\pi\)
\(62\) −481.082 −0.985442
\(63\) 0 0
\(64\) 571.564 1.11634
\(65\) 97.8884 56.5159i 0.186793 0.107845i
\(66\) 0 0
\(67\) −81.9267 + 141.901i −0.149387 + 0.258746i −0.931001 0.365016i \(-0.881063\pi\)
0.781614 + 0.623762i \(0.214397\pi\)
\(68\) 540.037 + 935.372i 0.963075 + 1.66809i
\(69\) 0 0
\(70\) 0 0
\(71\) 79.8529i 0.133476i −0.997771 0.0667380i \(-0.978741\pi\)
0.997771 0.0667380i \(-0.0212592\pi\)
\(72\) 0 0
\(73\) −666.447 384.774i −1.06852 0.616909i −0.140741 0.990046i \(-0.544949\pi\)
−0.927776 + 0.373138i \(0.878282\pi\)
\(74\) −396.874 229.135i −0.623454 0.359952i
\(75\) 0 0
\(76\) 2567.85i 3.87569i
\(77\) 0 0
\(78\) 0 0
\(79\) −267.408 463.165i −0.380833 0.659622i 0.610349 0.792133i \(-0.291029\pi\)
−0.991182 + 0.132511i \(0.957696\pi\)
\(80\) 358.909 621.648i 0.501590 0.868780i
\(81\) 0 0
\(82\) 1092.77 630.912i 1.47166 0.849666i
\(83\) 438.520 0.579926 0.289963 0.957038i \(-0.406357\pi\)
0.289963 + 0.957038i \(0.406357\pi\)
\(84\) 0 0
\(85\) −879.684 −1.12253
\(86\) 21.1275 12.1980i 0.0264911 0.0152947i
\(87\) 0 0
\(88\) 1009.95 1749.29i 1.22342 2.11903i
\(89\) 12.8242 + 22.2121i 0.0152737 + 0.0264548i 0.873561 0.486714i \(-0.161805\pi\)
−0.858288 + 0.513169i \(0.828471\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 1472.71i 1.66892i
\(93\) 0 0
\(94\) 241.644 + 139.513i 0.265146 + 0.153082i
\(95\) 1811.23 + 1045.71i 1.95608 + 1.12935i
\(96\) 0 0
\(97\) 1381.00i 1.44555i −0.691081 0.722777i \(-0.742865\pi\)
0.691081 0.722777i \(-0.257135\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 297.207 + 514.777i 0.297207 + 0.514777i
\(101\) −356.808 + 618.009i −0.351522 + 0.608854i −0.986516 0.163663i \(-0.947669\pi\)
0.634994 + 0.772517i \(0.281002\pi\)
\(102\) 0 0
\(103\) −1552.42 + 896.288i −1.48509 + 0.857416i −0.999856 0.0169695i \(-0.994598\pi\)
−0.485232 + 0.874385i \(0.661265\pi\)
\(104\) −330.544 −0.311659
\(105\) 0 0
\(106\) −2286.88 −2.09548
\(107\) 19.5366 11.2794i 0.0176511 0.0101909i −0.491148 0.871076i \(-0.663423\pi\)
0.508800 + 0.860885i \(0.330089\pi\)
\(108\) 0 0
\(109\) −476.210 + 824.820i −0.418465 + 0.724802i −0.995785 0.0917154i \(-0.970765\pi\)
0.577320 + 0.816518i \(0.304098\pi\)
\(110\) 1680.31 + 2910.37i 1.45646 + 2.52267i
\(111\) 0 0
\(112\) 0 0
\(113\) 120.145i 0.100020i 0.998749 + 0.0500102i \(0.0159254\pi\)
−0.998749 + 0.0500102i \(0.984075\pi\)
\(114\) 0 0
\(115\) −1038.77 599.735i −0.842312 0.486309i
\(116\) −1623.53 937.344i −1.29949 0.750260i
\(117\) 0 0
\(118\) 1099.37i 0.857674i
\(119\) 0 0
\(120\) 0 0
\(121\) 798.612 + 1383.24i 0.600009 + 1.03925i
\(122\) −1041.17 + 1803.36i −0.772648 + 1.33827i
\(123\) 0 0
\(124\) −1342.01 + 774.812i −0.971906 + 0.561130i
\(125\) 1111.41 0.795262
\(126\) 0 0
\(127\) 884.302 0.617867 0.308934 0.951084i \(-0.400028\pi\)
0.308934 + 0.951084i \(0.400028\pi\)
\(128\) 2235.05 1290.41i 1.54338 0.891071i
\(129\) 0 0
\(130\) 274.972 476.265i 0.185512 0.321317i
\(131\) −803.439 1391.60i −0.535853 0.928125i −0.999122 0.0419070i \(-0.986657\pi\)
0.463268 0.886218i \(-0.346677\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 797.210i 0.513944i
\(135\) 0 0
\(136\) 2227.85 + 1286.25i 1.40468 + 0.810994i
\(137\) 615.297 + 355.242i 0.383711 + 0.221535i 0.679431 0.733739i \(-0.262227\pi\)
−0.295721 + 0.955274i \(0.595560\pi\)
\(138\) 0 0
\(139\) 1531.91i 0.934782i 0.884051 + 0.467391i \(0.154806\pi\)
−0.884051 + 0.467391i \(0.845194\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −194.258 336.464i −0.114801 0.198841i
\(143\) 239.593 414.987i 0.140110 0.242678i
\(144\) 0 0
\(145\) 1322.31 763.435i 0.757322 0.437240i
\(146\) −3744.15 −2.12238
\(147\) 0 0
\(148\) −1476.15 −0.819854
\(149\) −2079.39 + 1200.54i −1.14329 + 0.660079i −0.947243 0.320516i \(-0.896144\pi\)
