Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [441,4,Mod(226,441)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(441, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 2]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("441.226");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 441 = 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 441.e (of order \(3\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(26.0198423125\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\zeta_{6})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} - x + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{25}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 9) |
Sato-Tate group: | $\mathrm{U}(1)[D_{3}]$ |
Embedding invariants
Embedding label | 226.1 | ||
Root | \(0.500000 - 0.866025i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 441.226 |
Dual form | 441.4.e.j.361.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).
\(n\) | \(199\) | \(344\) |
\(\chi(n)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 4.00000 | + | 6.92820i | 0.500000 | + | 0.866025i | ||||
\(5\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | ||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 70.0000 | 1.49342 | 0.746712 | − | 0.665148i | \(-0.231631\pi\) | ||||
0.746712 | + | 0.665148i | \(0.231631\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | −32.0000 | + | 55.4256i | −0.500000 | + | 0.866025i | ||||
\(17\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 28.0000 | − | 48.4974i | 0.338086 | − | 0.585583i | −0.645986 | − | 0.763349i | \(-0.723554\pi\) |
0.984073 | + | 0.177766i | \(0.0568871\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 62.5000 | + | 108.253i | 0.500000 | + | 0.866025i | ||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 154.000 | + | 266.736i | 0.892233 | + | 1.54539i | 0.837192 | + | 0.546908i | \(0.184195\pi\) |
0.0550403 | + | 0.998484i | \(0.482471\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −55.0000 | + | 95.2628i | −0.244377 | + | 0.423273i | −0.961956 | − | 0.273204i | \(-0.911917\pi\) |
0.717579 | + | 0.696477i | \(0.245250\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −520.000 | −1.84417 | −0.922084 | − | 0.386989i | \(-0.873515\pi\) | ||||
−0.922084 | + | 0.386989i | \(0.873515\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 0 | 0 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 280.000 | + | 484.974i | 0.746712 | + | 1.29334i | ||||
\(53\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 91.0000 | − | 157.617i | 0.191006 | − | 0.330832i | −0.754578 | − | 0.656210i | \(-0.772158\pi\) |
0.945584 | + | 0.325379i | \(0.105492\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | −512.000 | −1.00000 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 440.000 | + | 762.102i | 0.802307 | + | 1.38964i | 0.918094 | + | 0.396362i | \(0.129728\pi\) |
−0.115787 | + | 0.993274i | \(0.536939\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 595.000 | + | 1030.57i | 0.953966 | + | 1.65232i | 0.736718 | + | 0.676200i | \(0.236375\pi\) |
0.217248 | + | 0.976117i | \(0.430292\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 448.000 | 0.676173 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −442.000 | + | 765.566i | −0.629480 | + | 1.09029i | 0.358177 | + | 0.933654i | \(0.383399\pi\) |
−0.987656 | + | 0.156637i | \(0.949935\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 1330.00 | 1.39218 | 0.696088 | − | 0.717957i | \(-0.254922\pi\) | ||||
0.696088 | + | 0.717957i | \(0.254922\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | −500.000 | + | 866.025i | −0.500000 | + | 0.866025i | ||||
\(101\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 910.000 | − | 1576.17i | 0.870534 | − | 1.50781i | 0.00908799 | − | 0.999959i | \(-0.497107\pi\) |
0.861446 | − | 0.507850i | \(-0.169560\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 323.000 | + | 559.452i | 0.283833 | + | 0.491613i | 0.972325 | − | 0.233630i | \(-0.0750606\pi\) |
−0.688493 | + | 0.725243i | \(0.741727\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 665.500 | − | 1152.68i | 0.500000 | − | 0.866025i | ||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | −1232.00 | + | 2133.89i | −0.892233 | + | 1.54539i | ||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 380.000 | 0.265508 | 0.132754 | − | 0.991149i | \(-0.457618\pi\) | ||||
0.132754 | + | 0.991149i | \(0.457618\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −2576.00 | −1.57190 | −0.785948 | − | 0.618293i | \(-0.787825\pi\) | ||||
