Properties

Label 441.4.p.c.215.6
Level $441$
Weight $4$
Character 441.215
Analytic conductor $26.020$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 441.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(26.0198423125\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 48 x^{14} + 1647 x^{12} - 27620 x^{10} + 336765 x^{8} - 1200006 x^{6} + 3242464 x^{4} - 1762200 x^{2} + 810000\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{8} \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 215.6
Root \(1.57646 + 0.910170i\) of defining polynomial
Character \(\chi\) \(=\) 441.215
Dual form 441.4.p.c.80.6

$q$-expansion

\(f(q)\) \(=\) \(q+(1.57646 + 0.910170i) q^{2} +(-2.34318 - 4.05851i) q^{4} +(-7.54372 + 13.0661i) q^{5} -23.0935i q^{8} +O(q^{10})\) \(q+(1.57646 + 0.910170i) q^{2} +(-2.34318 - 4.05851i) q^{4} +(-7.54372 + 13.0661i) q^{5} -23.0935i q^{8} +(-23.7848 + 13.7321i) q^{10} +(8.56529 - 4.94517i) q^{11} -67.8891i q^{13} +(2.27356 - 3.93792i) q^{16} +(35.0687 + 60.7407i) q^{17} +(53.2242 + 30.7290i) q^{19} +70.7052 q^{20} +18.0038 q^{22} +(113.895 + 65.7575i) q^{23} +(-51.3154 - 88.8809i) q^{25} +(61.7906 - 107.025i) q^{26} +158.738i q^{29} +(66.2349 - 38.2407i) q^{31} +(-152.828 + 88.2353i) q^{32} +127.674i q^{34} +(-174.341 + 301.967i) q^{37} +(55.9372 + 96.8861i) q^{38} +(301.742 + 174.211i) q^{40} +138.909 q^{41} +539.651 q^{43} +(-40.1400 - 23.1749i) q^{44} +(119.701 + 207.328i) q^{46} +(111.821 - 193.680i) q^{47} -186.823i q^{50} +(-275.529 + 159.076i) q^{52} +(459.003 - 265.005i) q^{53} +149.220i q^{55} +(-144.479 + 250.245i) q^{58} +(271.438 + 470.145i) q^{59} +(116.218 + 67.0983i) q^{61} +139.222 q^{62} -357.614 q^{64} +(887.046 + 512.136i) q^{65} +(-160.290 - 277.630i) q^{67} +(164.344 - 284.653i) q^{68} -416.958i q^{71} +(-472.510 + 272.804i) q^{73} +(-549.683 + 317.360i) q^{74} -288.014i q^{76} +(161.369 - 279.499i) q^{79} +(34.3022 + 59.4132i) q^{80} +(218.984 + 126.431i) q^{82} +885.170 q^{83} -1058.19 q^{85} +(850.739 + 491.174i) q^{86} +(-114.201 - 197.802i) q^{88} +(812.312 - 1406.97i) q^{89} -616.327i q^{92} +(352.564 - 203.553i) q^{94} +(-803.017 + 463.622i) q^{95} +739.155i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + 32q^{4} + O(q^{10}) \) \( 16q + 32q^{4} + 72q^{10} - 188q^{16} + 612q^{19} + 528q^{22} - 20q^{25} - 1128q^{31} - 1196q^{37} + 3204q^{40} + 328q^{43} - 1392q^{46} - 4452q^{52} - 3372q^{58} + 1632q^{61} + 5432q^{64} + 308q^{67} - 4068q^{73} - 2176q^{79} + 10188q^{82} - 4608q^{85} + 708q^{88} + 2916q^{94} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.57646 + 0.910170i 0.557363 + 0.321794i 0.752086 0.659064i \(-0.229048\pi\)
−0.194723 + 0.980858i \(0.562381\pi\)
\(3\) 0 0
\(4\) −2.34318 4.05851i −0.292898 0.507314i
\(5\) −7.54372 + 13.0661i −0.674731 + 1.16867i 0.301817 + 0.953366i \(0.402407\pi\)
−0.976547 + 0.215302i \(0.930926\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 23.0935i 1.02060i
\(9\) 0 0
\(10\) −23.7848 + 13.7321i −0.752140 + 0.434248i
\(11\) 8.56529 4.94517i 0.234776 0.135548i −0.377998 0.925807i \(-0.623387\pi\)
0.612773 + 0.790259i \(0.290054\pi\)
\(12\) 0 0
\(13\) 67.8891i 1.44839i −0.689596 0.724194i \(-0.742212\pi\)
0.689596 0.724194i \(-0.257788\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 2.27356 3.93792i 0.0355244 0.0615300i
\(17\) 35.0687 + 60.7407i 0.500318 + 0.866575i 1.00000 0.000366661i \(0.000116712\pi\)
−0.499682 + 0.866209i \(0.666550\pi\)
\(18\) 0 0
\(19\) 53.2242 + 30.7290i 0.642656 + 0.371038i 0.785637 0.618688i \(-0.212335\pi\)
−0.142981 + 0.989725i \(0.545669\pi\)
\(20\) 70.7052 0.790508
\(21\) 0 0
\(22\) 18.0038 0.174474
\(23\) 113.895 + 65.7575i 1.03256 + 0.596147i 0.917716 0.397236i \(-0.130031\pi\)
0.114841 + 0.993384i \(0.463364\pi\)
\(24\) 0 0
\(25\) −51.3154 88.8809i −0.410523 0.711047i
\(26\) 61.7906 107.025i 0.466082 0.807278i
\(27\) 0 0
\(28\) 0 0
\(29\) 158.738i 1.01645i 0.861225 + 0.508223i \(0.169698\pi\)
−0.861225 + 0.508223i \(0.830302\pi\)
\(30\) 0 0
\(31\) 66.2349 38.2407i 0.383746 0.221556i −0.295701 0.955281i \(-0.595553\pi\)
0.679447 + 0.733725i \(0.262220\pi\)
\(32\) −152.828 + 88.2353i −0.844264 + 0.487436i
\(33\) 0 0
\(34\) 127.674i 0.643996i
\(35\) 0 0
\(36\) 0 0
\(37\) −174.341 + 301.967i −0.774634 + 1.34171i 0.160366 + 0.987058i \(0.448733\pi\)
−0.935000 + 0.354648i \(0.884601\pi\)
\(38\) 55.9372 + 96.8861i 0.238795 + 0.413605i
\(39\) 0 0
\(40\) 301.742 + 174.211i 1.19274 + 0.688629i
