# Properties

 Label 441.4.e.v Level $441$ Weight $4$ Character orbit 441.e Analytic conductor $26.020$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [441,4,Mod(226,441)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(441, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([0, 2]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("441.226");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$441 = 3^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 441.e (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$26.0198423125$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\Q(\sqrt{2}, \sqrt{-3})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{4} + 2x^{2} + 4$$ x^4 + 2*x^2 + 4 Coefficient ring: $$\Z[a_1, \ldots, a_{4}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 147) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + (\beta_{2} + \beta_1 + 1) q^{2} + (2 \beta_{3} - 5 \beta_{2} + 2 \beta_1) q^{4} + (10 \beta_{2} + 7 \beta_1 + 10) q^{5} + ( - 11 \beta_{3} + 9) q^{8}+O(q^{10})$$ q + (b2 + b1 + 1) * q^2 + (2*b3 - 5*b2 + 2*b1) * q^4 + (10*b2 + 7*b1 + 10) * q^5 + (-11*b3 + 9) * q^8 $$q + (\beta_{2} + \beta_1 + 1) q^{2} + (2 \beta_{3} - 5 \beta_{2} + 2 \beta_1) q^{4} + (10 \beta_{2} + 7 \beta_1 + 10) q^{5} + ( - 11 \beta_{3} + 9) q^{8} + (17 \beta_{3} + 24 \beta_{2} + 17 \beta_1) q^{10} + ( - 24 \beta_{3} + 10 \beta_{2} - 24 \beta_1) q^{11} + ( - 25 \beta_{3} + 52) q^{13} + ( - 9 \beta_{2} + 36 \beta_1 - 9) q^{16} + (45 \beta_{3} - 58 \beta_{2} + 45 \beta_1) q^{17} + ( - 96 \beta_{2} + 22 \beta_1 - 96) q^{19} + ( - 15 \beta_{3} + 22) q^{20} + ( - 14 \beta_{3} + 38) q^{22} + (14 \beta_{2} - 28 \beta_1 + 14) q^{23} + (140 \beta_{3} + 73 \beta_{2} + 140 \beta_1) q^{25} + (102 \beta_{2} + 77 \beta_1 + 102) q^{26} + ( - 62 \beta_{3} - 148) q^{29} + ( - 50 \beta_{3} - 52 \beta_{2} - 50 \beta_1) q^{31} + ( - 61 \beta_{3} - 9 \beta_{2} - 61 \beta_1) q^{32} + ( - 13 \beta_{3} - 32) q^{34} + (124 \beta_{2} - 48 \beta_1 + 124) q^{37} + ( - 74 \beta_{3} - 52 \beta_{2} - 74 \beta_1) q^{38} + (244 \beta_{2} + 173 \beta_1 + 244) q^{40} + ( - 219 \beta_{3} - 10) q^{41} + (100 \beta_{3} - 360) q^{43} + (146 \beta_{2} - 140 \beta_1 + 146) q^{44} + ( - 14 \beta_{3} - 42 \beta_{2} - 14 \beta_1) q^{46} + ( - 48 \beta_{2} + 250 \beta_1 - 48) q^{47} + (213 \beta_{3} - 353) q^{50} + ( - 21 \beta_{3} - 160 \beta_{2} - 21 \beta_1) q^{52} + (360 \beta_{3} - 134 \beta_{2} + 360 \beta_1) q^{53} + ( - 170 \beta_{3} + 236) q^{55} + ( - 24 \beta_{2} - 86 \beta_1 - 24) q^{58} + (226 \beta_{3} + 308 \beta_{2} + 226 \beta_1) q^{59} + ( - 8 \beta_{2} + 3 \beta_1 - 8) q^{61} + ( - 102 \beta_{3} + 152) q^{62} + ( - 358 \beta_{3} + 59) q^{64} + (870 \beta_{2} + 614 \beta_1 + 870) q^{65} + ( - 524 \beta_{3} - 72 \beta_{2} - 524 \beta_1) q^{67} + ( - 470 \beta_{2} + 341 \beta_1 - 470) q^{68} + ( - 232 \beta_{3} - 494) q^{71} + (401 \beta_{3} + 52 \beta_{2} + 401 \beta_1) q^{73} + (76 \beta_{3} + 28 \beta_{2} + 76 \beta_1) q^{74} + ( - 302 \beta_{3} - 568) q^{76} + (472 \beta_{2} - 236 \beta_1 + 472) q^{79} + (297 \beta_{3} + 414 \beta_{2} + 297 \beta_1) q^{80} + (428 \beta_{2} + 209 \beta_1 + 428) q^{82} + (80 \beta_{3} - 508) q^{83} + (44 \beta_{3} - 50) q^{85} + ( - 560 \beta_{2} - 460 \beta_1 - 560) q^{86} + ( - 106 \beta_{3} - 438 \beta_{2} - 106 \beta_1) q^{88} + ( - 194 \beta_{2} + 339 \beta_1 - 194) q^{89} + (168 \beta_{3} + 182) q^{92} + (202 \beta_{3} + 452 \beta_{2} + 202 \beta_1) q^{94} + ( - 452 \beta_{3} - 652 \beta_{2} - 452 \beta_1) q^{95} + (599 \beta_{3} + 244) q^{97}+O(q^{100})$$ q + (b2 + b1 + 1) * q^2 + (2*b3 - 5*b2 + 2*b1) * q^4 + (10*b2 + 7*b1 + 10) * q^5 + (-11*b3 + 9) * q^8 + (17*b3 + 24*b2 + 17*b1) * q^10 + (-24*b3 + 10*b2 - 24*b1) * q^11 + (-25*b3 + 52) * q^13 + (-9*b2 + 36*b1 - 9) * q^16 + (45*b3 - 58*b2 + 45*b1) * q^17 + (-96*b2 + 22*b1 - 96) * q^19 + (-15*b3 + 22) * q^20 + (-14*b3 + 38) * q^22 + (14*b2 - 28*b1 + 14) * q^23 + (140*b3 + 73*b2 + 140*b1) * q^25 + (102*b2 + 77*b1 + 102) * q^26 + (-62*b3 - 148) * q^29 + (-50*b3 - 52*b2 - 50*b1) * q^31 + (-61*b3 - 9*b2 - 61*b1) * q^32 + (-13*b3 - 32) * q^34 + (124*b2 - 48*b1 + 124) * q^37 + (-74*b3 - 52*b2 - 74*b1) * q^38 + (244*b2 + 173*b1 + 244) * q^40 + (-219*b3 - 10) * q^41 + (100*b3 - 360) * q^43 + (146*b2 - 140*b1 + 146) * q^44 + (-14*b3 - 42*b2 - 14*b1) * q^46 + (-48*b2 + 250*b1 - 48) * q^47 + (213*b3 - 353) * q^50 + (-21*b3 - 160*b2 - 21*b1) * q^52 + (360*b3 - 134*b2 + 360*b1) * q^53 + (-170*b3 + 236) * q^55 + (-24*b2 - 86*b1 - 24) * q^58 + (226*b3 + 308*b2 + 