−0.196046 + 0.980595i \(0.562810\pi\)
\(150\) 0 0
\(151\) −1233.99 + 2137.33i −0.665035 + 1.15188i 0.314240 + 0.949343i \(0.398250\pi\)
−0.979276 + 0.202532i \(0.935083\pi\)
\(152\) −3058.03 5296.67i −1.63184 2.82642i
\(153\) 0 0
\(154\) 0 0
\(155\) 1262.12i 0.654036i
\(156\) 0 0
\(157\) −2109.74 1218.06i −1.07246 0.619184i −0.143606 0.989635i \(-0.545870\pi\)
−0.928852 + 0.370451i \(0.879203\pi\)
\(158\) −2253.48 1301.05i −1.13466 0.655099i
\(159\) 0 0
\(160\) 319.213i 0.157725i
\(161\) 0 0
\(162\) 0 0
\(163\) −1638.50 2837.97i −0.787347 1.36372i −0.927587 0.373607i \(-0.878121\pi\)
0.140240 0.990118i \(-0.455213\pi\)
\(164\) 2032.25 3519.95i 0.967633 1.67599i
\(165\) 0 0
\(166\) 1847.73 1066.79i 0.863924 0.498787i
\(167\) −365.585 −0.169400 −0.0847000 0.996406i \(-0.526993\pi\)
−0.0847000 + 0.996406i \(0.526993\pi\)
\(168\) 0 0
\(169\) 2118.58 0.964308
\(170\) −3706.59 + 2140.00i −1.67225 + 0.965475i
\(171\) 0 0
\(172\) 39.2912 68.0543i 0.0174182 0.0301691i
\(173\) 1046.47 + 1812.53i 0.459892 + 0.796557i 0.998955 0.0457089i \(-0.0145547\pi\)
−0.539062 + 0.842266i \(0.681221\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3043.11i 1.30331i
\(177\) 0 0
\(178\) 108.071 + 62.3946i 0.0455070 + 0.0262735i
\(179\) 1524.01 + 879.890i 0.636370 + 0.367408i 0.783215 0.621751i \(-0.213578\pi\)
−0.146845 + 0.989160i \(0.546912\pi\)
\(180\) 0 0
\(181\) 3197.54i 1.31310i 0.754282 + 0.656551i \(0.227985\pi\)
−0.754282 + 0.656551i \(0.772015\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1753.84 + 3037.73i 0.702687 + 1.21709i
\(185\) 601.135 1041.20i 0.238899 0.413786i
\(186\) 0 0
\(187\) −3229.69 + 1864.66i −1.26299 + 0.729186i
\(188\) 898.780 0.348672
\(189\) 0 0
\(190\) 10175.6 3.88535
\(191\) 475.772 274.687i 0.180239 0.104061i −0.407166 0.913354i \(-0.633483\pi\)
0.587405 + 0.809293i \(0.300150\pi\)
\(192\) 0 0
\(193\) 352.238 610.094i 0.131371 0.227542i −0.792834 0.609437i \(-0.791395\pi\)
0.924205 + 0.381896i \(0.124729\pi\)
\(194\) −3359.54 5818.90i −1.24330 2.15347i
\(195\) 0 0
\(196\) 0 0
\(197\) 5317.81i 1.92324i −0.274384 0.961620i \(-0.588474\pi\)
0.274384 0.961620i \(-0.411526\pi\)
\(198\) 0 0
\(199\) 2155.80 + 1244.65i 0.767942 + 0.443371i 0.832140 0.554566i \(-0.187116\pi\)
−0.0641982 + 0.997937i \(0.520449\pi\)
\(200\) 1226.09 + 707.883i 0.433488 + 0.250274i
\(201\) 0 0
\(202\) 3472.02i 1.20936i
\(203\) 0 0
\(204\) 0 0
\(205\) 1655.20 + 2866.88i 0.563922 + 0.976741i
\(206\) −4360.79 + 7553.11i −1.47491 + 2.55461i
\(207\) 0 0
\(208\) −431.269 + 248.993i −0.143765 + 0.0830029i
\(209\) 8866.38 2.93445
\(210\) 0 0
\(211\) −3454.31 −1.12704 −0.563519 0.826103i \(-0.690553\pi\)
−0.563519 + 0.826103i \(0.690553\pi\)
\(212\) −6379.42 + 3683.16i −2.06670 + 1.19321i
\(213\) 0 0
\(214\) 54.8789 95.0530i 0.0175301 0.0303630i
\(215\) 32.0013 + 55.4279i 0.0101510 + 0.0175821i
\(216\) 0 0
\(217\) 0 0
\(218\) 4633.90i 1.43967i
\(219\) 0 0
\(220\) 9374.68 + 5412.47i 2.87291 + 1.65868i
\(221\) 528.520 + 305.141i 0.160869 + 0.0928778i
\(222\) 0 0
\(223\) 3896.38i 1.17005i −0.811016 0.585024i \(-0.801085\pi\)
0.811016 0.585024i \(-0.198915\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 292.277 + 506.238i 0.0860263 + 0.149002i
\(227\) −302.747 + 524.374i −0.0885201 + 0.153321i −0.906886 0.421377i \(-0.861547\pi\)
0.818366 + 0.574698i \(0.194880\pi\)
\(228\) 0 0
\(229\) 1912.98 1104.46i 0.552023 0.318711i −0.197914 0.980219i \(-0.563417\pi\)
0.749938 + 0.661509i \(0.230083\pi\)
\(230\) −5835.89 −1.67307
\(231\) 0 0
\(232\) −4465.10 −1.26357
\(233\) 2065.77 1192.67i 0.580829 0.335342i −0.180634 0.983550i \(-0.557815\pi\)
0.761463 + 0.648209i \(0.224482\pi\)
\(234\) 0 0
\(235\) −366.013 + 633.953i −0.101600 + 0.175977i