\(41\) 138.909 0.529120 0.264560 0.964369i \(-0.414773\pi\)
0.264560 + 0.964369i \(0.414773\pi\)
\(42\) 0 0
\(43\) 539.651 1.91386 0.956931 0.290316i \(-0.0937604\pi\)
0.956931 + 0.290316i \(0.0937604\pi\)
\(44\) −40.1400 23.1749i −0.137530 0.0794032i
\(45\) 0 0
\(46\) 119.701 + 207.328i 0.383673 + 0.664541i
\(47\) 111.821 193.680i 0.347039 0.601089i −0.638683 0.769470i \(-0.720520\pi\)
0.985722 + 0.168381i \(0.0538538\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 186.823i 0.528415i
\(51\) 0 0
\(52\) −275.529 + 159.076i −0.734787 + 0.424230i
\(53\) 459.003 265.005i 1.18960 0.686817i 0.231386 0.972862i \(-0.425674\pi\)
0.958216 + 0.286045i \(0.0923407\pi\)
\(54\) 0 0
\(55\) 149.220i 0.365833i
\(56\) 0 0
\(57\) 0 0
\(58\) −144.479 + 250.245i −0.327086 + 0.566530i
\(59\) 271.438 + 470.145i 0.598953 + 1.03742i 0.992976 + 0.118317i \(0.0377498\pi\)
−0.394023 + 0.919101i \(0.628917\pi\)
\(60\) 0 0
\(61\) 116.218 + 67.0983i 0.243937 + 0.140837i 0.616985 0.786975i \(-0.288354\pi\)
−0.373048 + 0.927812i \(0.621687\pi\)
\(62\) 139.222 0.285181
\(63\) 0 0
\(64\) −357.614 −0.698464
\(65\) 887.046 + 512.136i 1.69269 + 0.977272i
\(66\) 0 0
\(67\) −160.290 277.630i −0.292276 0.506238i 0.682071 0.731286i \(-0.261079\pi\)
−0.974348 + 0.225048i \(0.927746\pi\)
\(68\) 164.344 284.653i 0.293084 0.507636i
\(69\) 0 0
\(70\) 0 0
\(71\) 416.958i 0.696955i −0.937317 0.348478i \(-0.886699\pi\)
0.937317 0.348478i \(-0.113301\pi\)
\(72\) 0 0
\(73\) −472.510 + 272.804i −0.757577 + 0.437387i −0.828425 0.560100i \(-0.810763\pi\)
0.0708484 + 0.997487i \(0.477429\pi\)
\(74\) −549.683 + 317.360i −0.863505 + 0.498545i
\(75\) 0 0
\(76\) 288.014i 0.434704i
\(77\) 0 0
\(78\) 0 0
\(79\) 161.369 279.499i 0.229815 0.398052i −0.727938 0.685643i \(-0.759521\pi\)
0.957753 + 0.287591i \(0.0928545\pi\)
\(80\) 34.3022 + 59.4132i 0.0479388 + 0.0830324i
\(81\) 0 0
\(82\) 218.984 + 126.431i 0.294912 + 0.170267i
\(83\) 885.170 1.17060 0.585301 0.810816i \(-0.300976\pi\)
0.585301 + 0.810816i \(0.300976\pi\)
\(84\) 0 0
\(85\) −1058.19 −1.35032
\(86\) 850.739 + 491.174i 1.06672 + 0.615869i
\(87\) 0 0
\(88\) −114.201 197.802i −0.138340 0.239612i
\(89\) 812.312 1406.97i 0.967471 1.67571i 0.264645 0.964346i \(-0.414745\pi\)
0.702826 0.711362i \(-0.251921\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 616.327i 0.698441i
\(93\) 0 0
\(94\) 352.564 203.553i 0.386853 0.223350i
\(95\) −803.017 + 463.622i −0.867240 + 0.500701i
\(96\) 0 0
\(97\) 739.155i 0.773710i 0.922141 + 0.386855i \(0.126439\pi\)
−0.922141 + 0.386855i \(0.873561\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −240.483 + 416.528i −0.240483 + 0.416528i
\(101\) 119.758 + 207.427i 0.117984 + 0.204354i 0.918969 0.394331i \(-0.129024\pi\)
−0.800985 + 0.598685i \(0.795690\pi\)
\(102\) 0 0
\(103\) 44.2852 + 25.5681i 0.0423645 + 0.0244592i 0.521033 0.853537i \(-0.325547\pi\)
−0.478668 + 0.877996i \(0.658880\pi\)
\(104\) −1567.80 −1.47822
\(105\) 0 0
\(106\) 964.800 0.884054
\(107\) −1031.43 595.495i −0.931886 0.538025i −0.0444785 0.999010i \(-0.514163\pi\)
−0.887408 + 0.460986i \(0.847496\pi\)
\(108\) 0 0
\(109\) −194.585 337.031i −0.170989 0.296162i 0.767777 0.640718i \(-0.221363\pi\)
−0.938766 + 0.344555i \(0.888030\pi\)
\(110\) −135.816 + 235.239i −0.117723 + 0.203902i
\(111\) 0 0
\(112\) 0 0
\(113\) 718.545i 0.598186i 0.954224 + 0.299093i \(0.0966841\pi\)
−0.954224 + 0.299093i \(0.903316\pi\)
\(114\) 0 0
\(115\) −1718.39 + 992.113i −1.39340 + 0.804478i
\(116\) 644.240 371.952i 0.515657 0.297715i
\(117\) 0 0
\(118\) 988.220i 0.770958i
\(119\) 0 0
\(120\) 0 0
\(121\) −616.591 + 1067.97i −0.463254 + 0.802379i
\(122\) 122.142 + 211.556i 0.0906409 + 0.156995i
\(123\) 0 0
\(124\) −310.401 179.210i −0.224797 0.129786i
\(125\) −337.493 −0.241490
\(126\) 0 0
\(127\) −179.456 −0.125387 −0.0626934 0.998033i \(-0.519969\pi\)
−0.0626934 + 0.998033i \(0.519969\pi\)
\(128\) 658.861 + 380.393i 0.454966 + 0.262675i
\(129\) 0 0
\(130\) 932.263 + 1614.73i 0.628960 + 1.08939i
\(131\) −1223.43 + 2119.05i −0.815968 + 1.41330i 0.0926619 + 0.995698i \(0.470462\pi\)
−0.908630 + 0.417601i \(0.862871\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 583.564i 0.376211i
\(135\) 0 0
\(136\) 1402.71 809.858i 0.884425 0.510623i
\(137\) 443.021 255.778i 0.276276 0.159508i −0.355460 0.934691i \(-0.615676\pi\)
0.631736 + 0.775183i \(0.282342\pi\)
\(138\) 0 0
\(139\) 599.427i 0.365775i 0.983134 + 0.182888i \(0.0585444\pi\)
