Properties

Label 441.4.e.f
Level $441$
Weight $4$
Character orbit 441.e
Analytic conductor $26.020$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,4,Mod(226,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.226"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 441.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,0,7,-12,0,0,-30,0,-12,20,0,168] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.0198423125\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 147)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{6} q^{2} + ( - 7 \zeta_{6} + 7) q^{4} - 12 \zeta_{6} q^{5} - 15 q^{8} + (12 \zeta_{6} - 12) q^{10} + ( - 20 \zeta_{6} + 20) q^{11} + 84 q^{13} - 41 \zeta_{6} q^{16} + ( - 96 \zeta_{6} + 96) q^{17} + \cdots + 168 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 7 q^{4} - 12 q^{5} - 30 q^{8} - 12 q^{10} + 20 q^{11} + 168 q^{13} - 41 q^{16} + 96 q^{17} + 12 q^{19} - 168 q^{20} - 40 q^{22} - 176 q^{23} - 19 q^{25} - 84 q^{26} - 116 q^{29} - 264 q^{31}+ \cdots + 336 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
226.1
0.500000 0.866025i
0.500000 + 0.866025i
−0.500000 + 0.866025i 0 3.50000 + 6.06218i −6.00000 + 10.3923i 0 0 −15.0000 0 −6.00000 10.3923i
361.1 −0.500000 0.866025i 0 3.50000 6.06218i −6.00000 10.3923i 0 0 −15.0000 0 −6.00000 + 10.3923i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 441.4.e.f 2
3.b odd 2 1 147.4.e.e 2
7.b odd 2 1 441.4.e.g 2
7.c even 3 1 441.4.a.h 1
7.c even 3 1 inner 441.4.e.f 2
7.d odd 6 1 441.4.a.g 1
7.d odd 6 1 441.4.e.g 2
21.c even 2 1 147.4.e.f 2
21.g even 6 1 147.4.a.d 1
21.g even 6 1 147.4.e.f 2
21.h odd 6 1 147.4.a.e yes 1
21.h odd 6 1 147.4.e.e 2
84.j odd 6 1 2352.4.a.bi 1
84.n even 6 1 2352.4.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
147.4.a.d 1 21.g even 6 1
147.4.a.e yes 1 21.h odd 6 1
147.4.e.e 2 3.b odd 2 1
147.4.e.e 2 21.h odd 6 1
147.4.e.f 2 21.c even 2 1
147.4.e.f 2 21.g even 6 1
441.4.a.g 1 7.d odd 6 1
441.4.a.h 1 7.c even 3 1
441.4.e.f 2 1.a even 1 1 trivial
441.4.e.f 2 7.c even 3 1 inner
441.4.e.g 2 7.b odd 2 1
441.4.e.g 2 7.d odd 6 1
2352.4.a.b 1 84.n even 6 1
2352.4.a.bi 1 84.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(441, [\chi])\):

\( T_{2}^{2} + T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{2} + 12T_{5} + 144 \) Copy content Toggle raw display
\( T_{13} - 84 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 20T + 400 \) Copy content Toggle raw display
$13$ \( (T - 84)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 96T + 9216 \) Copy content Toggle raw display
$19$ \( T^{2} - 12T + 144 \) Copy content Toggle raw display
$23$ \( T^{2} + 176T + 30976 \) Copy content Toggle raw display
$29$ \( (T + 58)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 264T + 69696 \) Copy content Toggle raw display
$37$ \( T^{2} + 258T + 66564 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T - 156)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 408T + 166464 \) Copy content Toggle raw display
$53$ \( T^{2} + 722T + 521284 \) Copy content Toggle raw display
$59$ \( T^{2} + 492T + 242064 \) Copy content Toggle raw display
$61$ \( T^{2} + 492T + 242064 \) Copy content Toggle raw display
$67$ \( T^{2} + 412T + 169744 \) Copy content Toggle raw display
$71$ \( (T + 296)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 240T + 57600 \) Copy content Toggle raw display
$79$ \( T^{2} + 776T + 602176 \) Copy content Toggle raw display
$83$ \( (T - 924)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 744T + 553536 \) Copy content Toggle raw display
$97$ \( (T - 168)^{2} \) Copy content Toggle raw display
show more
show less