Properties

Label 441.4.a.x.1.8
Level $441$
Weight $4$
Character 441.1
Self dual yes
Analytic conductor $26.020$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 441.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(26.0198423125\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Defining polynomial: \(x^{8} - 74 x^{6} + 1469 x^{4} - 8828 x^{2} + 2500\)
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{4}\cdot 7^{2} \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(3.98569\) of defining polynomial
Character \(\chi\) \(=\) 441.1

$q$-expansion

\(f(q)\) \(=\) \(q+5.39991 q^{2} +21.1590 q^{4} +15.5768 q^{5} +71.0573 q^{8} +O(q^{10})\) \(q+5.39991 q^{2} +21.1590 q^{4} +15.5768 q^{5} +71.0573 q^{8} +84.1131 q^{10} +31.9702 q^{11} -72.5746 q^{13} +214.431 q^{16} -29.0288 q^{17} -108.829 q^{19} +329.589 q^{20} +172.636 q^{22} -55.2869 q^{23} +117.636 q^{25} -391.896 q^{26} +17.7363 q^{29} -56.1189 q^{31} +589.448 q^{32} -156.753 q^{34} -295.816 q^{37} -587.668 q^{38} +1106.84 q^{40} +238.605 q^{41} +16.8202 q^{43} +676.457 q^{44} -298.544 q^{46} +511.909 q^{47} +635.223 q^{50} -1535.60 q^{52} +265.205 q^{53} +497.992 q^{55} +95.7742 q^{58} -254.181 q^{59} +72.8352 q^{61} -303.037 q^{62} +1467.52 q^{64} -1130.48 q^{65} -506.360 q^{67} -614.220 q^{68} -827.722 q^{71} +372.577 q^{73} -1597.38 q^{74} -2302.72 q^{76} +1028.45 q^{79} +3340.14 q^{80} +1288.44 q^{82} +453.148 q^{83} -452.175 q^{85} +90.8276 q^{86} +2271.71 q^{88} +332.065 q^{89} -1169.81 q^{92} +2764.26 q^{94} -1695.21 q^{95} +1164.54 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 68q^{4} + O(q^{10}) \) \( 8q + 68q^{4} + 804q^{16} + 976q^{22} + 536q^{25} + 64q^{37} + 2160q^{43} - 768q^{46} + 2184q^{58} + 7588q^{64} + 5392q^{79} + 2864q^{85} + 5616q^{88} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.39991 1.90916 0.954578 0.297962i \(-0.0963070\pi\)
0.954578 + 0.297962i \(0.0963070\pi\)
\(3\) 0 0
\(4\) 21.1590 2.64487
\(5\) 15.5768 1.39323 0.696615 0.717446i \(-0.254689\pi\)
0.696615 + 0.717446i \(0.254689\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 71.0573 3.14032
\(9\) 0 0
\(10\) 84.1131 2.65989
\(11\) 31.9702 0.876306 0.438153 0.898900i \(-0.355633\pi\)
0.438153 + 0.898900i \(0.355633\pi\)
\(12\) 0 0
\(13\) −72.5746 −1.54835 −0.774176 0.632971i \(-0.781835\pi\)
−0.774176 + 0.632971i \(0.781835\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 214.431 3.35048
\(17\) −29.0288 −0.414148 −0.207074 0.978325i \(-0.566394\pi\)
−0.207074 + 0.978325i \(0.566394\pi\)
\(18\) 0 0
\(19\) −108.829 −1.31406 −0.657030 0.753864i \(-0.728188\pi\)
−0.657030 + 0.753864i \(0.728188\pi\)
\(20\) 329.589 3.68492
\(21\) 0 0
\(22\) 172.636 1.67300