226*b1) * q^59 + (-8*b2 + 3*b1 - 8) * q^61 + (-102*b3 + 152) * q^62 + (-358*b3 + 59) * q^64 + (870*b2 + 614*b1 + 870) * q^65 + (-524*b3 - 72*b2 - 524*b1) * q^67 + (-470*b2 + 341*b1 - 470) * q^68 + (-232*b3 - 494) * q^71 + (401*b3 + 52*b2 + 401*b1) * q^73 + (76*b3 + 28*b2 + 76*b1) * q^74 + (-302*b3 - 568) * q^76 + (472*b2 - 236*b1 + 472) * q^79 + (297*b3 + 414*b2 + 297*b1) * q^80 + (428*b2 + 209*b1 + 428) * q^82 + (80*b3 - 508) * q^83 + (44*b3 - 50) * q^85 + (-560*b2 - 460*b1 - 560) * q^86 + (-106*b3 - 438*b2 - 106*b1) * q^88 + (-194*b2 + 339*b1 - 194) * q^89 + (168*b3 + 182) * q^92 + (202*b3 + 452*b2 + 202*b1) * q^94 + (-452*b3 - 652*b2 - 452*b1) * q^95 + (599*b3 + 244) * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + 2 q^{2} + 10 q^{4} + 20 q^{5} + 36 q^{8}+O(q^{10})$$ 4 * q + 2 * q^2 + 10 * q^4 + 20 * q^5 + 36 * q^8 $$4 q + 2 q^{2} + 10 q^{4} + 20 q^{5} + 36 q^{8} - 48 q^{10} - 20 q^{11} + 208 q^{13} - 18 q^{16} + 116 q^{17} - 192 q^{19} + 88 q^{20} + 152 q^{22} + 28 q^{23} - 146 q^{25} + 204 q^{26} - 592 q^{29} + 104 q^{31} + 18 q^{32} - 128 q^{34} + 248 q^{37} + 104 q^{38} + 488 q^{40} - 40 q^{41} - 1440 q^{43} + 292 q^{44} + 84 q^{46} - 96 q^{47} - 1412 q^{50} + 320 q^{52} + 268 q^{53} + 944 q^{55} - 48 q^{58} - 616 q^{59} - 16 q^{61} + 608 q^{62} + 236 q^{64} + 1740 q^{65} + 144 q^{67} - 940 q^{68} - 1976 q^{71} - 104 q^{73} - 56 q^{74} - 2272 q^{76} + 944 q^{79} - 828 q^{80} + 856 q^{82} - 2032 q^{83} - 200 q^{85} - 1120 q^{86} + 876 q^{88} - 388 q^{89} + 728 q^{92} - 904 q^{94} + 1304 q^{95} + 976 q^{97}+O(q^{100})$$ 4 * q + 2 * q^2 + 10 * q^4 + 20 * q^5 + 36 * q^8 - 48 * q^10 - 20 * q^11 + 208 * q^13 - 18 * q^16 + 116 * q^17 - 192 * q^19 + 88 * q^20 + 152 * q^22 + 28 * q^23 - 146 * q^25 + 204 * q^26 - 592 * q^29 + 104 * q^31 + 18 * q^32 - 128 * q^34 + 248 * q^37 + 104 * q^38 + 488 * q^40 - 40 * q^41 - 1440 * q^43 + 292 * q^44 + 84 * q^46 - 96 * q^47 - 1412 * q^50 + 320 * q^52 + 268 * q^53 + 944 * q^55 - 48 * q^58 - 616 * q^59 - 16 * q^61 + 608 * q^62 + 236 * q^64 + 1740 * q^65 + 144 * q^67 - 940 * q^68 - 1976 * q^71 - 104 * q^73 - 56 * q^74 - 2272 * q^76 + 944 * q^79 - 828 * q^80 + 856 * q^82 - 2032 * q^83 - 200 * q^85 - 1120 * q^86 + 876 * q^88 - 388 * q^89 + 728 * q^92 - 904 * q^94 + 1304 * q^95 + 976 * q^97

