Properties

Label 441.4.e.n
Level $441$
Weight $4$
Character orbit 441.e
Analytic conductor $26.020$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 441.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(26.0198423125\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 \zeta_{6} q^{2} + ( -8 + 8 \zeta_{6} ) q^{4} + 4 \zeta_{6} q^{5} +O(q^{10})\) \( q + 4 \zeta_{6} q^{2} + ( -8 + 8 \zeta_{6} ) q^{4} + 4 \zeta_{6} q^{5} + ( -16 + 16 \zeta_{6} ) q^{10} + ( 62 - 62 \zeta_{6} ) q^{11} + 62 q^{13} + 64 \zeta_{6} q^{16} + ( -84 + 84 \zeta_{6} ) q^{17} + 100 \zeta_{6} q^{19} -32 q^{20} + 248 q^{22} -42 \zeta_{6} q^{23} + ( 109 - 109 \zeta_{6} ) q^{25} + 248 \zeta_{6} q^{26} + 10 q^{29} + ( -48 + 48 \zeta_{6} ) q^{31} + ( -256 + 256 \zeta_{6} ) q^{32} -336 q^{34} + 246 \zeta_{6} q^{37} + ( -400 + 400 \zeta_{6} ) q^{38} -248 q^{41} + 68 q^{43} + 496 \zeta_{6} q^{44} + ( 168 - 168 \zeta_{6} ) q^{46} -324 \zeta_{6} q^{47} + 436 q^{50} + ( -496 + 496 \zeta_{6} ) q^{52} + ( 258 - 258 \zeta_{6} ) q^{53} + 248 q^{55} + 40 \zeta_{6} q^{58} + ( -120 + 120 \zeta_{6} ) q^{59} + 622 \zeta_{6} q^{61} -192 q^{62} -512 q^{64} + 248 \zeta_{6} q^{65} + ( -904 + 904 \zeta_{6} ) q^{67} -672 \zeta_{6} q^{68} + 678 q^{71} + ( -642 + 642 \zeta_{6} ) q^{73} + ( -984 + 984 \zeta_{6} ) q^{74} -800 q^{76} -740 \zeta_{6} q^{79} + ( -256 + 256 \zeta_{6} ) q^{80} -992 \zeta_{6} q^{82} + 468 q^{83} -336 q^{85} + 272 \zeta_{6} q^{86} -200 \zeta_{6} q^{89} + 336 q^{92} + ( 1296 - 1296 \zeta_{6} ) q^{94} + ( -400 + 400 \zeta_{6} ) q^{95} + 1266 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 4q^{2} - 8q^{4} + 4q^{5} + O(q^{10}) \) \( 2q + 4q^{2} - 8q^{4} + 4q^{5} - 16q^{10} + 62q^{11} + 124q^{13} + 64q^{16} - 84q^{17} + 100q^{19} - 64q^{20} + 496q^{22} - 42q^{23} + 109q^{25} + 248q^{26} + 20q^{29} - 48q^{31} - 256q^{32} - 672q^{34} + 246q^{37} - 400q^{38} - 496q^{41} + 136q^{43} + 496q^{44} + 168q^{46} - 324q^{47} + 872q^{50} - 496q^{52} + 258q^{53} + 496q^{55} + 40q^{58} - 120q^{59} + 622q^{61} - 384q^{62} - 1024q^{64} + 248q^{65} - 904q^{67} - 672q^{68} + 1356q^{71} - 642q^{73} - 984q^{74} - 1600q^{76} - 740q^{79} - 256q^{80} - 992q^{82} + 936q^{83} - 672q^{85} + 272q^{86} - 200q^{89} + 672q^{92} + 1296q^{94} - 400q^{95} + 2532q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
226.1
0.500000 0.866025i
0.500000 + 0.866025i
2.00000 3.46410i 0 −4.00000 6.92820i 2.00000 3.46410i 0 0 0 0 −8.00000 13.8564i
361.1 2.00000 + 3.46410i 0 −4.00000 + 6.92820i 2.00000 + 3.46410i 0 0 0 0 −8.00000 + 13.8564i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 441.4.e.n 2
3.b odd 2 1 147.4.e.b 2
7.b odd 2 1 441.4.e.m 2
7.c even 3 1 441.4.a.b 1
7.c even 3 1 inner 441.4.e.n 2
7.d odd 6 1 63.4.a.a 1
7.d odd 6 1 441.4.e.m 2
21.c even 2 1 147.4.e.c 2
21.g even 6 1 21.4.a.b 1
21.g even 6 1 147.4.e.c 2
21.h odd 6 1 147.4.a.g 1
21.h odd 6 1 147.4.e.b 2
28.f even 6 1 1008.4.a.m 1
35.i odd 6 1 1575.4.a.k 1
84.j odd 6 1 336.4.a.h 1
84.n even 6 1 2352.4.a.l 1
105.p even 6 1 525.4.a.b 1
105.w odd 12 2 525.4.d.b 2
168.ba even 6 1 1344.4.a.w 1
168.be odd 6 1 1344.4.a.i 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.4.a.b 1 21.g even 6 1
63.4.a.a 1 7.d odd 6 1
147.4.a.g 1 21.h odd 6 1
147.4.e.b 2 3.b odd 2 1
147.4.e.b 2 21.h odd 6 1
147.4.e.c 2 21.c even 2 1
147.4.e.c 2 21.g even 6 1
336.4.a.h 1 84.j odd 6 1
441.4.a.b 1 7.c even 3 1
441.4.e.m 2 7.b odd 2 1
441.4.e.m 2 7.d odd 6 1
441.4.e.n 2 1.a even 1 1 trivial
441.4.e.n 2 7.c even 3 1 inner
525.4.a.b 1 105.p even 6 1
525.4.d.b 2 105.w odd 12 2
1008.4.a.m 1 28.f even 6 1
1344.4.a.i 1 168.be odd 6 1
1344.4.a.w 1 168.ba even 6 1
1575.4.a.k 1 35.i odd 6 1
2352.4.a.l 1 84.n even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(441, [\chi])\):

\( T_{2}^{2} - 4 T_{2} + 16 \)
\( T_{5}^{2} - 4 T_{5} + 16 \)
\( T_{13} - 62 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 16 - 4 T + T^{2} \)
$3$ \( T^{2} \)
$5$ \( 16 - 4 T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( 3844 - 62 T + T^{2} \)
$13$ \( ( -62 + T )^{2} \)
$17$ \( 7056 + 84 T + T^{2} \)
$19$ \( 10000 - 100 T + T^{2} \)
$23$ \( 1764 + 42 T + T^{2} \)
$29$ \( ( -10 + T )^{2} \)
$31$ \( 2304 + 48 T + T^{2} \)
$37$ \( 60516 - 246 T + T^{2} \)
$41$ \( ( 248 + T )^{2} \)
$43$ \( ( -68 + T )^{2} \)
$47$ \( 104976 + 324 T + T^{2} \)
$53$ \( 66564 - 258 T + T^{2} \)
$59$ \( 14400 + 120 T + T^{2} \)
$61$ \( 386884 - 622 T + T^{2} \)
$67$ \( 817216 + 904 T + T^{2} \)
$71$ \( ( -678 + T )^{2} \)
$73$ \( 412164 + 642 T + T^{2} \)
$79$ \( 547600 + 740 T + T^{2} \)
$83$ \( ( -468 + T )^{2} \)
$89$ \( 40000 + 200 T + T^{2} \)
$97$ \( ( -1266 + T )^{2} \)
show more
show less