−0.983134 + 0.182888i \(0.941456\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 379.503 657.318i 0.224276 0.388457i
\(143\) −335.723 581.490i −0.196326 0.340046i
\(144\) 0 0
\(145\) −2074.09 1197.48i −1.18789 0.685828i
\(146\) −993.191 −0.562994
\(147\) 0 0
\(148\) 1634.05 0.907554
\(149\) −1899.63 1096.75i −1.04445 0.603016i −0.123362 0.992362i \(-0.539368\pi\)
−0.921092 + 0.389346i \(0.872701\pi\)
\(150\) 0 0
\(151\) 358.683 + 621.257i 0.193306 + 0.334816i 0.946344 0.323161i \(-0.104746\pi\)
−0.753038 + 0.657977i \(0.771412\pi\)
\(152\) 709.640 1229.13i 0.378680 0.655893i
\(153\) 0 0
\(154\) 0 0
\(155\) 1153.91i 0.597963i
\(156\) 0 0
\(157\) 1561.39 901.471i 0.793712 0.458250i −0.0475556 0.998869i \(-0.515143\pi\)
0.841268 + 0.540619i \(0.181810\pi\)
\(158\) 508.783 293.746i 0.256181 0.147906i
\(159\) 0 0
\(160\) 2662.49i 1.31555i
\(161\) 0 0
\(162\) 0 0
\(163\) 1453.90 2518.24i 0.698642 1.21008i −0.270296 0.962777i \(-0.587122\pi\)
0.968938 0.247305i \(-0.0795451\pi\)
\(164\) −325.489 563.763i −0.154978 0.268430i
\(165\) 0 0
\(166\) 1395.44 + 805.655i 0.652451 + 0.376693i
\(167\) 3491.37 1.61779 0.808893 0.587956i \(-0.200067\pi\)
0.808893 + 0.587956i \(0.200067\pi\)
\(168\) 0 0
\(169\) −2411.93 −1.09783
\(170\) −1668.20 963.135i −0.752618 0.434524i
\(171\) 0 0
\(172\) −1264.50 2190.18i −0.560566 0.970928i
\(173\) −877.377 + 1519.66i −0.385583 + 0.667848i −0.991850 0.127412i \(-0.959333\pi\)
0.606267 + 0.795261i \(0.292666\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 44.9726i 0.0192610i
\(177\) 0 0
\(178\) 2561.16 1478.68i 1.07846 0.622652i
\(179\) 685.639 395.854i 0.286296 0.165293i −0.349974 0.936759i \(-0.613810\pi\)
0.636270 + 0.771466i \(0.280476\pi\)
\(180\) 0 0
\(181\) 2522.19i 1.03576i −0.855452 0.517882i \(-0.826721\pi\)
0.855452 0.517882i \(-0.173279\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1518.57 2630.24i 0.608427 1.05383i
\(185\) −2630.36 4555.91i −1.04534 1.81058i
\(186\) 0 0
\(187\) 600.746 + 346.841i 0.234925 + 0.135634i
\(188\) −1048.07 −0.406588
\(189\) 0 0
\(190\) −1687.90 −0.644490
\(191\) 782.266 + 451.642i 0.296350 + 0.171098i 0.640802 0.767706i \(-0.278602\pi\)
−0.344452 + 0.938804i \(0.611935\pi\)
\(192\) 0 0
\(193\) 99.4374 + 172.231i 0.0370863 + 0.0642354i 0.883973 0.467538i \(-0.154859\pi\)
−0.846886 + 0.531774i \(0.821526\pi\)
\(194\) −672.757 + 1165.25i −0.248975 + 0.431237i
\(195\) 0 0
\(196\) 0 0
\(197\) 3220.69i 1.16480i 0.812904 + 0.582398i \(0.197886\pi\)
−0.812904 + 0.582398i \(0.802114\pi\)
\(198\) 0 0
\(199\) −2468.10 + 1424.96i −0.879191 + 0.507601i −0.870392 0.492360i \(-0.836134\pi\)
−0.00879944 + 0.999961i \(0.502801\pi\)
\(200\) −2052.57 + 1185.05i −0.725694 + 0.418979i
\(201\) 0 0
\(202\) 436.000i 0.151866i
\(203\) 0 0
\(204\) 0 0
\(205\) −1047.89 + 1815.00i −0.357014 + 0.618366i
\(206\) 46.5426 + 80.6141i 0.0157416 + 0.0272653i
\(207\) 0 0
\(208\) −267.342 154.350i −0.0891194 0.0514531i
\(209\) 607.841 0.201173
\(210\) 0 0
\(211\) 1204.50 0.392993 0.196496 0.980505i \(-0.437044\pi\)
0.196496 + 0.980505i \(0.437044\pi\)
\(212\) −2151.05 1241.91i −0.696863 0.402334i
\(213\) 0 0
\(214\) −1084.00 1877.55i −0.346266 0.599750i
\(215\) −4070.98 + 7051.14i −1.29134 + 2.23667i
\(216\) 0 0
\(217\) 0 0
\(218\) 708.421i 0.220093i
\(219\) 0 0
\(220\) 605.611 349.649i 0.185592 0.107152i
\(221\) 4123.63 2380.78i 1.25514 0.724654i
\(222\) 0 0
\(223\) 3377.73i 1.01430i −0.861857 0.507151i \(-0.830699\pi\)
0.861857 0.507151i \(-0.169301\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −653.998 + 1132.76i −0.192493 + 0.333407i
\(227\) 2261.98 + 3917.86i 0.661378 + 1.14554i 0.980254 + 0.197744i \(0.0633615\pi\)
−0.318875 + 0.947797i \(0.603305\pi\)
\(228\) 0 0
\(229\) −3389.61 1956.99i −0.978131 0.564724i −0.0764258 0.997075i \(-0.524351\pi\)
−0.901705 + 0.432351i \(0.857684\pi\)
\(230\) −3611.96 −1.03550
\(231\) 0 0
\(232\) 3665.82 1.03738
\(233\) −3783.80 2184.58i −1.06388 0.614234i −0.137381 0.990518i \(-0.543868\pi\)
−0.926504 + 0.376284i \(0.877202\pi\)
\(234\) 0 0
\(235\) 1687.10 + 2922.14i 0.468316 + 0.811147i
\(236\) 1272.06 2203.27i 0.350864 0.607714i
\(237\) 0 0
\(238\) 0 0
\(239\) 1945.23i 0.526471i 0.964732 + 0.263235i \(0.0847896\pi\)
−0.964732 + 0.263235i \(0.915210\pi\)
\(240\) 0 0
\(241\) 3499.81 2020.61i 0.935446 0.540080i 0.0469158 0.998899i \(-0.485061\pi\)
0.888530 + 0.458819i \(0.151727\pi\)
\(242\) −1944.06 + 1122.40i −0.516401 + 0.298144i