\(236\) 1770.61 + 3066.79i 0.488377 + 0.845893i
\(237\) 0 0
\(238\) 0 0
\(239\) 3017.95i 0.816798i −0.912803 0.408399i \(-0.866087\pi\)
0.912803 0.408399i \(-0.133913\pi\)
\(240\) 0 0
\(241\) 2178.48 + 1257.75i 0.582275 + 0.336176i 0.762037 0.647534i \(-0.224200\pi\)
−0.179762 + 0.983710i \(0.557533\pi\)
\(242\) 6729.99 + 3885.56i 1.78769 + 1.03212i
\(243\) 0 0
\(244\) 6707.47i 1.75984i
\(245\) 0 0
\(246\) 0 0
\(247\) −725.465 1256.54i −0.186883 0.323692i
\(248\) −1845.44 + 3196.39i −0.472521 + 0.818431i
\(249\) 0 0
\(250\) 4682.99 2703.73i 1.18471 0.683995i
\(251\) −1306.11 −0.328451 −0.164226 0.986423i \(-0.552512\pi\)
−0.164226 + 0.986423i \(0.552512\pi\)
\(252\) 0 0
\(253\) −5085.03 −1.26361
\(254\) 3726.05 2151.24i 0.920447 0.531420i
\(255\) 0 0
\(256\) 3992.09 6914.50i 0.974630 1.68811i
\(257\) −3735.91 6470.79i −0.906770 1.57057i −0.818524 0.574473i \(-0.805207\pi\)
−0.0882460 0.996099i \(-0.528126\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1771.44i 0.422538i
\(261\) 0 0
\(262\) −6770.66 3909.04i −1.59654 0.921762i
\(263\) −1330.77 768.318i −0.312010 0.180139i 0.335816 0.941928i \(-0.390988\pi\)
−0.647825 + 0.761789i \(0.724321\pi\)
\(264\) 0 0
\(265\) 5999.62i 1.39077i
\(266\) 0 0
\(267\) 0 0
\(268\) 1283.96 + 2223.88i 0.292650 + 0.506884i
\(269\) −1958.09 + 3391.52i −0.443818 + 0.768715i −0.997969 0.0637010i \(-0.979710\pi\)
0.554151 + 0.832416i \(0.313043\pi\)
\(270\) 0 0
\(271\) −3117.42 + 1799.84i −0.698780 + 0.403441i −0.806893 0.590698i \(-0.798853\pi\)
0.108113 + 0.994139i \(0.465519\pi\)
\(272\) 3875.65 0.863955
\(273\) 0 0
\(274\) 3456.78 0.762159
\(275\) −1777.45 + 1026.21i −0.389760 + 0.225028i
\(276\) 0 0
\(277\) −142.040 + 246.021i −0.0308100 + 0.0533645i −0.881019 0.473080i \(-0.843142\pi\)
0.850209 + 0.526445i \(0.176475\pi\)
\(278\) 3726.67 + 6454.77i 0.803995 + 1.39256i
\(279\) 0 0
\(280\) 0 0
\(281\) 321.256i 0.0682011i 0.999418 + 0.0341006i \(0.0108566\pi\)
−0.999418 + 0.0341006i \(0.989143\pi\)
\(282\) 0 0
\(283\) −5891.40 3401.40i −1.23748 0.714460i −0.268903 0.963167i \(-0.586661\pi\)
−0.968579 + 0.248707i \(0.919994\pi\)
\(284\) −1083.79 625.728i −0.226448 0.130740i
\(285\) 0 0
\(286\) 2331.43i 0.482029i
\(287\) 0 0
\(288\) 0 0
\(289\) 81.7017 + 141.511i 0.0166297 + 0.0288035i
\(290\) 3714.41 6433.55i 0.752130 1.30273i
\(291\) 0 0
\(292\) −10444.6 + 6030.18i −2.09323 + 1.20853i
\(293\) −3180.05 −0.634063 −0.317031 0.948415i \(-0.602686\pi\)
−0.317031 + 0.948415i \(0.602686\pi\)
\(294\) 0 0
\(295\) −2884.20 −0.569237
\(296\) −3044.83 + 1757.93i −0.597895 + 0.345195i
\(297\) 0 0
\(298\) −5841.07 + 10117.0i −1.13545 + 1.96666i
\(299\) 416.067 + 720.649i 0.0804741 + 0.139385i
\(300\) 0 0
\(301\) 0 0
\(302\) 12007.6i 2.28795i
\(303\) 0 0
\(304\) −7979.78 4607.13i −1.50550 0.869200i
\(305\) −4731.11 2731.51i −0.888204 0.512805i
\(306\) 0 0
\(307\) 2976.39i 0.553328i −0.960967 0.276664i \(-0.910771\pi\)
0.960967 0.276664i \(-0.0892289\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −3070.34 5317.99i −0.562528 0.974328i
\(311\) 2340.89 4054.55i 0.426817 0.739268i −0.569772 0.821803i \(-0.692968\pi\)
0.996588 + 0.0825352i \(0.0263017\pi\)
\(312\) 0 0
\(313\) 850.477 491.023i 0.153584 0.0886718i −0.421238 0.906950i \(-0.638404\pi\)
0.574823 + 0.818278i \(0.305071\pi\)
\(314\) −11852.7 −2.13021
\(315\) 0 0
\(316\) −8381.66 −1.49211
\(317\) 4269.80 2465.17i 0.756516 0.436775i −0.0715272 0.997439i \(-0.522787\pi\)
0.828044 + 0.560664i \(0.189454\pi\)
\(318\) 0 0
\(319\) 3236.50 5605.79i 0.568055 0.983899i
\(320\) 3647.82 + 6318.21i 0.637248 + 1.10375i
\(321\) 0 0
\(322\) 0 0
\(323\) 11292.0i 1.94522i
\(324\) 0 0
\(325\) 290.868 + 167.933i 0.0496445 + 0.0286623i
\(326\) −13807.8 7971.96i −2.34585 1.35437i
\(327\) 0 0