\(23\) −55.2869 −0.501222 −0.250611 0.968088i \(-0.580632\pi\)
−0.250611 + 0.968088i \(0.580632\pi\)
\(24\) 0 0
\(25\) 117.636 0.941088
\(26\) −391.896 −2.95604
\(27\) 0 0
\(28\) 0 0
\(29\) 17.7363 0.113570 0.0567852 0.998386i \(-0.481915\pi\)
0.0567852 + 0.998386i \(0.481915\pi\)
\(30\) 0 0
\(31\) −56.1189 −0.325137 −0.162568 0.986697i \(-0.551978\pi\)
−0.162568 + 0.986697i \(0.551978\pi\)
\(32\) 589.448 3.25627
\(33\) 0 0
\(34\) −156.753 −0.790673
\(35\) 0 0
\(36\) 0 0
\(37\) −295.816 −1.31437 −0.657187 0.753728i \(-0.728254\pi\)
−0.657187 + 0.753728i \(0.728254\pi\)
\(38\) −587.668 −2.50875
\(39\) 0 0
\(40\) 1106.84 4.37518
\(41\) 238.605 0.908873 0.454437 0.890779i \(-0.349841\pi\)
0.454437 + 0.890779i \(0.349841\pi\)
\(42\) 0 0
\(43\) 16.8202 0.0596526 0.0298263 0.999555i \(-0.490505\pi\)
0.0298263 + 0.999555i \(0.490505\pi\)
\(44\) 676.457 2.31772
\(45\) 0 0
\(46\) −298.544 −0.956911
\(47\) 511.909 1.58871 0.794357 0.607451i \(-0.207808\pi\)
0.794357 + 0.607451i \(0.207808\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 635.223 1.79668
\(51\) 0 0
\(52\) −1535.60 −4.09519
\(53\) 265.205 0.687335 0.343667 0.939091i \(-0.388331\pi\)
0.343667 + 0.939091i \(0.388331\pi\)
\(54\) 0 0
\(55\) 497.992 1.22090
\(56\) 0 0
\(57\) 0 0
\(58\) 95.7742 0.216823
\(59\) −254.181 −0.560875 −0.280437 0.959872i \(-0.590480\pi\)
−0.280437 + 0.959872i \(0.590480\pi\)
\(60\) 0 0
\(61\) 72.8352 0.152878 0.0764392 0.997074i \(-0.475645\pi\)
0.0764392 + 0.997074i \(0.475645\pi\)
\(62\) −303.037 −0.620737
\(63\) 0 0
\(64\) 1467.52 2.86625
\(65\) −1130.48 −2.15721
\(66\) 0 0
\(67\) −506.360 −0.923308 −0.461654 0.887060i \(-0.652744\pi\)
−0.461654 + 0.887060i \(0.652744\pi\)
\(68\) −614.220 −1.09537
\(69\) 0 0
\(70\) 0 0
\(71\) −827.722 −1.38356 −0.691779 0.722110i \(-0.743173\pi\)
−0.691779 + 0.722110i \(0.743173\pi\)
\(72\) 0 0
\(73\) 372.577 0.597354 0.298677 0.954354i \(-0.403455\pi\)
0.298677 + 0.954354i \(0.403455\pi\)
\(74\) −1597.38 −2.50934
\(75\) 0 0
\(76\) −2302.72 −3.47552
\(77\) 0 0
\(78\) 0 0
\(79\) 1028.45 1.46468 0.732341 0.680938i \(-0.238428\pi\)
0.732341 + 0.680938i \(0.238428\pi\)
\(80\) 3340.14 4.66799
\(81\) 0 0
\(82\) 1288.44 1.73518
\(83\) 453.148 0.599270 0.299635 0.954054i \(-0.403135\pi\)
0.299635 + 0.954054i \(0.403135\pi\)
\(84\) 0 0
\(85\) −452.175 −0.577003
\(86\) 90.8276 0.113886
\(87\) 0 0
\(88\) 2271.71 2.75188
\(89\) 332.065 0.395493 0.197746 0.980253i \(-0.436638\pi\)
0.197746 + 0.980253i \(0.436638\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1169.81 −1.32567
\(93\) 0 0
\(94\) 2764.26 3.03310
\(95\) −1695.21 −1.83079
\(96\) 0 0
\(97\) 1164.54 1.21898 0.609489 0.792795i \(-0.291375\pi\)