\(243\) 0 0
\(244\) 628.894i 0.165003i
\(245\) 0 0
\(246\) 0 0
\(247\) 2086.16 3613.34i 0.537407 0.930816i
\(248\) −883.112 1529.59i −0.226120 0.391651i
\(249\) 0 0
\(250\) −532.045 307.176i −0.134598 0.0777101i
\(251\) −4415.70 −1.11042 −0.555212 0.831709i \(-0.687363\pi\)
−0.555212 + 0.831709i \(0.687363\pi\)
\(252\) 0 0
\(253\) 1300.73 0.323226
\(254\) −282.905 163.335i −0.0698860 0.0403487i
\(255\) 0 0
\(256\) 2122.90 + 3676.97i 0.518286 + 0.897698i
\(257\) −348.800 + 604.139i −0.0846597 + 0.146635i −0.905246 0.424888i \(-0.860314\pi\)
0.820586 + 0.571522i \(0.193647\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 4800.11i 1.14496i
\(261\) 0 0
\(262\) −3857.39 + 2227.06i −0.909581 + 0.525147i
\(263\) −690.664 + 398.755i −0.161932 + 0.0934915i −0.578776 0.815487i \(-0.696469\pi\)
0.416844 + 0.908978i \(0.363136\pi\)
\(264\) 0 0
\(265\) 7996.51i 1.85367i
\(266\) 0 0
\(267\) 0 0
\(268\) −751.176 + 1301.08i −0.171214 + 0.296552i
\(269\) 205.351 + 355.679i 0.0465446 + 0.0806176i 0.888359 0.459149i \(-0.151846\pi\)
−0.841815 + 0.539767i \(0.818512\pi\)
\(270\) 0 0
\(271\) −3283.42 1895.69i −0.735992 0.424925i 0.0846182 0.996413i \(-0.473033\pi\)
−0.820610 + 0.571488i \(0.806366\pi\)
\(272\) 318.923 0.0710939
\(273\) 0 0
\(274\) 931.207 0.205315
\(275\) −879.063 507.527i −0.192762 0.111291i
\(276\) 0 0
\(277\) −1623.31 2811.66i −0.352113 0.609877i 0.634507 0.772917i \(-0.281203\pi\)
−0.986619 + 0.163040i \(0.947870\pi\)
\(278\) −545.581 + 944.973i −0.117704 + 0.203870i
\(279\) 0 0
\(280\) 0 0
\(281\) 1599.58i 0.339583i 0.985480 + 0.169791i \(0.0543094\pi\)
−0.985480 + 0.169791i \(0.945691\pi\)
\(282\) 0 0
\(283\) 3694.70 2133.13i 0.776067 0.448062i −0.0589678 0.998260i \(-0.518781\pi\)
0.835034 + 0.550198i \(0.185448\pi\)
\(284\) −1692.23 + 977.008i −0.353575 + 0.204137i
\(285\) 0 0
\(286\) 1222.26i 0.252706i
\(287\) 0 0
\(288\) 0 0
\(289\) −3.12079 + 5.40536i −0.000635210 + 0.00110022i
\(290\) −2179.82 3775.55i −0.441390 0.764510i
\(291\) 0 0
\(292\) 2214.35 + 1278.46i 0.443785 + 0.256219i
\(293\) 2926.77 0.583562 0.291781 0.956485i \(-0.405752\pi\)
0.291781 + 0.956485i \(0.405752\pi\)
\(294\) 0 0
\(295\) −8190.62 −1.61653
\(296\) 6973.48 + 4026.14i 1.36934 + 0.790590i
\(297\) 0 0
\(298\) −1996.46 3457.97i −0.388093 0.672198i
\(299\) 4464.22 7732.25i 0.863453 1.49554i
\(300\) 0 0
\(301\) 0 0
\(302\) 1305.85i 0.248819i
\(303\) 0 0
\(304\) 242.017 139.728i 0.0456599 0.0263618i
\(305\) −1753.43 + 1012.34i −0.329183 + 0.190054i
\(306\) 0 0
\(307\) 3571.36i 0.663935i 0.943291 + 0.331968i \(0.107712\pi\)
−0.943291 + 0.331968i \(0.892288\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −1050.25 + 1819.09i −0.192421 + 0.333282i
\(311\) 1286.71 + 2228.64i 0.234606 + 0.406349i 0.959158 0.282871i \(-0.0912867\pi\)
−0.724552 + 0.689220i \(0.757953\pi\)
\(312\) 0 0
\(313\) 1278.56 + 738.176i 0.230889 + 0.133304i 0.610982 0.791644i \(-0.290775\pi\)
−0.380093 + 0.924948i \(0.624108\pi\)
\(314\) 3281.97 0.589848
\(315\) 0 0
\(316\) −1512.46 −0.269249
\(317\) 2188.36 + 1263.45i 0.387730 + 0.223856i 0.681176 0.732120i \(-0.261469\pi\)
−0.293446 + 0.955976i \(0.594802\pi\)
\(318\) 0 0
\(319\) 784.988 + 1359.64i 0.137777 + 0.238637i
\(320\) 2697.74 4672.62i 0.471275 0.816273i
\(321\) 0 0
\(322\) 0 0
\(323\) 4310.50i 0.742546i
\(324\) 0 0
\(325\) −6034.05 + 3483.76i −1.02987 + 0.594597i
\(326\) 4584.05 2646.60i 0.778794 0.449637i
\(327\) 0 0
\(328\) 3207.89i 0.540019i
\(329\) 0 0
\(330\) 0 0
\(331\) −737.778 + 1277.87i −0.122513 + 0.212200i −0.920758 0.390134i \(-0.872429\pi\)
0.798245 + 0.602333i \(0.205762\pi\)
\(332\) −2074.11 3592.47i −0.342867 0.593863i
\(333\) 0 0
\(334\) 5504.01 + 3177.74i 0.901694 + 0.520593i
\(335\) 4836.73 0.788832
\(336\) 0 0
\(337\) −6727.28 −1.08741 −0.543706 0.839275i \(-0.682979\pi\)
−0.543706 + 0.839275i \(0.682979\pi\)
\(338\) −3802.32 2195.27i −0.611890 0.353275i
\(339\) 0 0
\(340\) 2479.54 + 4294.68i 0.395505 + 0.685035i
\(341\) 378.214 655.086i 0.0600629 0.104032i
\(342\) 0 0
\(343\) 0 0
\(344\) 12462.4i 1.95328i
\(345\) 0 0
\(346\) −2766.30 + 1597.13i −0.429819 + 0.248156i
\(347\) −466.060 + 269.080i −0.0721021 + 0.0416281i −0.535618 0.844461i \(-0.679921\pi\)
0.463516 + 0.886089i \(0.346588\pi\)
\(348\) 0 0
\(349\) 6975.93i 1.06995i 0.844867 + 0.534976i \(0.179679\pi\)
−0.844867 + 0.534976i \(0.820321\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −872.678 + 1511.52i −0.132142 + 0.228876i