\(328\) 9680.75i 1.62966i
\(329\) 0 0
\(330\) 0 0
\(331\) 2017.25 + 3493.99i 0.334980 + 0.580202i 0.983481 0.181012i \(-0.0579372\pi\)
−0.648501 + 0.761214i \(0.724604\pi\)
\(332\) 3436.25 5951.76i 0.568038 0.983871i
\(333\) 0 0
\(334\) −1540.41 + 889.356i −0.252358 + 0.145699i
\(335\) −2091.48 −0.341104
\(336\) 0 0
\(337\) 2771.62 0.448011 0.224006 0.974588i \(-0.428087\pi\)
0.224006 + 0.974588i \(0.428087\pi\)
\(338\) 8926.76 5153.87i 1.43654 0.829389i
\(339\) 0 0
\(340\) −6893.21 + 11939.4i −1.09952 + 1.90443i
\(341\) −2675.30 4633.76i −0.424856 0.735872i
\(342\) 0 0
\(343\) 0 0
\(344\) 187.166i 0.0293352i
\(345\) 0 0
\(346\) 8818.68 + 5091.47i 1.37022 + 0.791095i
\(347\) −3743.15 2161.11i −0.579085 0.334335i 0.181685 0.983357i \(-0.441845\pi\)
−0.760770 + 0.649022i \(0.775178\pi\)
\(348\) 0 0
\(349\) 1331.65i 0.204245i 0.994772 + 0.102122i \(0.0325634\pi\)
−0.994772 + 0.102122i \(0.967437\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 676.635 + 1171.97i 0.102457 + 0.177460i
\(353\) 5674.26 9828.10i 0.855553 1.48186i −0.0205782 0.999788i \(-0.506551\pi\)
0.876131 0.482073i \(-0.160116\pi\)
\(354\) 0 0
\(355\) 882.713 509.634i 0.131970 0.0761932i
\(356\) 401.962 0.0598425
\(357\) 0 0
\(358\) 8562.02 1.26401
\(359\) −7247.49 + 4184.34i −1.06548 + 0.615156i −0.926943 0.375201i \(-0.877574\pi\)
−0.138538 + 0.990357i \(0.544240\pi\)
\(360\) 0 0
\(361\) 9993.77 17309.7i 1.45703 2.52365i
\(362\) 7778.64 + 13473.0i 1.12938 + 1.95615i
\(363\) 0 0
\(364\) 0 0
\(365\) 9822.76i 1.40862i
\(366\) 0 0
\(367\) −2351.31 1357.53i −0.334434 0.193086i 0.323374 0.946271i \(-0.395183\pi\)
−0.657808 + 0.753186i \(0.728516\pi\)
\(368\) 4576.54 + 2642.27i 0.648285 + 0.374287i
\(369\) 0 0
\(370\) 5849.52i 0.821897i
\(371\) 0 0
\(372\) 0 0
\(373\) −3048.56 5280.25i −0.423186 0.732979i 0.573063 0.819511i \(-0.305755\pi\)
−0.996249 + 0.0865320i \(0.972422\pi\)
\(374\) −9072.32 + 15713.7i −1.25433 + 2.17256i
\(375\) 0 0
\(376\) 1853.90 1070.35i 0.254276 0.146806i
\(377\) −1059.27 −0.144708
\(378\) 0 0
\(379\) −9922.24 −1.34478 −0.672389 0.740198i \(-0.734732\pi\)
−0.672389 + 0.740198i \(0.734732\pi\)
\(380\) 28385.6 16388.4i 3.83198 2.21239i
\(381\) 0 0
\(382\) 1336.46 2314.82i 0.179003 0.310043i
\(383\) 609.532 + 1055.74i 0.0813202 + 0.140851i 0.903817 0.427919i \(-0.140753\pi\)
−0.822497 + 0.568769i \(0.807420\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 3427.55i 0.451963i
\(387\) 0 0
\(388\) −18743.4 10821.5i −2.45245 1.41592i
\(389\) 11374.6 + 6567.15i 1.48256 + 0.855958i 0.999804 0.0197949i \(-0.00630133\pi\)
0.482759 + 0.875753i \(0.339635\pi\)
\(390\) 0 0
\(391\) 6476.19i 0.837634i
\(392\) 0 0
\(393\) 0 0
\(394\) −12936.6 22406.9i −1.65416 2.86508i
\(395\) 3413.29 5911.99i 0.434788 0.753075i
\(396\) 0 0
\(397\) −2697.68 + 1557.51i −0.341040 + 0.196900i −0.660732 0.750622i \(-0.729754\pi\)
0.319692 + 0.947522i \(0.396421\pi\)
\(398\) 12111.4 1.52535
\(399\) 0 0
\(400\) 2132.94 0.266618
\(401\) −9724.47 + 5614.42i −1.21101 + 0.699179i −0.962980 0.269572i \(-0.913118\pi\)
−0.248034 + 0.968751i \(0.579784\pi\)
\(402\) 0 0
\(403\) −437.797 + 758.287i −0.0541147 + 0.0937295i
\(404\) 5591.90 + 9685.46i 0.688633 + 1.19275i
\(405\) 0 0
\(406\) 0 0
\(407\) 5096.90i 0.620747i
\(408\) 0 0
\(409\) 10739.4 + 6200.41i 1.29836 + 0.749610i 0.980121 0.198399i \(-0.0635743\pi\)
0.318242 + 0.948010i \(0.396908\pi\)
\(410\) 13948.5 + 8053.18i 1.68017 + 0.970044i
\(411\) 0 0
\(412\) 28093.3i 3.35936i
\(413\) 0 0
\(414\) 0 0
\(415\) 2798.71 + 4847.51i 0.331044 + 0.573385i
\(416\) 110.727 191.785i 0.0130501 0.0226035i
\(417\) 0 0
\(418\) 37359.0 21569.2i 4.37150 2.52389i
\(419\) 8260.19 0.963095 0.481547 0.876420i \(-0.340075\pi\)
0.481547 + 0.876420i \(0.340075\pi\)