−0.785948 | + | 0.618293i | \(0.787825\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | −880.000 | −0.488754 | ||||||||
\(149\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −874.000 | − | 1513.81i | −0.471027 | − | 0.815843i | 0.528424 | − | 0.848981i | \(-0.322783\pi\) |
−0.999451 | + | 0.0331378i | \(0.989450\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −1925.00 | − | 3334.20i | −0.978546 | − | 1.69489i | −0.667699 | − | 0.744432i | \(-0.732721\pi\) |
−0.310847 | − | 0.950460i | \(-0.600613\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 1700.00 | − | 2944.49i | 0.816897 | − | 1.41491i | −0.0910600 | − | 0.995845i | \(-0.529026\pi\) |
0.907957 | − | 0.419062i | \(-0.137641\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 2703.00 | 1.23031 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | −2080.00 | − | 3602.67i | −0.922084 | − | 1.59710i | ||||
\(173\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −3458.00 | −1.42006 | −0.710031 | − | 0.704171i | \(-0.751319\pi\) | ||||
−0.710031 | + | 0.704171i | \(0.751319\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 575.000 | + | 995.929i | 0.214453 | + | 0.371443i | 0.953103 | − | 0.302646i | \(-0.0978698\pi\) |
−0.738650 | + | 0.674089i | \(0.764536\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −2618.00 | − | 4534.51i | −0.932588 | − | 1.61529i | −0.778879 | − | 0.627175i | \(-0.784211\pi\) |
−0.153710 | − | 0.988116i | \(-0.549122\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | −2240.00 | + | 3879.79i | −0.746712 | + | 1.29334i | ||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 6032.00 | 1.96806 | 0.984028 | − | 0.178011i | \(-0.0569664\pi\) | ||||
0.984028 | + | 0.178011i | \(0.0569664\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 3220.00 | 0.966938 | 0.483469 | − | 0.875362i | \(-0.339377\pi\) | ||||
0.483469 | + | 0.875362i | \(0.339377\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 2233.00 | − | 3867.67i | 0.644370 | − | 1.11608i | −0.340076 | − | 0.940398i | \(-0.610453\pi\) |
0.984447 | − | 0.175684i | \(-0.0562138\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −3689.00 | − | 6389.54i | −0.986014 | − | 1.70783i | −0.637341 | − | 0.770582i | \(-0.719966\pi\) |
−0.348673 | − | 0.937244i | \(-0.613368\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 1456.00 | 0.382012 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 1960.00 | − | 3394.82i | 0.504906 | − | 0.874523i | ||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | −2048.00 | − | 3547.24i | −0.500000 | − | 0.866025i | ||||
\(257\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | −3520.00 | + | 6096.82i | −0.802307 | + | 1.38964i | ||||
\(269\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 406.000 | − | 703.213i | 0.0910064 | − | 0.157628i | −0.816928 | − | 0.576739i | \(-0.804325\pi\) |
0.907935 | + | 0.419111i | \(0.137658\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 2015.00 | + | 3490.08i | 0.437074 | + | 0.757035i | 0.997462 | − | 0.0711951i | \(-0.0226813\pi\) |
−0.560388 | + | 0.828230i | \(0.689348\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 2800.00 | + | 4849.74i | 0.588137 | + | 1.01868i | 0.994476 | + | 0.104961i | \(0.0334717\pi\) |
−0.406340 | + | 0.913722i | \(0.633195\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 2456.50 | − | 4254.78i | 0.500000 | − | 0.866025i | ||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | −4760.00 | + | 8244.56i | −0.953966 | + | 1.65232i | ||||
\(293\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 1792.00 | + | 3103.84i | 0.338086 | + | 0.585583i | ||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −10640.0 | −1.97804 | −0.989018 | − | 0.147797i | \(-0.952782\pi\) | ||||
−0.989018 | + | 0.147797i | \(0.952782\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 5005.00 | − | 8668.91i | 0.903832 | − | 1.56548i | 0.0813539 | − | 0.996685i | \(-0.474076\pi\) |
0.822478 | − | 0.568797i | \(-0.192591\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | −7072.00 | −1.25896 | ||||||||
\(317\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 4375.00 | + | 7577.72i | 0.746712 | + | 1.29334i | ||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −496.000 | + | 859.097i | −0.0823644 | + | 0.142659i | −0.904265 | − | 0.426971i | \(-0.859580\pi\) |
0.821901 | + | 0.569631i | \(0.192914\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −4930.00 | −0.796897 | −0.398448 | − | 0.917191i | \(-0.630451\pi\) | ||||
−0.398448 | + | 0.917191i | \(0.630451\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 11914.0 | 1.82734 | 0.913670 | − | 0.406456i | \(-0.133236\pi\) | ||||