\(353\) 4438.40 + 7687.53i 0.669213 + 1.15911i 0.978125 + 0.208020i \(0.0667019\pi\)
−0.308912 + 0.951091i \(0.599965\pi\)
\(354\) 0 0
\(355\) 5448.02 + 3145.42i 0.814509 + 0.470257i
\(356\) −7613.57 −1.13348
\(357\) 0 0
\(358\) 1441.18 0.212761
\(359\) 9565.96 + 5522.91i 1.40633 + 0.811944i 0.995032 0.0995575i \(-0.0317427\pi\)
0.411297 + 0.911502i \(0.365076\pi\)
\(360\) 0 0
\(361\) −1540.96 2669.02i −0.224662 0.389126i
\(362\) 2295.62 3976.14i 0.333302 0.577296i
\(363\) 0 0
\(364\) 0 0
\(365\) 8231.82i 1.18047i
\(366\) 0 0
\(367\) −7210.59 + 4163.04i −1.02559 + 0.592122i −0.915717 0.401824i \(-0.868376\pi\)
−0.109868 + 0.993946i \(0.535043\pi\)
\(368\) 517.896 299.007i 0.0733619 0.0423555i
\(369\) 0 0
\(370\) 9576.29i 1.34553i
\(371\) 0 0
\(372\) 0 0
\(373\) 2272.66 3936.36i 0.315479 0.546426i −0.664060 0.747679i \(-0.731168\pi\)
0.979539 + 0.201253i \(0.0645014\pi\)
\(374\) 631.369 + 1093.56i 0.0872922 + 0.151195i
\(375\) 0 0
\(376\) −4472.76 2582.35i −0.613470 0.354187i
\(377\) 10776.6 1.47221
\(378\) 0 0
\(379\) 11527.2 1.56230 0.781151 0.624343i \(-0.214633\pi\)
0.781151 + 0.624343i \(0.214633\pi\)
\(380\) 3763.23 + 2172.70i 0.508025 + 0.293308i
\(381\) 0 0
\(382\) 822.141 + 1423.99i 0.110116 + 0.190727i
\(383\) −1960.23 + 3395.22i −0.261522 + 0.452970i −0.966647 0.256114i \(-0.917558\pi\)
0.705124 + 0.709084i \(0.250891\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 362.020i 0.0477366i
\(387\) 0 0
\(388\) 2999.87 1731.97i 0.392513 0.226618i
\(389\) 689.734 398.218i 0.0898995 0.0519035i −0.454376 0.890810i \(-0.650138\pi\)
0.544276 + 0.838906i \(0.316805\pi\)
\(390\) 0 0
\(391\) 9224.11i 1.19305i
\(392\) 0 0
\(393\) 0 0
\(394\) −2931.38 + 5077.30i −0.374824 + 0.649214i
\(395\) 2434.64 + 4216.92i 0.310127 + 0.537155i
\(396\) 0 0
\(397\) −3338.59 1927.54i −0.422063 0.243678i 0.273896 0.961759i \(-0.411687\pi\)
−0.695960 + 0.718081i \(0.745021\pi\)
\(398\) −5187.82 −0.653371
\(399\) 0 0
\(400\) −466.675 −0.0583344
\(401\) 4031.65 + 2327.68i 0.502073 + 0.289872i 0.729569 0.683907i \(-0.239721\pi\)
−0.227496 + 0.973779i \(0.573054\pi\)
\(402\) 0 0
\(403\) −2596.13 4496.63i −0.320899 0.555814i
\(404\) 561.229 972.077i 0.0691143 0.119709i
\(405\) 0 0
\(406\) 0 0
\(407\) 3448.58i 0.420000i
\(408\) 0 0
\(409\) 8478.82 4895.25i 1.02506 0.591821i 0.109497 0.993987i \(-0.465076\pi\)
0.915566 + 0.402167i \(0.131743\pi\)
\(410\) −3303.91 + 1907.52i −0.397972 + 0.229769i
\(411\) 0 0
\(412\) 239.642i 0.0286561i
\(413\) 0 0
\(414\) 0 0
\(415\) −6677.47 + 11565.7i −0.789842 + 1.36805i
\(416\) 5990.22 + 10375.4i 0.705997 + 1.22282i
\(417\) 0 0
\(418\) 958.237 + 553.238i 0.112127 + 0.0647363i
\(419\) −3007.46 −0.350654 −0.175327 0.984510i \(-0.556098\pi\)
−0.175327 + 0.984510i \(0.556098\pi\)
\(420\) 0 0
\(421\) 7646.06 0.885145 0.442573 0.896733i \(-0.354066\pi\)
0.442573 + 0.896733i \(0.354066\pi\)
\(422\) 1898.85 + 1096.30i 0.219040 + 0.126463i
\(423\) 0 0
\(424\) −6119.90 10600.0i −0.700964 1.21411i
\(425\) 3599.13 6233.87i 0.410784 0.711499i
\(426\) 0 0
\(427\) 0 0
\(428\) 5581.41i 0.630345i
\(429\) 0 0
\(430\) −12835.5 + 7410.57i −1.43949 + 0.831091i
\(431\) −12983.1 + 7495.81i −1.45099 + 0.837727i −0.998537 0.0540641i \(-0.982782\pi\)
−0.452448 + 0.891791i \(0.649449\pi\)
\(432\) 0 0
\(433\) 5666.63i 0.628916i −0.949271 0.314458i \(-0.898177\pi\)
0.949271 0.314458i \(-0.101823\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −911.895 + 1579.45i −0.100165 + 0.173491i
\(437\) 4041.32 + 6999.78i 0.442386 + 0.766235i
\(438\) 0 0
\(439\) 4790.07 + 2765.55i 0.520769 + 0.300666i 0.737249 0.675621i \(-0.236124\pi\)
−0.216480 + 0.976287i \(0.569458\pi\)
\(440\) 3446.01 0.373368
\(441\) 0 0
\(442\) 8667.66 0.932757
\(443\) −349.200 201.611i −0.0374515 0.0216226i 0.481157 0.876634i \(-0.340217\pi\)
−0.518609 + 0.855012i \(0.673550\pi\)
\(444\) 0 0
\(445\) 12255.7 + 21227.5i 1.30556 + 2.26130i
\(446\) 3074.31 5324.85i 0.326396 0.565334i
\(447\) 0 0
\(448\) 0 0
\(449\) 8429.03i 0.885948i 0.896534 + 0.442974i \(0.146077\pi\)
−0.896534 + 0.442974i \(0.853923\pi\)
\(450\) 0 0
\(451\) 1189.79 686.928i 0.124224 0.0717210i
\(452\) 2916.22 1683.68i 0.303468 0.175207i
\(453\) 0 0
\(454\) 8235.15i 0.851310i
\(455\) 0 0
\(456\) 0 0
\(457\) −342.830 + 593.799i −0.0350917 + 0.0607807i −0.883038 0.469302i \(-0.844506\pi\)
0.847946 + 0.530082i \(0.177839\pi\)
\(458\) −3562.40 6170.25i −0.363449 0.629513i
\(459\) 0 0