\(420\) 0 0
\(421\) 5571.81 0.645020 0.322510 0.946566i \(-0.395473\pi\)
0.322510 + 0.946566i \(0.395473\pi\)
\(422\) −14554.9 + 8403.30i −1.67896 + 0.969351i
\(423\) 0 0
\(424\) −8772.49 + 15194.4i −1.00479 + 1.74034i
\(425\) −1306.96 2263.72i −0.149169 0.258368i
\(426\) 0 0
\(427\) 0 0
\(428\) 353.543i 0.0399279i
\(429\) 0 0
\(430\) 269.678 + 155.699i 0.0302443 + 0.0174616i
\(431\) −6094.88 3518.88i −0.681160 0.393268i 0.119132 0.992878i \(-0.461989\pi\)
−0.800292 + 0.599611i \(0.795322\pi\)
\(432\) 0 0
\(433\) 9212.26i 1.02243i −0.859452 0.511216i \(-0.829195\pi\)
0.859452 0.511216i \(-0.170805\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 7463.18 + 12926.6i 0.819774 + 1.41989i
\(437\) −7698.48 + 13334.2i −0.842719 + 1.45963i
\(438\) 0 0
\(439\) 7345.30 4240.81i 0.798570 0.461054i −0.0444012 0.999014i \(-0.514138\pi\)
0.842971 + 0.537959i \(0.180805\pi\)
\(440\) 25782.7 2.79350
\(441\) 0 0
\(442\) 2969.26 0.319532
\(443\) 11305.9 6527.49i 1.21255 0.700068i 0.249239 0.968442i \(-0.419820\pi\)
0.963315 + 0.268374i \(0.0864863\pi\)
\(444\) 0 0
\(445\) −163.692 + 283.523i −0.0174376 + 0.0302029i
\(446\) −9478.70 16417.6i −1.00634 1.74304i
\(447\) 0 0
\(448\) 0 0
\(449\) 14114.0i 1.48348i 0.670689 + 0.741738i \(0.265998\pi\)
−0.670689 + 0.741738i \(0.734002\pi\)
\(450\) 0 0
\(451\) 12153.9 + 7017.03i 1.26896 + 0.732637i
\(452\) 1630.66 + 941.459i 0.169689 + 0.0979702i
\(453\) 0 0
\(454\) 2945.97i 0.304540i
\(455\) 0 0
\(456\) 0 0
\(457\) 4486.87 + 7771.49i 0.459271 + 0.795481i 0.998923 0.0464073i \(-0.0147772\pi\)
−0.539651 + 0.841889i \(0.681444\pi\)
\(458\) 5373.63 9307.40i 0.548238 0.949577i
\(459\) 0 0
\(460\) −16279.7 + 9399.06i −1.65009 + 0.952682i
\(461\) −955.010 −0.0964842 −0.0482421 0.998836i \(-0.515362\pi\)
−0.0482421 + 0.998836i \(0.515362\pi\)
\(462\) 0 0
\(463\) 12004.5 1.20496 0.602479 0.798135i \(-0.294180\pi\)
0.602479 + 0.798135i \(0.294180\pi\)
\(464\) −5825.73 + 3363.49i −0.582872 + 0.336521i
\(465\) 0 0
\(466\) 5802.82 10050.8i 0.576846 0.999127i
\(467\) −2532.46 4386.34i −0.250938 0.434638i 0.712846 0.701320i \(-0.247406\pi\)
−0.963784 + 0.266683i \(0.914072\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 3561.59i 0.349540i
\(471\) 0 0
\(472\) 7304.43 + 4217.21i 0.712317 + 0.411256i
\(473\) 234.981 + 135.666i 0.0228423 + 0.0131880i
\(474\) 0 0
\(475\) 6214.52i 0.600299i
\(476\) 0 0
\(477\) 0 0
\(478\) −7341.75 12716.3i −0.702518 1.21680i
\(479\) 7606.85 13175.5i 0.725607 1.25679i −0.233116 0.972449i \(-0.574892\pi\)
0.958724 0.284340i \(-0.0917744\pi\)
\(480\) 0 0
\(481\) −722.332 + 417.038i −0.0684730 + 0.0395329i
\(482\) 12238.8 1.15656
\(483\) 0 0
\(484\) 25031.7 2.35084
\(485\) 15265.9 8813.75i 1.42925 0.825179i
\(486\) 0 0
\(487\) −7905.92 + 13693.5i −0.735629 + 1.27415i 0.218817 + 0.975766i \(0.429780\pi\)
−0.954447 + 0.298382i \(0.903553\pi\)
\(488\) 7987.88 + 13835.4i 0.740972 + 1.28340i
\(489\) 0 0
\(490\) 0 0
\(491\) 18064.2i 1.66034i −0.557512 0.830169i \(-0.688244\pi\)
0.557512 0.830169i \(-0.311756\pi\)
\(492\) 0 0
\(493\) 7139.42 + 4121.94i 0.652217 + 0.376558i
\(494\) −6113.57 3529.67i −0.556806 0.321472i
\(495\) 0 0
\(496\) 5560.54i 0.503378i
\(497\) 0 0
\(498\) 0 0
\(499\) 5262.33 + 9114.62i 0.472092 + 0.817688i 0.999490 0.0319305i \(-0.0101655\pi\)
−0.527398 + 0.849619i \(0.676832\pi\)
\(500\) 8709.04 15084.5i 0.778960 1.34920i
\(501\) 0 0
\(502\) −5503.38 + 3177.38i −0.489299 + 0.282497i
\(503\) −7790.82 −0.690607 −0.345304 0.938491i \(-0.612224\pi\)
−0.345304 + 0.938491i \(0.612224\pi\)
\(504\) 0 0
\(505\) −9108.83 −0.802649
\(506\) −21426.0 + 12370.3i −1.88242 + 1.08681i
\(507\) 0 0
\(508\) 6929.41 12002.1i 0.605202 1.04824i
\(509\) 5098.24 + 8830.41i 0.443960 + 0.768961i 0.997979 0.0635430i \(-0.0202400\pi\)
