Properties

Label 441.4.e.d
Level $441$
Weight $4$
Character orbit 441.e
Analytic conductor $26.020$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 441.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(26.0198423125\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -3 \zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{4} + 18 \zeta_{6} q^{5} -21 q^{8} +O(q^{10})\) \( q -3 \zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{4} + 18 \zeta_{6} q^{5} -21 q^{8} + ( 54 - 54 \zeta_{6} ) q^{10} + ( -36 + 36 \zeta_{6} ) q^{11} + 34 q^{13} + 71 \zeta_{6} q^{16} + ( -42 + 42 \zeta_{6} ) q^{17} -124 \zeta_{6} q^{19} -18 q^{20} + 108 q^{22} + ( -199 + 199 \zeta_{6} ) q^{25} -102 \zeta_{6} q^{26} -102 q^{29} + ( -160 + 160 \zeta_{6} ) q^{31} + ( 45 - 45 \zeta_{6} ) q^{32} + 126 q^{34} -398 \zeta_{6} q^{37} + ( -372 + 372 \zeta_{6} ) q^{38} -378 \zeta_{6} q^{40} -318 q^{41} -268 q^{43} -36 \zeta_{6} q^{44} -240 \zeta_{6} q^{47} + 597 q^{50} + ( -34 + 34 \zeta_{6} ) q^{52} + ( -498 + 498 \zeta_{6} ) q^{53} -648 q^{55} + 306 \zeta_{6} q^{58} + ( 132 - 132 \zeta_{6} ) q^{59} + 398 \zeta_{6} q^{61} + 480 q^{62} + 433 q^{64} + 612 \zeta_{6} q^{65} + ( -92 + 92 \zeta_{6} ) q^{67} -42 \zeta_{6} q^{68} + 720 q^{71} + ( -502 + 502 \zeta_{6} ) q^{73} + ( -1194 + 1194 \zeta_{6} ) q^{74} + 124 q^{76} + 1024 \zeta_{6} q^{79} + ( -1278 + 1278 \zeta_{6} ) q^{80} + 954 \zeta_{6} q^{82} -204 q^{83} -756 q^{85} + 804 \zeta_{6} q^{86} + ( 756 - 756 \zeta_{6} ) q^{88} -354 \zeta_{6} q^{89} + ( -720 + 720 \zeta_{6} ) q^{94} + ( 2232 - 2232 \zeta_{6} ) q^{95} + 286 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 3q^{2} - q^{4} + 18q^{5} - 42q^{8} + O(q^{10}) \) \( 2q - 3q^{2} - q^{4} + 18q^{5} - 42q^{8} + 54q^{10} - 36q^{11} + 68q^{13} + 71q^{16} - 42q^{17} - 124q^{19} - 36q^{20} + 216q^{22} - 199q^{25} - 102q^{26} - 204q^{29} - 160q^{31} + 45q^{32} + 252q^{34} - 398q^{37} - 372q^{38} - 378q^{40} - 636q^{41} - 536q^{43} - 36q^{44} - 240q^{47} + 1194q^{50} - 34q^{52} - 498q^{53} - 1296q^{55} + 306q^{58} + 132q^{59} + 398q^{61} + 960q^{62} + 866q^{64} + 612q^{65} - 92q^{67} - 42q^{68} + 1440q^{71} - 502q^{73} - 1194q^{74} + 248q^{76} + 1024q^{79} - 1278q^{80} + 954q^{82} - 408q^{83} - 1512q^{85} + 804q^{86} + 756q^{88} - 354q^{89} - 720q^{94} + 2232q^{95} + 572q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
226.1
0.500000 0.866025i
0.500000 + 0.866025i
−1.50000 + 2.59808i 0 −0.500000 0.866025i 9.00000 15.5885i 0 0 −21.0000 0 27.0000 + 46.7654i
361.1 −1.50000 2.59808i 0 −0.500000 + 0.866025i 9.00000 + 15.5885i 0 0 −21.0000 0 27.0000 46.7654i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 441.4.e.d 2
3.b odd 2 1 147.4.e.g 2
7.b odd 2 1 441.4.e.b 2
7.c even 3 1 441.4.a.j 1
7.c even 3 1 inner 441.4.e.d 2
7.d odd 6 1 63.4.a.c 1
7.d odd 6 1 441.4.e.b 2
21.c even 2 1 147.4.e.i 2
21.g even 6 1 21.4.a.a 1
21.g even 6 1 147.4.e.i 2
21.h odd 6 1 147.4.a.c 1
21.h odd 6 1 147.4.e.g 2
28.f even 6 1 1008.4.a.v 1
35.i odd 6 1 1575.4.a.b 1
84.j odd 6 1 336.4.a.f 1
84.n even 6 1 2352.4.a.r 1
105.p even 6 1 525.4.a.g 1
105.w odd 12 2 525.4.d.c 2
168.ba even 6 1 1344.4.a.ba 1
168.be odd 6 1 1344.4.a.n 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.4.a.a 1 21.g even 6 1
63.4.a.c 1 7.d odd 6 1
147.4.a.c 1 21.h odd 6 1
147.4.e.g 2 3.b odd 2 1
147.4.e.g 2 21.h odd 6 1
147.4.e.i 2 21.c even 2 1
147.4.e.i 2 21.g even 6 1
336.4.a.f 1 84.j odd 6 1
441.4.a.j 1 7.c even 3 1
441.4.e.b 2 7.b odd 2 1
441.4.e.b 2 7.d odd 6 1
441.4.e.d 2 1.a even 1 1 trivial
441.4.e.d 2 7.c even 3 1 inner
525.4.a.g 1 105.p even 6 1
525.4.d.c 2 105.w odd 12 2
1008.4.a.v 1 28.f even 6 1
1344.4.a.n 1 168.be odd 6 1
1344.4.a.ba 1 168.ba even 6 1
1575.4.a.b 1 35.i odd 6 1
2352.4.a.r 1 84.n even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(441, [\chi])\):

\( T_{2}^{2} + 3 T_{2} + 9 \)
\( T_{5}^{2} - 18 T_{5} + 324 \)
\( T_{13} - 34 \)