\(460\) 8052.99 + 4649.40i 0.816245 + 0.471259i
\(461\) 4864.48 0.491456 0.245728 0.969339i \(-0.420973\pi\)
0.245728 + 0.969339i \(0.420973\pi\)
\(462\) 0 0
\(463\) −8354.23 −0.838562 −0.419281 0.907857i \(-0.637718\pi\)
−0.419281 + 0.907857i \(0.637718\pi\)
\(464\) 625.099 + 360.901i 0.0625420 + 0.0361086i
\(465\) 0 0
\(466\) −3976.68 6887.81i −0.395313 0.684703i
\(467\) 501.469 868.570i 0.0496900 0.0860656i −0.840111 0.542415i \(-0.817510\pi\)
0.889801 + 0.456350i \(0.150843\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 6142.19i 0.602804i
\(471\) 0 0
\(472\) 10857.3 6268.46i 1.05879 0.611290i
\(473\) 4622.27 2668.67i 0.449328 0.259420i
\(474\) 0 0
\(475\) 6307.49i 0.609279i
\(476\) 0 0
\(477\) 0 0
\(478\) −1770.49 + 3066.58i −0.169415 + 0.293435i
\(479\) −3026.38 5241.84i −0.288682 0.500012i 0.684813 0.728719i \(-0.259884\pi\)
−0.973495 + 0.228706i \(0.926550\pi\)
\(480\) 0 0
\(481\) 20500.3 + 11835.8i 1.94331 + 1.12197i
\(482\) 7356.41 0.695177
\(483\) 0 0
\(484\) 5779.13 0.542743
\(485\) −9657.88 5575.98i −0.904210 0.522046i
\(486\) 0 0
\(487\) −7654.72 13258.4i −0.712255 1.23366i −0.964009 0.265871i \(-0.914340\pi\)
0.251753 0.967791i \(-0.418993\pi\)
\(488\) 1549.53 2683.87i 0.143738 0.248961i
\(489\) 0 0
\(490\) 0 0
\(491\) 4291.01i 0.394400i −0.980363 0.197200i \(-0.936815\pi\)
0.980363 0.197200i \(-0.0631848\pi\)
\(492\) 0 0
\(493\) −9641.87 + 5566.74i −0.880828 + 0.508546i
\(494\) 6577.51 3797.53i 0.599061 0.345868i
\(495\) 0 0
\(496\) 347.770i 0.0314826i
\(497\) 0 0
\(498\) 0 0
\(499\) −3445.77 + 5968.24i −0.309126 + 0.535421i −0.978171 0.207800i \(-0.933370\pi\)
0.669046 + 0.743221i \(0.266703\pi\)
\(500\) 790.807 + 1369.72i 0.0707319 + 0.122511i
\(501\) 0 0
\(502\) −6961.17 4019.03i −0.618909 0.357327i
\(503\) −13534.6 −1.19975 −0.599877 0.800092i \(-0.704784\pi\)
−0.599877 + 0.800092i \(0.704784\pi\)
\(504\) 0 0
\(505\) −3613.68 −0.318429
\(506\) 2050.55 + 1183.88i 0.180154 + 0.104012i
\(507\) 0 0
\(508\) 420.498 + 728.323i 0.0367255 + 0.0636105i
\(509\) −6043.91 + 10468.4i −0.526310 + 0.911595i 0.473221 + 0.880944i \(0.343091\pi\)
−0.999530 + 0.0306510i \(0.990242\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1642.50i 0.141776i
\(513\) 0 0
\(514\) −1099.74 + 634.934i −0.0943724 + 0.0544859i
\(515\) −668.150 + 385.757i −0.0571693 + 0.0330067i
\(516\) 0 0
\(517\) 2211.91i 0.188161i
\(518\) 0 0
\(519\) 0 0
\(520\) 11827.0 20485.0i 0.997402 1.72755i
\(521\) −3812.94 6604.20i −0.320629 0.555346i 0.659989 0.751275i \(-0.270561\pi\)
−0.980618 + 0.195930i \(0.937228\pi\)
\(522\) 0 0
\(523\) −13328.7 7695.34i −1.11439 0.643392i −0.174425 0.984670i \(-0.555807\pi\)
−0.939962 + 0.341279i \(0.889140\pi\)
\(524\) 11466.9 0.955981
\(525\) 0 0
\(526\) −1451.74 −0.120340
\(527\) 4645.54 + 2682.10i 0.383990 + 0.221697i
\(528\) 0 0
\(529\) 2564.60 + 4442.02i 0.210783 + 0.365088i
\(530\) −7278.18 + 12606.2i −0.596498 + 1.03317i
\(531\) 0 0
\(532\) 0 0
\(533\) 9430.40i 0.766371i
\(534\) 0 0
\(535\) 15561.6 8984.49i 1.25754 0.726044i
\(536\) −6411.45 + 3701.65i −0.516665 + 0.298297i
\(537\) 0 0
\(538\) 747.619i 0.0599110i
\(539\) 0 0
\(540\) 0 0
\(541\) 6850.44 11865.3i 0.544406 0.942939i −0.454238 0.890880i \(-0.650088\pi\)
0.998644 0.0520584i \(-0.0165782\pi\)
\(542\) −3450.79 5976.95i −0.273477 0.473675i
\(543\) 0 0
\(544\) −10718.9 6188.59i −0.844800 0.487745i
\(545\) 5871.58 0.461487
\(546\) 0 0
\(547\) −6139.00 −0.479863 −0.239931 0.970790i \(-0.577125\pi\)
−0.239931 + 0.970790i \(0.577125\pi\)
\(548\) −2076.16 1198.67i −0.161841 0.0934391i
\(549\) 0 0
\(550\) −923.872 1600.19i −0.0716255 0.124059i
\(551\) −4877.87 + 8448.71i −0.377140 + 0.653226i
\(552\) 0 0
\(553\) 0 0
\(554\) 5909.95i 0.453231i
\(555\) 0 0
\(556\) 2432.78 1404.57i 0.185563 0.107135i
\(557\) 19687.1 11366.4i 1.49761 0.864646i 0.497615 0.867398i \(-0.334209\pi\)
0.999996 + 0.00275234i \(0.000876098\pi\)
\(558\) 0 0
\(559\) 36636.4i 2.77202i
\(560\) 0 0
\(561\) 0 0
\(562\) −1455.89 + 2521.67i −0.109276 + 0.189271i
\(563\) −4958.81 8588.90i −0.371206 0.642947i 0.618546 0.785749i \(-0.287722\pi\)
−0.989751 + 0.142802i \(0.954389\pi\)
\(564\) 0 0
\(565\) −9388.59 5420.51i −0.699081 0.403615i
\(566\) 7766.06 0.576735
\(567\) 0 0
\(568\) −9629.02 −0.711311
\(569\) −4448.79 2568.51i −0.327773 0.189240i 0.327079 0.944997i \(-0.393936\pi\)
−0.654852 + 0.755757i \(0.727269\pi\)
\(570\) 0 0
\(571\) 9093.02 + 15749.6i 0.666429 + 1.15429i 0.978896 + 0.204360i \(0.0655114\pi\)