−0.554019 + 0.832504i \(0.686907\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 18199.6i 1.57093i
\(513\) 0 0
\(514\) −31482.9 18176.7i −2.70166 1.55980i
\(515\) −19815.6 11440.5i −1.69549 0.978892i
\(516\) 0 0
\(517\) 3103.35i 0.263994i
\(518\) 0 0
\(519\) 0 0
\(520\) −2109.59 3653.92i −0.177907 0.308144i
\(521\) 963.789 1669.33i 0.0810449 0.140374i −0.822654 0.568542i \(-0.807508\pi\)
0.903699 + 0.428168i \(0.140841\pi\)
\(522\) 0 0
\(523\) 6716.70 3877.89i 0.561569 0.324222i −0.192206 0.981355i \(-0.561564\pi\)
0.753775 + 0.657133i \(0.228231\pi\)
\(524\) −25183.0 −2.09948
\(525\) 0 0
\(526\) −7476.33 −0.619741
\(527\) 5901.47 3407.21i 0.487803 0.281633i
\(528\) 0 0
\(529\) −1668.28 + 2889.55i −0.137115 + 0.237491i
\(530\) −14595.2 25279.7i −1.19618 2.07185i
\(531\) 0 0
\(532\) 0 0
\(533\) 2296.59i 0.186635i
\(534\) 0 0
\(535\) 249.371 + 143.975i 0.0201519 + 0.0116347i
\(536\) 5296.80 + 3058.11i 0.426841 + 0.246437i
\(537\) 0 0
\(538\) 19053.8i 1.52689i
\(539\) 0 0
\(540\) 0 0
\(541\) −8380.42 14515.3i −0.665993 1.15353i −0.979015 0.203788i \(-0.934675\pi\)
0.313022 0.949746i \(-0.398659\pi\)
\(542\) −8756.93 + 15167.4i −0.693989 + 1.20202i
\(543\) 0 0
\(544\) −1492.59 + 861.748i −0.117637 + 0.0679176i
\(545\) −12157.0 −0.955503
\(546\) 0 0
\(547\) 5869.79 0.458819 0.229410 0.973330i \(-0.426320\pi\)
0.229410 + 0.973330i \(0.426320\pi\)
\(548\) 9642.95 5567.36i 0.751690 0.433989i
\(549\) 0 0
\(550\) −4992.91 + 8647.97i −0.387088 + 0.670456i
\(551\) −9799.82 16973.8i −0.757688 1.31235i
\(552\) 0 0
\(553\) 0 0
\(554\) 1382.16i 0.105997i
\(555\) 0 0
\(556\) 20791.6 + 12004.1i 1.58590 + 0.915621i
\(557\) 18756.5 + 10829.1i 1.42682 + 0.823774i 0.996868 0.0790779i \(-0.0251976\pi\)
0.429951 + 0.902852i \(0.358531\pi\)
\(558\) 0 0
\(559\) 44.4019i 0.00335957i
\(560\) 0 0
\(561\) 0 0
\(562\) 781.517 + 1353.63i 0.0586589 + 0.101600i
\(563\) 4795.36 8305.80i 0.358970 0.621755i −0.628819 0.777552i \(-0.716461\pi\)
0.987789 + 0.155797i \(0.0497946\pi\)
\(564\) 0 0
\(565\) −1328.11 + 766.787i −0.0988923 + 0.0570955i
\(566\) −33098.3 −2.45799
\(567\) 0 0
\(568\) −2980.70 −0.220189
\(569\) −14405.5 + 8317.01i −1.06135 + 0.612772i −0.925806 0.377999i \(-0.876612\pi\)
−0.135546 + 0.990771i \(0.543279\pi\)
\(570\) 0 0
\(571\) −3165.51 + 5482.83i −0.232001 + 0.401838i −0.958397 0.285439i \(-0.907861\pi\)
0.726396 + 0.687277i \(0.241194\pi\)
\(572\) −3754.91 6503.69i −0.274477 0.475408i
\(573\) 0 0
\(574\) 0 0
\(575\) 3564.14i 0.258495i
\(576\) 0 0
\(577\) −8431.94 4868.18i −0.608364 0.351239i 0.163961 0.986467i \(-0.447573\pi\)
−0.772325 + 0.635228i \(0.780906\pi\)
\(578\) 688.509 + 397.511i 0.0495470 + 0.0286060i
\(579\) 0 0
\(580\) 23929.1i 1.71311i
\(581\) 0 0
\(582\) 0 0
\(583\) −12717.4 22027.1i −0.903430 1.56479i
\(584\) −14362.6 + 24876.8i −1.01769 + 1.76268i
\(585\) 0 0
\(586\) −13399.3 + 7736.09i −0.944573 + 0.545350i
\(587\) 10940.3 0.769255 0.384628 0.923072i \(-0.374330\pi\)
0.384628 + 0.923072i \(0.374330\pi\)
\(588\) 0 0
\(589\) −16201.1 −1.13337
\(590\) −12152.7 + 7016.39i −0.848001 + 0.489594i
\(591\) 0 0
\(592\) −2648.44 + 4587.23i −0.183869 + 0.318470i
\(593\) 12430.4 + 21530.0i 0.860799 + 1.49095i 0.871159 + 0.491000i \(0.163369\pi\)
−0.0103608 + 0.999946i \(0.503298\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 37629.6i 2.58619i
\(597\) 0 0
\(598\) 3506.24 + 2024.33i 0.239767 + 0.138430i
\(599\) −20207.8 11667.0i −1.37841 0.795825i −0.386442 0.922314i \(-0.626296\pi\)
−0.991968 + 0.126488i \(0.959629\pi\)
\(600\) 0 0
\(601\) 13012.4i 0.883175i −0.897218 0.441587i \(-0.854416\pi\)
0.897218 0.441587i \(-0.145584\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 19339.1 + 33496.2i 1.30281 + 2.25653i