0.913670 | + | 0.406456i | \(0.133236\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 1861.50 | + | 3224.21i | 0.271395 | + | 0.470070i | ||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 2170.00 | + | 3758.55i | 0.308646 | + | 0.534591i | 0.978066 | − | 0.208293i | \(-0.0667908\pi\) |
−0.669420 | + | 0.742884i | \(0.733457\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −6175.00 | + | 10695.4i | −0.857183 | + | 1.48469i | 0.0174213 | + | 0.999848i | \(0.494454\pi\) |
−0.874605 | + | 0.484837i | \(0.838879\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −8584.00 | −1.16340 | −0.581702 | − | 0.813402i | \(-0.697613\pi\) | ||||
−0.581702 | + | 0.813402i | \(0.697613\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 5320.00 | + | 9214.51i | 0.696088 | + | 1.20566i | ||||
\(389\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 595.000 | − | 1030.57i | 0.0752196 | − | 0.130284i | −0.825962 | − | 0.563726i | \(-0.809368\pi\) |
0.901182 | + | 0.433441i | \(0.142701\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | −8000.00 | −1.00000 | ||||||||
\(401\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 10780.0 | + | 18671.5i | 1.33248 | + | 2.30793i | ||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 4123.00 | + | 7141.25i | 0.498458 | + | 0.863354i | 0.999998 | − | 0.00177990i | \(-0.000566559\pi\) |
−0.501541 | + | 0.865134i | \(0.667233\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 14560.0 | 1.74107 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 17138.0 | 1.98398 | 0.991989 | − | 0.126322i | \(-0.0403172\pi\) | ||||
0.991989 | + | 0.126322i | \(0.0403172\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 2590.00 | 0.287454 | 0.143727 | − | 0.989617i | \(-0.454091\pi\) | ||||
0.143727 | + | 0.989617i | \(0.454091\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | −2584.00 | + | 4475.62i | −0.283833 | + | 0.491613i | ||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 7462.00 | − | 12924.6i | 0.811257 | − | 1.40514i | −0.100728 | − | 0.994914i | \(-0.532117\pi\) |
0.911985 | − | 0.410224i | \(-0.134550\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −6355.00 | + | 11007.2i | −0.650491 | + | 1.12668i | 0.332513 | + | 0.943099i | \(0.392103\pi\) |
−0.983004 | + | 0.183585i | \(0.941230\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −19780.0 | −1.98543 | −0.992716 | − | 0.120482i | \(-0.961556\pi\) | ||||
−0.992716 | + | 0.120482i | \(0.961556\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 7000.00 | 0.676173 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −3850.00 | + | 6668.40i | −0.364958 | + | 0.632126i | ||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 10648.0 | 1.00000 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −10450.0 | − | 18099.9i | −0.972351 | − | 1.68416i | −0.688415 | − | 0.725317i | \(-0.741693\pi\) |
−0.283936 | − | 0.958843i | \(-0.591640\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | −19712.0 | −1.78447 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 7568.00 | − | 13108.2i | 0.678938 | − | 1.17596i | −0.296363 | − | 0.955075i | \(-0.595774\pi\) |
0.975301 | − | 0.220880i | \(-0.0708930\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 1520.00 | + | 2632.72i | 0.132754 | + | 0.229937i | ||||
\(509\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −6020.00 | + | 10426.9i | −0.503320 | + | 0.871775i | 0.496673 | + | 0.867938i | \(0.334555\pi\) |
−0.999993 | + | 0.00383755i | \(0.998778\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 6083.50 | + | 10536.9i | 0.500000 | + | 0.866025i | ||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 11339.0 | − | 19639.7i | 0.901112 | − | 1.56077i | 0.0750596 | − | 0.997179i | \(-0.476085\pi\) |
0.826053 | − | 0.563593i | \(-0.190581\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 1640.00 | 0.128193 | 0.0640963 | − | 0.997944i | \(-0.479584\pi\) | ||||
0.0640963 | + | 0.997944i | \(0.479584\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | −10304.0 | − | 17847.1i | −0.785948 | − | 1.36130i | ||||
\(557\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −36400.0 | −2.75413 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −11656.0 | − | 20188.8i | −0.854270 | − | 1.47964i | −0.877320 | − | 0.479905i | \(-0.840671\pi\) |
0.0230498 | − | 0.999734i | \(-0.492662\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −8855.00 | − | 15337.3i | −0.638888 | − | 1.10659i | −0.985677 | − | 0.168644i | \(-0.946061\pi\) |