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} + 2x^{2} + 4$$ :

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$( \nu^{2} ) / 2$$ (v^2) / 2 $$\beta_{3}$$ $$=$$ $$( \nu^{3} ) / 2$$ (v^3) / 2
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$2\beta_{2}$$ 2*b2 $$\nu^{3}$$ $$=$$ $$2\beta_{3}$$ 2*b3

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/441\mathbb{Z}\right)^\times$$.

 $$n$$ $$199$$ $$344$$ $$\chi(n)$$ $$-1 - \beta_{2}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
226.1
 −0.707107 + 1.22474i 0.707107 − 1.22474i −0.707107 − 1.22474i 0.707107 + 1.22474i
−0.207107 + 0.358719i 0 3.91421 + 6.77962i 0.0502525 0.0870399i 0 0 −6.55635 0 0.0208153 + 0.0360531i
226.2 1.20711 2.09077i 0 1.08579 + 1.88064i 9.94975 17.2335i 0 0 24.5563 0 −24.0208 41.6053i
361.1 −0.207107 0.358719i 0 3.91421 6.77962i 0.0502525 + 0.0870399i 0 0 −6.55635 0 0.0208153 0.0360531i
361.2 1.20711 + 2.09077i 0 1.08579 1.88064i 9.94975 + 17.2335i 0 0 24.5563 0 −24.0208 + 41.6053i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 441.4.e.v 4
3.b odd 2 1 147.4.e.k 4
7.b odd 2 1 441.4.e.u 4
7.c even 3 1 441.4.a.n 2
7.c even 3 1 inner 441.4.e.v 4
7.d odd 6 1 441.4.a.o 2
7.d odd 6 1 441.4.e.u 4
21.c even 2 1 147.4.e.j 4
21.g even 6 1 147.4.a.k yes 2
21.g even 6 1 147.4.e.j 4
21.h odd 6 1 147.4.a.j 2
21.h odd 6 1 147.4.e.k 4
84.j odd 6 1 2352.4.a.bl 2
84.n even 6 1 2352.4.a.cf 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
147.4.a.j 2 21.h odd 6 1
147.4.a.k yes 2 21.g even 6 1
147.4.e.j 4 21.c even 2 1
147.4.e.j 4 21.g even 6 1
147.4.e.k 4 3.b odd 2 1
147.4.e.k 4 21.h odd 6 1
441.4.a.n 2 7.c even 3 1
441.4.a.o 2 7.d odd 6 1
441.4.e.u 4 7.b odd 2 1
441.4.e.u 4 7.d odd 6 1
441.4.e.v 4 1.a even 1 1 trivial
441.4.e.v 4 7.c even 3 1 inner
2352.4.a.bl 2 84.j odd 6 1
2352.4.a.cf 2 84.n even 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{4}^{\mathrm{new}}(441, [\chi])$$:

 $$T_{2}^{4} - 2T_{2}^{3} + 5T_{2}^{2} + 2T_{2} + 1$$ T2^4 - 2*T2^3 + 5*T2^2 + 2*T2 + 1 $$T_{5}^{4} - 20T_{5}^{3} + 398T_{5}^{2} - 40T_{5} + 4$$ T5^4 - 20*T5^3 + 398*T5^2 - 40*T5 + 4 $$T_{13}^{2} - 104T_{13} + 1454$$ T13^2 - 104*T13 + 1454

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4} - 2 T^{3} + 5 T^{2} + 2 T + 1$$
$3$ $$T^{4}$$
$5$ $$T^{4} - 20 T^{3} + 398 T^{2} - 40 T + 4$$
$7$ $$T^{4}$$
$11$ $$T^{4} + 20 T^{3} + 1452 T^{2} + \cdots + 1106704$$
$13$ $$(T^{2} - 104 T + 1454)^{2}$$
$17$ $$T^{4} - 116 T^{3} + 14142 T^{2} + \cdots + 470596$$
$19$ $$T^{4} + 192 T^{3} + \cdots + 68029504$$
$23$ $$T^{4} - 28 T^{3} + 2156 T^{2} + \cdots + 1882384$$
$29$ $$(T^{2} + 296 T + 14216)^{2}$$
$31$ $$T^{4} - 104 T^{3} + 13112 T^{2} + \cdots + 5271616$$
$37$ $$T^{4} - 248 T^{3} + \cdots + 115949824$$
$41$ $$(T^{2} + 20 T - 95822)^{2}$$
$43$ $$(T^{2} + 720 T + 109600)^{2}$$
$47$ $$T^{4} + 96 T^{3} + \cdots + 15054308416$$
$53$ $$T^{4} - 268 T^{3} + \cdots + 58198667536$$
$59$ $$T^{4} + 616 T^{3} + \cdots + 53114944$$
$61$ $$T^{4} + 16 T^{3} + 210 T^{2} + \cdots + 2116$$
$67$ $$T^{4} - 144 T^{3} + \cdots + 295901185024$$
$71$ $$(T^{2} + 988 T + 136388)^{2}$$
$73$ $$T^{4} + 104 T^{3} + \cdots + 101695934404$$
$79$ $$T^{4} - 944 T^{3} + \cdots + 12408177664$$
$83$ $$(T^{2} + 1016 T + 245264)^{2}$$
$89$ $$T^{4} + 388 T^{3} + \cdots + 36943146436$$
$97$ $$(T^{2} - 488 T - 658066)^{2}$$