\(605\) −10193.8 + 17656.1i −0.685017 + 1.18648i
\(606\) 0 0
\(607\) −7355.69 + 4246.81i −0.491859 + 0.283975i −0.725345 0.688385i \(-0.758320\pi\)
0.233486 + 0.972360i \(0.424987\pi\)
\(608\) 4097.57 0.273320
\(609\) 0 0
\(610\) −26579.7 −1.76423
\(611\) 439.806 253.922i 0.0291205 0.0168127i
\(612\) 0 0
\(613\) 4569.79 7915.11i 0.301097 0.521514i −0.675288 0.737554i \(-0.735981\pi\)
0.976385 + 0.216040i \(0.0693140\pi\)
\(614\) −7240.66 12541.2i −0.475911 0.824302i
\(615\) 0 0
\(616\) 0 0
\(617\) 7360.91i 0.480290i 0.970737 + 0.240145i \(0.0771950\pi\)
−0.970737 + 0.240145i \(0.922805\pi\)
\(618\) 0 0
\(619\) −19878.5 11476.9i −1.29077 0.745225i −0.311978 0.950089i \(-0.600991\pi\)
−0.978790 + 0.204864i \(0.934325\pi\)
\(620\) −17129.9 9889.96i −1.10960 0.640629i
\(621\) 0 0
\(622\) 22778.7i 1.46840i
\(623\) 0 0
\(624\) 0 0
\(625\) 9463.74 + 16391.7i 0.605679 + 1.04907i
\(626\) 2389.02 4137.91i 0.152531 0.264192i
\(627\) 0 0
\(628\) −33064.0 + 19089.5i −2.10095 + 1.21298i
\(629\) 6491.31 0.411487
\(630\) 0 0
\(631\) 21126.0 1.33282 0.666412 0.745584i \(-0.267829\pi\)
0.666412 + 0.745584i \(0.267829\pi\)
\(632\) −17288.7 + 9981.66i −1.08815 + 0.628242i
\(633\) 0 0
\(634\) 11994.0 20774.2i 0.751330 1.30134i
\(635\) 5643.77 + 9775.29i 0.352703 + 0.610899i
\(636\) 0 0
\(637\) 0 0
\(638\) 31493.7i 1.95431i
\(639\) 0 0
\(640\) 28529.0 + 16471.2i 1.76204 + 1.01732i
\(641\) 15447.5 + 8918.61i 0.951855 + 0.549554i 0.893657 0.448751i \(-0.148131\pi\)
0.0581985 + 0.998305i \(0.481464\pi\)
\(642\) 0 0
\(643\) 25449.0i 1.56082i 0.625266 + 0.780412i \(0.284991\pi\)
−0.625266 + 0.780412i \(0.715009\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 27470.1 + 47579.6i 1.67306 + 2.89782i
\(647\) −13149.2 + 22775.1i −0.798993 + 1.38390i 0.121280 + 0.992618i \(0.461300\pi\)
−0.920273 + 0.391277i \(0.872033\pi\)
\(648\) 0 0
\(649\) −10589.1 + 6113.64i −0.640462 + 0.369771i
\(650\) 1634.12 0.0986083
\(651\) 0 0
\(652\) −51357.4 −3.08483
\(653\) −8203.79 + 4736.46i −0.491637 + 0.283847i −0.725253 0.688482i \(-0.758277\pi\)
0.233616 + 0.972329i \(0.424944\pi\)
\(654\) 0 0
\(655\) 10255.4 17762.8i 0.611771 1.05962i
\(656\) −7292.34 12630.7i −0.434022 0.751747i
\(657\) 0 0
\(658\) 0 0
\(659\) 22384.5i 1.32318i 0.749865 + 0.661591i \(0.230118\pi\)
−0.749865 + 0.661591i \(0.769882\pi\)
\(660\) 0 0
\(661\) 19857.3 + 11464.6i 1.16847 + 0.674618i 0.953320 0.301962i \(-0.0976415\pi\)
0.215153 + 0.976580i \(0.430975\pi\)
\(662\) 16999.6 + 9814.73i 0.998049 + 0.576224i
\(663\) 0 0
\(664\) 16368.8i 0.956677i
\(665\) 0 0
\(666\) 0 0
\(667\) 5620.37 + 9734.77i 0.326269 + 0.565115i
\(668\) −2864.73 + 4961.85i −0.165928 + 0.287395i
\(669\) 0 0
\(670\) −8812.56 + 5087.93i −0.508147 + 0.293379i
\(671\) −23159.9 −1.33245
\(672\) 0 0
\(673\) −4873.86 −0.279158 −0.139579 0.990211i \(-0.544575\pi\)
−0.139579 + 0.990211i \(0.544575\pi\)
\(674\) 11678.4 6742.51i 0.667409 0.385329i
\(675\) 0 0
\(676\) 16601.3 28754.2i 0.944541 1.63599i
\(677\) 8123.71 + 14070.7i 0.461181 + 0.798789i 0.999020 0.0442583i \(-0.0140925\pi\)
−0.537839 + 0.843048i \(0.680759\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 32836.3i 1.85179i
\(681\) 0 0
\(682\) −22545.1 13016.4i −1.26583 0.730827i
\(683\) 18786.2 + 10846.2i 1.05247 + 0.607641i 0.923339 0.383987i \(-0.125449\pi\)
0.129127 + 0.991628i \(0.458783\pi\)
\(684\) 0 0
\(685\) 9068.85i 0.505844i
\(686\) 0 0
\(687\) 0 0
\(688\) −140.989 244.200i −0.00781273 0.0135320i
\(689\) −2081.12 + 3604.61i −0.115072 + 0.199310i
\(690\) 0 0
\(691\) 19499.9 11258.3i 1.07353 0.619803i 0.144387 0.989521i \(-0.453879\pi\)
0.929144 + 0.369718i \(0.120546\pi\)
\(692\) 32800.5 1.80186
\(693\) 0 0
\(694\) −21029.2 −1.15023
\(695\) −16934.1 + 9776.90i −0.924239 + 0.533610i