0.346789 | − | 0.937943i | \(-0.387272\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 17248.0 | 1.20661 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | −3520.00 | − | 6096.82i | −0.244377 | − | 0.423273i | ||||
\(593\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 29302.0 | 1.98877 | 0.994387 | − | 0.105801i | \(-0.0337408\pi\) | ||||
0.994387 | + | 0.105801i | \(0.0337408\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 6992.00 | − | 12110.5i | 0.471027 | − | 0.815843i | ||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −14210.0 | + | 24612.4i | −0.950191 | + | 1.64578i | −0.205184 | + | 0.978723i | \(0.565779\pi\) |
−0.745007 | + | 0.667056i | \(0.767554\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −8695.00 | − | 15060.2i | −0.572900 | − | 0.992292i | −0.996266 | − | 0.0863334i | \(-0.972485\pi\) |
0.423366 | − | 0.905959i | \(-0.360848\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −13328.0 | − | 23084.8i | −0.865424 | − | 1.49896i | −0.866625 | − | 0.498959i | \(-0.833716\pi\) |
0.00120126 | − | 0.999999i | \(-0.499618\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −7812.50 | + | 13531.6i | −0.500000 | + | 0.866025i | ||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 15400.0 | − | 26673.6i | 0.978546 | − | 1.69489i | ||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 1892.00 | 0.119365 | 0.0596825 | − | 0.998217i | \(-0.480991\pi\) | ||||
0.0596825 | + | 0.998217i | \(0.480991\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −13160.0 | −0.807122 | −0.403561 | − | 0.914953i | \(-0.632228\pi\) | ||||
−0.403561 | + | 0.914953i | \(0.632228\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 27200.0 | 1.63379 | ||||||||
\(653\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −10241.0 | − | 17737.9i | −0.602615 | − | 1.04376i | −0.992423 | − | 0.122864i | \(-0.960792\pi\) |
0.389808 | − | 0.920896i | \(-0.372541\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 24050.0 | 1.37750 | 0.688751 | − | 0.724998i | \(-0.258159\pi\) | ||||
0.688751 | + | 0.724998i | \(0.258159\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 10812.0 | + | 18726.9i | 0.615157 | + | 1.06548i | ||||
\(677\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 16640.0 | − | 28821.3i | 0.922084 | − | 1.59710i | ||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −8036.00 | + | 13918.8i | −0.442408 | + | 0.766273i | −0.997868 | − | 0.0652705i | \(-0.979209\pi\) |
0.555460 | + | 0.831543i | \(0.312542\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 3080.00 | + | 5334.72i | 0.165241 | + | 0.286206i | ||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −18073.0 | + | 31303.4i | −0.957328 | + | 1.65814i | −0.228381 | + | 0.973572i | \(0.573343\pi\) |
−0.728948 | + | 0.684569i | \(0.759990\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | −13832.0 | − | 23957.7i | −0.710031 | − | 1.22981i | ||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 10780.0 | 0.549942 | 0.274971 | − | 0.961452i | \(-0.411332\pi\) | ||||
0.274971 | + | 0.961452i | \(0.411332\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 7525.00 | − | 13033.7i | 0.379184 | − | 0.656767i | −0.611759 | − | 0.791044i | \(-0.709538\pi\) |
0.990944 | + | 0.134277i | \(0.0428712\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −15688.0 | − | 27172.4i | −0.780910 | − | 1.35258i | −0.931412 | − | 0.363966i | \(-0.881422\pi\) |
0.150502 | − | 0.988610i | \(-0.451911\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 11726.0 | − | 20310.0i | 0.569757 | − | 0.986849i | −0.426832 | − | 0.904331i | \(-0.640370\pi\) |
0.996590 | − | 0.0825179i | \(-0.0262962\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −41470.0 | −1.99109 | −0.995543 | − | 0.0943039i | \(-0.969937\pi\) | ||||
−0.995543 | + | 0.0943039i | \(0.969937\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 4606.00 | 0.215990 | 0.107995 | − | 0.994151i | \(-0.465557\pi\) | ||||
0.107995 | + | 0.994151i | \(0.465557\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | −4600.00 | + | 7967.43i | −0.214453 | + | 0.371443i | ||||
\(773\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −19250.0 | + | 33342.0i | −0.892233 | + | 1.54539i | ||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 21700.0 | + | 37585.5i | 0.982874 | + | 1.70239i | 0.651029 | + | 0.759053i | \(0.274338\pi\) |
0.331844 | + | 0.943334i | \(0.392329\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 6370.00 | − | 11033.2i | 0.285253 | − | 0.494072i | ||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 20944.0 | − | 36276.1i | 0.932588 | − | 1.61529i | ||||
\(797\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 |