0.609489 + 0.792795i \(0.291375\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 2489.06 2.48906
\(101\) −1863.54 −1.83593 −0.917967 0.396656i \(-0.870171\pi\)
−0.917967 + 0.396656i \(0.870171\pi\)
\(102\) 0 0
\(103\) −986.280 −0.943506 −0.471753 0.881731i \(-0.656379\pi\)
−0.471753 + 0.881731i \(0.656379\pi\)
\(104\) −5156.95 −4.86232
\(105\) 0 0
\(106\) 1432.08 1.31223
\(107\) −695.685 −0.628546 −0.314273 0.949333i \(-0.601761\pi\)
−0.314273 + 0.949333i \(0.601761\pi\)
\(108\) 0 0
\(109\) 1715.00 1.50703 0.753517 0.657428i \(-0.228356\pi\)
0.753517 + 0.657428i \(0.228356\pi\)
\(110\) 2689.11 2.33088
\(111\) 0 0
\(112\) 0 0
\(113\) 877.721 0.730700 0.365350 0.930870i \(-0.380949\pi\)
0.365350 + 0.930870i \(0.380949\pi\)
\(114\) 0 0
\(115\) −861.191 −0.698317
\(116\) 375.281 0.300379
\(117\) 0 0
\(118\) −1372.56 −1.07080
\(119\) 0 0
\(120\) 0 0
\(121\) −308.908 −0.232087
\(122\) 393.303 0.291869
\(123\) 0 0
\(124\) −1187.42 −0.859946
\(125\) −114.708 −0.0820784
\(126\) 0 0
\(127\) 781.088 0.545751 0.272875 0.962049i \(-0.412025\pi\)
0.272875 + 0.962049i \(0.412025\pi\)
\(128\) 3208.88 2.21584
\(129\) 0 0
\(130\) −6104.48 −4.11845
\(131\) 1961.24 1.30805 0.654024 0.756474i \(-0.273080\pi\)
0.654024 + 0.756474i \(0.273080\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −2734.29 −1.76274
\(135\) 0 0
\(136\) −2062.71 −1.30056
\(137\) −1220.31 −0.761009 −0.380504 0.924779i \(-0.624250\pi\)
−0.380504 + 0.924779i \(0.624250\pi\)
\(138\) 0 0
\(139\) −1068.10 −0.651765 −0.325882 0.945410i \(-0.605661\pi\)
−0.325882 + 0.945410i \(0.605661\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4469.62 −2.64143
\(143\) −2320.22 −1.35683
\(144\) 0 0
\(145\) 276.274 0.158230
\(146\) 2011.88 1.14044
\(147\) 0 0
\(148\) −6259.16 −3.47635
\(149\) −2590.82 −1.42449 −0.712243 0.701933i \(-0.752321\pi\)
−0.712243 + 0.701933i \(0.752321\pi\)
\(150\) 0 0
\(151\) 1929.54 1.03989 0.519946 0.854199i \(-0.325952\pi\)
0.519946 + 0.854199i \(0.325952\pi\)
\(152\) −7733.12 −4.12657
\(153\) 0 0
\(154\) 0 0
\(155\) −874.151 −0.452990
\(156\) 0 0
\(157\) −2625.73 −1.33475 −0.667377 0.744720i \(-0.732583\pi\)
−0.667377 + 0.744720i \(0.732583\pi\)
\(158\) 5553.54 2.79630
\(159\) 0 0
\(160\) 9181.70 4.53673
\(161\) 0 0
\(162\) 0 0
\(163\) −3100.17 −1.48972 −0.744858 0.667223i \(-0.767483\pi\)
−0.744858 + 0.667223i \(0.767483\pi\)
\(164\) 5048.63 2.40385
\(165\) 0 0
\(166\) 2446.95 1.14410
\(167\) 3264.73 1.51277 0.756386 0.654126i \(-0.226963\pi\)
0.756386 + 0.654126i \(0.226963\pi\)
\(168\) 0 0
\(169\) 3070.07 1.39739
\(170\) −2441.70 −1.10159
\(171\) 0 0
\(172\) 355.899 0.157773
\(173\) −2036.31 −0.894900 −0.447450 0.894309i \(-0.647668\pi\)