\(696\) 0 0
\(697\) −8936.75 + 15478.9i −0.485658 + 0.841184i
\(698\) 3239.49 + 5610.97i 0.175669 + 0.304267i
\(699\) 0 0
\(700\) 0 0
\(701\) 33929.0i 1.82807i 0.405631 + 0.914037i \(0.367052\pi\)
−0.405631 + 0.914037i \(0.632948\pi\)
\(702\) 0 0
\(703\) −13365.3 7716.46i −0.717044 0.413986i
\(704\) 26785.4 + 15464.5i 1.43397 + 0.827901i
\(705\) 0 0
\(706\) 55214.9i 2.94340i
\(707\) 0 0
\(708\) 0 0
\(709\) −9593.62 16616.6i −0.508175 0.880185i −0.999955 0.00946553i \(-0.996987\pi\)
0.491780 0.870719i \(-0.336346\pi\)
\(710\) 2479.57 4294.74i 0.131066 0.227012i
\(711\) 0 0
\(712\) 829.121 478.693i 0.0436413 0.0251963i
\(713\) 9291.63 0.488043
\(714\) 0 0
\(715\) 6116.49 0.319922
\(716\) 23884.4 13789.7i 1.24665 0.719754i
\(717\) 0 0
\(718\) −20358.4 + 35261.8i −1.05818 + 1.83281i
\(719\) 6883.43 + 11922.4i 0.357036 + 0.618404i 0.987464 0.157844i \(-0.0504542\pi\)
−0.630429 + 0.776247i \(0.717121\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 97247.2i 5.01269i
\(723\) 0 0
\(724\) 43398.2 + 25056.0i 2.22774 + 1.28618i
\(725\) 3929.15 + 2268.49i 0.201276 + 0.116207i
\(726\) 0 0
\(727\) 12226.1i 0.623717i 0.950129 + 0.311858i \(0.100951\pi\)
−0.950129 + 0.311858i \(0.899049\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −23895.8 41388.7i −1.21154 2.09845i
\(731\) −172.782 + 299.267i −0.00874222 + 0.0151420i
\(732\) 0 0
\(733\) −2256.76 + 1302.94i −0.113718 + 0.0656553i −0.555780 0.831329i \(-0.687580\pi\)
0.442062 + 0.896984i \(0.354247\pi\)
\(734\) −13209.8 −0.664282
\(735\) 0 0
\(736\) −2350.03 −0.117695
\(737\) −7678.71 + 4433.30i −0.383784 + 0.221578i
\(738\) 0 0
\(739\) −16871.7 + 29222.7i −0.839833 + 1.45463i 0.0502016 + 0.998739i \(0.484014\pi\)
−0.890034 + 0.455894i \(0.849320\pi\)
\(740\) −9421.01 16317.7i −0.468004 0.810607i
\(741\) 0 0
\(742\) 0 0
\(743\) 14586.9i 0.720244i 0.932905 + 0.360122i \(0.117265\pi\)
−0.932905 + 0.360122i \(0.882735\pi\)
\(744\) 0 0
\(745\) −26542.0 15324.0i −1.30527 0.753597i
\(746\) −25690.5 14832.4i −1.26085 0.727953i
\(747\) 0 0
\(748\) 58446.1i 2.85695i
\(749\) 0 0
\(750\) 0 0
\(751\) 3757.62 + 6508.39i 0.182580 + 0.316238i 0.942758 0.333477i \(-0.108222\pi\)
−0.760178 + 0.649714i \(0.774889\pi\)
\(752\) 1612.55 2793.02i 0.0781965 0.135440i
\(753\) 0 0
\(754\) −4463.28 + 2576.88i −0.215574 + 0.124462i
\(755\) −31502.0 −1.51851
\(756\) 0 0
\(757\) 23917.4 1.14834 0.574169 0.818737i \(-0.305325\pi\)
0.574169 + 0.818737i \(0.305325\pi\)
\(758\) −41807.9 + 24137.8i −2.00334 + 1.15663i
\(759\) 0 0
\(760\) 39033.7 67608.4i 1.86303 3.22686i
\(761\) −6099.27 10564.2i −0.290537 0.503224i 0.683400 0.730044i \(-0.260500\pi\)
−0.973937 + 0.226820i \(0.927167\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 8609.80i 0.407712i
\(765\) 0 0
\(766\) 5136.59 + 2965.61i 0.242288 + 0.139885i
\(767\) 1732.85 + 1000.46i 0.0815769 + 0.0470985i
\(768\) 0 0
\(769\) 2013.08i 0.0943999i 0.998885 + 0.0471999i \(0.0150298\pi\)
−0.998885 + 0.0471999i \(0.984970\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −5520.28 9561.41i −0.257357 0.445755i
\(773\) −15139.1 + 26221.7i −0.704418 + 1.22009i 0.262483 + 0.964937i \(0.415459\pi\)
−0.966901 + 0.255152i \(0.917875\pi\)
\(774\) 0 0
\(775\) 3247.85 1875.14i 0.150537 0.0869125i
\(776\) −51549.0 −2.38467
\(777\) 0 0
\(778\) 63903.5 2.94480
\(779\) 36800.7 21246.9i 1.69258 0.977213i
\(780\) 0 0
\(781\) 2160.54 3742.17i 0.0989888 0.171454i
\(782\) −15754.6 27287.8i −0.720439 1.24784i
\(783\) 0 0
\(784\) 0 0
\(785\) 31095.5i 1.41382i
\(786\) 0 0
\(787\) −24839.3 14341.0i −1.12507 0.649557i −0.182377 0.983229i \(-0.558379\pi\)
−0.942689 + 0.333671i \(0.891712\pi\)
\(788\) −72175.3 41670.4i −3.26287 1.88382i
\(789\) 0 0
\(790\) 33214.0i 1.49582i