−0.312467 + 0.949929i \(0.601155\pi\)
\(572\) −1573.32 + 2725.07i −0.115007 + 0.199198i
\(573\) 0 0
\(574\) 0 0
\(575\) 13497.5i 0.978930i
\(576\) 0 0
\(577\) −10737.5 + 6199.32i −0.774713 + 0.447281i −0.834553 0.550927i \(-0.814274\pi\)
0.0598401 + 0.998208i \(0.480941\pi\)
\(578\) −9.83959 + 5.68089i −0.000708085 + 0.000408813i
\(579\) 0 0
\(580\) 11223.6i 0.803509i
\(581\) 0 0
\(582\) 0 0
\(583\) 2621.00 4539.70i 0.186193 0.322496i
\(584\) 6299.99 + 10911.9i 0.446396 + 0.773181i
\(585\) 0 0
\(586\) 4613.94 + 2663.86i 0.325256 + 0.187787i
\(587\) −18977.6 −1.33439 −0.667195 0.744883i \(-0.732505\pi\)
−0.667195 + 0.744883i \(0.732505\pi\)
\(588\) 0 0
\(589\) 4700.40 0.328822
\(590\) −12912.2 7454.85i −0.900994 0.520189i
\(591\) 0 0
\(592\) 792.749 + 1373.08i 0.0550368 + 0.0953265i
\(593\) 5364.44 9291.48i 0.371486 0.643432i −0.618308 0.785936i \(-0.712182\pi\)
0.989794 + 0.142503i \(0.0455151\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 10279.5i 0.706488i
\(597\) 0 0
\(598\) 14075.3 8126.40i 0.962514 0.555708i
\(599\) 1577.36 910.687i 0.107594 0.0621196i −0.445237 0.895413i \(-0.646881\pi\)
0.552832 + 0.833293i \(0.313547\pi\)
\(600\) 0 0
\(601\) 18933.3i 1.28503i 0.766273 + 0.642516i \(0.222109\pi\)
−0.766273 + 0.642516i \(0.777891\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 1680.92 2911.43i 0.113238 0.196133i
\(605\) −9302.77 16112.9i −0.625143 1.08278i
\(606\) 0 0
\(607\) −13323.3 7692.20i −0.890898 0.514360i −0.0166621 0.999861i \(-0.505304\pi\)
−0.874236 + 0.485501i \(0.838637\pi\)
\(608\) −10845.5 −0.723428
\(609\) 0 0
\(610\) −3685.61 −0.244633
\(611\) −13148.8 7591.46i −0.870611 0.502647i
\(612\) 0 0
\(613\) 2753.60 + 4769.38i 0.181431 + 0.314247i 0.942368 0.334578i \(-0.108594\pi\)
−0.760937 + 0.648825i \(0.775261\pi\)
\(614\) −3250.54 + 5630.10i −0.213650 + 0.370053i
\(615\) 0 0
\(616\) 0 0
\(617\) 18134.0i 1.18322i 0.806224 + 0.591610i \(0.201507\pi\)
−0.806224 + 0.591610i \(0.798493\pi\)
\(618\) 0 0
\(619\) −3148.73 + 1817.92i −0.204456 + 0.118043i −0.598732 0.800949i \(-0.704329\pi\)
0.394276 + 0.918992i \(0.370995\pi\)
\(620\) 4683.15 2703.82i 0.303355 0.175142i
\(621\) 0 0
\(622\) 4684.49i 0.301979i
\(623\) 0 0
\(624\) 0 0
\(625\) 8960.38 15519.8i 0.573464 0.993270i
\(626\) 1343.73 + 2327.41i 0.0857928 + 0.148597i
\(627\) 0 0
\(628\) −7317.26 4224.62i −0.464953 0.268441i
\(629\) −24455.6 −1.55025
\(630\) 0 0
\(631\) −5912.59 −0.373021 −0.186511 0.982453i \(-0.559718\pi\)
−0.186511 + 0.982453i \(0.559718\pi\)
\(632\) −6454.60 3726.57i −0.406251 0.234549i
\(633\) 0 0
\(634\) 2299.90 + 3983.55i 0.144071 + 0.249538i
\(635\) 1353.76 2344.79i 0.0846024 0.146536i
\(636\) 0 0
\(637\) 0 0
\(638\) 2857.89i 0.177343i
\(639\) 0 0
\(640\) −9940.52 + 5739.16i −0.613959 + 0.354469i
\(641\) −23786.7 + 13733.3i −1.46571 + 0.846227i −0.999265 0.0383236i \(-0.987798\pi\)
−0.466443 + 0.884551i \(0.654465\pi\)
\(642\) 0 0
\(643\) 28474.0i 1.74635i 0.487403 + 0.873177i \(0.337944\pi\)
−0.487403 + 0.873177i \(0.662056\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −3923.29 + 6795.33i −0.238947 + 0.413868i
\(647\) 661.681 + 1146.06i 0.0402061 + 0.0696390i 0.885428 0.464776i \(-0.153865\pi\)
−0.845222 + 0.534415i \(0.820532\pi\)
\(648\) 0 0
\(649\) 4649.89 + 2684.62i 0.281239 + 0.162374i
\(650\) −12683.3 −0.765351
\(651\) 0 0
\(652\) −13627.0 −0.818522
\(653\) 3331.38 + 1923.37i 0.199643 + 0.115264i 0.596489 0.802621i \(-0.296562\pi\)
−0.396846 + 0.917885i \(0.629895\pi\)
\(654\) 0 0
\(655\) −18458.5 31971.0i −1.10112 1.90719i
\(656\) 315.818 547.012i 0.0187967 0.0325568i
\(657\) 0 0
\(658\) 0 0
\(659\) 6796.84i 0.401771i 0.979615 + 0.200886i \(0.0643819\pi\)
−0.979615 + 0.200886i \(0.935618\pi\)
\(660\) 0 0
\(661\) 26902.5 15532.2i 1.58304 0.913966i 0.588623 0.808408i \(-0.299670\pi\)
0.994413 0.105559i \(-0.0336631\pi\)
\(662\) −2326.16 + 1343.01i −0.136569 + 0.0788481i
\(663\) 0 0
\(664\) 20441.7i 1.19471i
\(665\) 0 0
\(666\) 0 0
\(667\) −10438.2 + 18079.5i −0.605952 + 1.04954i
\(668\) −8180.91 14169.7i −0.473846 0.820725i
\(669\) 0 0
\(670\) 7624.91 + 4402.24i 0.439666 + 0.253841i
\(671\) 1327.25 0.0763605
\(672\) 0 0
\(673\) 15508.2 0.888259 0.444129 0.895963i \(-0.353513\pi\)
0.444129 + 0.895963i \(0.353513\pi\)
\(674\) −10605.3 6122.97i −0.606084 0.349923i
\(675\) 0 0
\(676\) 5651.59 + 9788.84i 0.321552 + 0.556944i
\(677\) −15337.4 + 26565.2i −0.870701 + 1.50810i −0.00942744 + 0.999956i \(0.503001\pi\)