−0.447450 + 0.894309i \(0.647668\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 6855.39 2.93605
\(177\) 0 0
\(178\) 1793.12 0.755057
\(179\) −3582.35 −1.49585 −0.747925 0.663783i \(-0.768950\pi\)
−0.747925 + 0.663783i \(0.768950\pi\)
\(180\) 0 0
\(181\) 1637.35 0.672392 0.336196 0.941792i \(-0.390860\pi\)
0.336196 + 0.941792i \(0.390860\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −3928.53 −1.57400
\(185\) −4607.86 −1.83122
\(186\) 0 0
\(187\) −928.056 −0.362921
\(188\) 10831.5 4.20195
\(189\) 0 0
\(190\) −9153.97 −3.49526
\(191\) 2824.78 1.07013 0.535063 0.844812i \(-0.320288\pi\)
0.535063 + 0.844812i \(0.320288\pi\)
\(192\) 0 0
\(193\) −1657.53 −0.618195 −0.309098 0.951030i \(-0.600027\pi\)
−0.309098 + 0.951030i \(0.600027\pi\)
\(194\) 6288.39 2.32722
\(195\) 0 0
\(196\) 0 0
\(197\) 1890.78 0.683819 0.341909 0.939733i \(-0.388926\pi\)
0.341909 + 0.939733i \(0.388926\pi\)
\(198\) 0 0
\(199\) 1392.75 0.496126 0.248063 0.968744i \(-0.420206\pi\)
0.248063 + 0.968744i \(0.420206\pi\)
\(200\) 8358.89 2.95532
\(201\) 0 0
\(202\) −10063.0 −3.50508
\(203\) 0 0
\(204\) 0 0
\(205\) 3716.69 1.26627
\(206\) −5325.82 −1.80130
\(207\) 0 0
\(208\) −15562.2 −5.18772
\(209\) −3479.29 −1.15152
\(210\) 0 0
\(211\) 3314.53 1.08143 0.540714 0.841206i \(-0.318154\pi\)
0.540714 + 0.841206i \(0.318154\pi\)
\(212\) 5611.47 1.81791
\(213\) 0 0
\(214\) −3756.64 −1.19999
\(215\) 262.005 0.0831097
\(216\) 0 0
\(217\) 0 0
\(218\) 9260.82 2.87716
\(219\) 0 0
\(220\) 10537.0 3.22911
\(221\) 2106.75 0.641247
\(222\) 0 0
\(223\) 5576.50 1.67457 0.837287 0.546764i \(-0.184140\pi\)
0.837287 + 0.546764i \(0.184140\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 4739.61 1.39502
\(227\) 1447.92 0.423357 0.211678 0.977339i \(-0.432107\pi\)
0.211678 + 0.977339i \(0.432107\pi\)
\(228\) 0 0
\(229\) −1617.55 −0.466771 −0.233385 0.972384i \(-0.574980\pi\)
−0.233385 + 0.972384i \(0.574980\pi\)
\(230\) −4650.35 −1.33320
\(231\) 0 0
\(232\) 1260.29 0.356647
\(233\) −6092.11 −1.71291 −0.856454 0.516224i \(-0.827337\pi\)
−0.856454 + 0.516224i \(0.827337\pi\)
\(234\) 0 0
\(235\) 7973.89 2.21344
\(236\) −5378.22 −1.48344
\(237\) 0 0
\(238\) 0 0
\(239\) −1595.90 −0.431927 −0.215963 0.976401i \(-0.569289\pi\)
−0.215963 + 0.976401i \(0.569289\pi\)
\(240\) 0 0
\(241\) −2188.83 −0.585041 −0.292521 0.956259i \(-0.594494\pi\)
−0.292521 + 0.956259i \(0.594494\pi\)
\(242\) −1668.07 −0.443090
\(243\) 0 0
\(244\) 1541.12 0.404344
\(245\) 0 0
\(246\) 0 0
\(247\) 7898.24 2.03463
\(248\) −3987.65 −1.02103
\(249\) 0 0
\(250\) −619.413 −0.156700
\(251\) 6203.07 1.55990 0.779949 0.625843i \(-0.215245\pi\)
0.779949 + 0.625843i \(0.215245\pi\)
\(252\) 0 0
\(253\) −1767.53 −0.439224
\(254\) 4217.80 1.04192
\(255\) 0 0
\(256\) 5587.48 1.36413
\(257\) 268.323 0.0651266 0.0325633 0.999470i \(-0.489633\pi\)
0.0325633 + 0.999470i \(0.489633\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −23919.8 −5.70554
\(261\) 0 0
\(262\) 10590.5 2.49727
\(263\) 3724.96 0.873349 0.436675 0.899619i \(-0.356156\pi\)
0.436675 + 0.899619i \(0.356156\pi\)
\(264\) 0 0
\(265\) 4131.04 0.957615
\(266\) 0 0
\(267\) 0 0
\(268\) −10714.1 −2.44203
\(269\) 8557.25 1.93957 0.969786 0.243958i \(-0.0784458\pi\)
0.969786 + 0.243958i \(0.0784458\pi\)
\(270\) 0 0
\(271\) 5279.66 1.18346 0.591728 0.806137i \(-0.298446\pi\)
0.591728 + 0.806137i \(0.298446\pi\)
\(272\) −6224.67 −1.38760
\(273\) 0 0
\(274\) −6589.56 −1.45288
\(275\) 3760.84 0.824681
\(276\) 0 0
\(277\) −441.548 −0.0957764 −0.0478882 0.998853i \(-0.515249\pi\)
−0.0478882 + 0.998853i \(0.515249\pi\)
\(278\) −5767.66 −1.24432
\(279\) 0 0
\(280\) 0 0
\(281\) −3766.49 −0.799609 −0.399804 0.916601i \(-0.630922\pi\)
−0.399804 + 0.916601i \(0.630922\pi\)
\(282\) 0 0
\(283\) −1811.02 −0.380403 −0.190201 0.981745i \(-0.560914\pi\)
−0.190201 + 0.981745i \(0.560914\pi\)
\(284\) −17513.8 −3.65933
\(285\) 0 0
\(286\) −12529.0 −2.59040
\(287\) 0 0
\(288\) 0 0
\(289\) −4070.33 −0.828481
\(290\) 1491.85 0.302085
\(291\) 0 0
\(292\) 7883.35 1.57993
\(293\) −5815.74 −1.15959 −0.579794 0.814763i \(-0.696867\pi\)
−0.579794 + 0.814763i \(0.696867\pi\)
\(294\) 0 0
\(295\) −3959.33 −0.781427
\(296\) −21019.9 −4.12755
\(297\) 0 0
\(298\) −13990.2 −2.71957
\(299\) 4012.42 0.776068
\(300\) 0 0
\(301\) 0 0
\(302\) 10419.3 1.98532
\(303\) 0 0
\(304\) −23336.4 −4.40274
\(305\) 1134.54 0.212995
\(306\) 0 0
\(307\) 1974.93 0.367150 0.183575 0.983006i \(-0.441233\pi\)
0.183575 + 0.983006i \(0.441233\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −4720.33 −0.864829
\(311\) 1159.07 0.211334 0.105667 0.994402i \(-0.466302\pi\)
0.105667 + 0.994402i \(0.466302\pi\)
\(312\) 0 0
\(313\) −4493.67 −0.811494 −0.405747 0.913986i \(-0.632989\pi\)
−0.405747 + 0.913986i \(0.632989\pi\)
\(314\) −14178.7 −2.54825
\(315\) 0 0
\(316\) 21761.0 3.87390
\(317\) 4677.50 0.828752 0.414376 0.910106i \(-0.364000\pi\)
0.414376 + 0.910106i \(0.364000\pi\)
\(318\) 0 0
\(319\) 567.031 0.0995225
\(320\) 22859.2 3.99334
\(321\) 0 0
\(322\) 0 0
\(323\) 3159.19 0.544216
\(324\) 0 0
\(325\) −8537.38 −1.45713
\(326\) −16740.6 −2.84410
\(327\) 0 0
\(328\) 16954.6 2.85415
\(329\) 0 0
\(330\) 0 0
\(331\) −2982.71 −0.495301 −0.247650 0.968849i \(-0.579658\pi\)
−0.247650 + 0.968849i \(0.579658\pi\)
\(332\) 9588.15 1.58499
\(333\) 0 0
\(334\) 17629.3 2.88811
\(335\) −7887.45 −1.28638
\(336\) 0 0
\(337\) 7328.53 1.18460 0.592301 0.805717i \(-0.298220\pi\)