−0.861273 + 0.508142i \(0.830332\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 24437.4i 1.37813i
\(681\) 0 0
\(682\) 1192.48 688.478i 0.0669536 0.0386557i
\(683\) −15292.8 + 8829.33i −0.856756 + 0.494648i −0.862925 0.505333i \(-0.831370\pi\)
0.00616869 + 0.999981i \(0.498036\pi\)
\(684\) 0 0
\(685\) 7718.08i 0.430500i
\(686\) 0 0
\(687\) 0 0
\(688\) 1226.93 2125.10i 0.0679887 0.117760i
\(689\) −17991.0 31161.3i −0.994778 1.72301i
\(690\) 0 0
\(691\) −11402.3 6583.11i −0.627733 0.362422i 0.152141 0.988359i \(-0.451383\pi\)
−0.779874 + 0.625937i \(0.784717\pi\)
\(692\) 8223.42 0.451745
\(693\) 0 0
\(694\) −979.634 −0.0535827
\(695\) −7832.18 4521.91i −0.427470 0.246800i
\(696\) 0 0
\(697\) 4871.35 + 8437.42i 0.264728 + 0.458522i
\(698\) −6349.29 + 10997.3i −0.344304 + 0.596352i
\(699\) 0 0
\(700\) 0 0
\(701\) 25910.0i 1.39602i −0.716090 0.698008i \(-0.754070\pi\)
0.716090 0.698008i \(-0.245930\pi\)
\(702\) 0 0
\(703\) −18558.3 + 10714.6i −0.995646 + 0.574837i
\(704\) −3063.06 + 1768.46i −0.163982 + 0.0946752i
\(705\) 0 0
\(706\) 16158.8i 0.861394i
\(707\) 0 0
\(708\) 0 0
\(709\) −3104.25 + 5376.71i −0.164432 + 0.284805i −0.936454 0.350792i \(-0.885913\pi\)
0.772021 + 0.635597i \(0.219246\pi\)
\(710\) 5725.73 + 9917.25i 0.302652 + 0.524208i
\(711\) 0 0
\(712\) −32491.7 18759.1i −1.71022 0.987398i
\(713\) 10058.5 0.528320
\(714\) 0 0
\(715\) 10130.4 0.529868
\(716\) −3213.15 1855.11i −0.167711 0.0968280i
\(717\) 0 0
\(718\) 10053.6 + 17413.3i 0.522557 + 0.905095i
\(719\) 14379.4 24905.9i 0.745843 1.29184i −0.203957 0.978980i \(-0.565380\pi\)
0.949800 0.312858i \(-0.101287\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 5610.13i 0.289180i
\(723\) 0 0
\(724\) −10236.3 + 5909.95i −0.525457 + 0.303373i
\(725\) 14108.8 8145.72i 0.722742 0.417275i
\(726\) 0 0
\(727\) 35275.7i 1.79959i −0.436312 0.899795i \(-0.643716\pi\)
0.436312 0.899795i \(-0.356284\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 7492.35 12977.1i 0.379869 0.657953i
\(731\) 18924.8 + 32778.8i 0.957539 + 1.65851i
\(732\) 0 0
\(733\) 6885.15 + 3975.14i 0.346942 + 0.200307i 0.663338 0.748320i \(-0.269139\pi\)
−0.316395 + 0.948627i \(0.602473\pi\)
\(734\) −15156.3 −0.762164
\(735\) 0 0
\(736\) −23208.5 −1.16233
\(737\) −2745.86 1585.32i −0.137239 0.0792348i
\(738\) 0 0
\(739\) −16676.8 28885.1i −0.830130 1.43783i −0.897935 0.440129i \(-0.854933\pi\)
0.0678046 0.997699i \(-0.478401\pi\)
\(740\) −12326.8 + 21350.6i −0.612354 + 1.06063i
\(741\) 0 0
\(742\) 0 0
\(743\) 32933.6i 1.62613i −0.582171 0.813066i \(-0.697797\pi\)
0.582171 0.813066i \(-0.302203\pi\)
\(744\) 0 0
\(745\) 28660.5 16547.2i 1.40945 0.813747i
\(746\) 7165.51 4137.01i 0.351673 0.203039i
\(747\) 0 0
\(748\) 3250.85i 0.158907i
\(749\) 0 0
\(750\) 0 0
\(751\) 19818.3 34326.3i 0.962956 1.66789i 0.247945 0.968774i \(-0.420245\pi\)
0.715010 0.699114i \(-0.246422\pi\)
\(752\) −508.466 880.688i −0.0246567 0.0427066i
\(753\) 0 0
\(754\) 16988.9 + 9808.54i 0.820555 + 0.473748i
\(755\) −10823.2 −0.521718
\(756\) 0 0
\(757\) −3996.51 −0.191883 −0.0959417 0.995387i \(-0.530586\pi\)
−0.0959417 + 0.995387i \(0.530586\pi\)
\(758\) 18172.2 + 10491.7i 0.870769 + 0.502739i
\(759\) 0 0
\(760\) 10706.6 + 18544.5i 0.511014 + 0.885103i
\(761\) 13117.8 22720.8i 0.624863 1.08230i −0.363704 0.931515i \(-0.618488\pi\)
0.988567 0.150781i \(-0.0481787\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 4233.11i 0.200456i
\(765\) 0 0
\(766\) −6180.45 + 3568.28i −0.291526 + 0.168312i
\(767\) 31917.7 18427.7i 1.50258 0.867517i
\(768\) 0 0
\(769\) 36456.9i 1.70958i −0.518971 0.854792i \(-0.673685\pi\)
0.518971 0.854792i \(-0.326315\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 466.000 807.135i 0.0217250 0.0376288i
\(773\) −4732.74 8197.34i −0.220213 0.381420i 0.734660 0.678436i \(-0.237342\pi\)
−0.954873 + 0.297016i \(0.904009\pi\)
\(774\) 0 0
\(775\) −6797.74 3924.68i −0.315074 0.181908i
\(776\) 17069.7 0.789646
\(777\) 0 0
\(778\) 1449.79 0.0668089
\(779\) 7393.31 + 4268.53i 0.340042 + 0.196323i
\(780\) 0 0
\(781\) −2061.93 3571.37i −0.0944707 0.163628i
\(782\) −8395.51 + 14541.4i −0.383917 + 0.664963i
\(783\) 0 0
\(784\) 0 0
\(785\) 27201.8i 1.23678i
\(786\) 0 0
\(787\) −21665.9 + 12508.8i −0.981330 + 0.566571i −0.902671 0.430331i \(-0.858397\pi\)
−0.0786582 + 0.996902i \(0.525064\pi\)
\(788\) 13071.2 7546.67i 0.590917 0.341166i
\(789\) 0 0
\(790\) 8863.75i 0.399187i