0.592301 + 0.805717i \(0.298220\pi\)
\(338\) 16578.1 2.66784
\(339\) 0 0
\(340\) −9567.57 −1.52610
\(341\) −1794.13 −0.284920
\(342\) 0 0
\(343\) 0 0
\(344\) 1195.20 0.187328
\(345\) 0 0
\(346\) −10995.9 −1.70850
\(347\) 8309.33 1.28550 0.642749 0.766076i \(-0.277794\pi\)
0.642749 + 0.766076i \(0.277794\pi\)
\(348\) 0 0
\(349\) −334.303 −0.0512745 −0.0256373 0.999671i \(-0.508161\pi\)
−0.0256373 + 0.999671i \(0.508161\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 18844.8 2.85349
\(353\) 5458.19 0.822975 0.411487 0.911415i \(-0.365009\pi\)
0.411487 + 0.911415i \(0.365009\pi\)
\(354\) 0 0
\(355\) −12893.2 −1.92761
\(356\) 7026.17 1.04603
\(357\) 0 0
\(358\) −19344.3 −2.85581
\(359\) 7196.90 1.05804 0.529022 0.848608i \(-0.322559\pi\)
0.529022 + 0.848608i \(0.322559\pi\)
\(360\) 0 0
\(361\) 4984.82 0.726755
\(362\) 8841.52 1.28370
\(363\) 0 0
\(364\) 0 0
\(365\) 5803.55 0.832251
\(366\) 0 0
\(367\) 6324.43 0.899544 0.449772 0.893143i \(-0.351505\pi\)
0.449772 + 0.893143i \(0.351505\pi\)
\(368\) −11855.2 −1.67934
\(369\) 0 0
\(370\) −24882.0 −3.49609
\(371\) 0 0
\(372\) 0 0
\(373\) −10931.8 −1.51749 −0.758746 0.651386i \(-0.774188\pi\)
−0.758746 + 0.651386i \(0.774188\pi\)
\(374\) −5011.42 −0.692872
\(375\) 0 0
\(376\) 36374.9 4.98907
\(377\) −1287.20 −0.175847
\(378\) 0 0
\(379\) 6024.02 0.816446 0.408223 0.912882i \(-0.366149\pi\)
0.408223 + 0.912882i \(0.366149\pi\)
\(380\) −35868.9 −4.84220
\(381\) 0 0
\(382\) 15253.6 2.04304
\(383\) −6848.10 −0.913633 −0.456816 0.889561i \(-0.651010\pi\)
−0.456816 + 0.889561i \(0.651010\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −8950.51 −1.18023
\(387\) 0 0
\(388\) 24640.4 3.22404
\(389\) 5161.88 0.672796 0.336398 0.941720i \(-0.390791\pi\)
0.336398 + 0.941720i \(0.390791\pi\)
\(390\) 0 0
\(391\) 1604.91 0.207580
\(392\) 0 0
\(393\) 0 0
\(394\) 10210.0 1.30552
\(395\) 16020.0 2.04064
\(396\) 0 0
\(397\) 344.768 0.0435854 0.0217927 0.999763i \(-0.493063\pi\)
0.0217927 + 0.999763i \(0.493063\pi\)
\(398\) 7520.70 0.947182
\(399\) 0 0
\(400\) 25224.8 3.15310
\(401\) 5098.84 0.634972 0.317486 0.948263i \(-0.397161\pi\)
0.317486 + 0.948263i \(0.397161\pi\)
\(402\) 0 0
\(403\) 4072.80 0.503426
\(404\) −39430.7 −4.85582
\(405\) 0 0
\(406\) 0 0
\(407\) −9457.28 −1.15179
\(408\) 0 0
\(409\) −323.124 −0.0390647 −0.0195323 0.999809i \(-0.506218\pi\)
−0.0195323 + 0.999809i \(0.506218\pi\)
\(410\) 20069.8 2.41750
\(411\) 0 0
\(412\) −20868.7 −2.49545
\(413\) 0 0
\(414\) 0 0
\(415\) 7058.58 0.834921
\(416\) −42779.0 −5.04185
\(417\) 0 0
\(418\) −18787.8 −2.19843
\(419\) 4415.98 0.514880 0.257440 0.966294i \(-0.417121\pi\)
0.257440 + 0.966294i \(0.417121\pi\)
\(420\) 0 0
\(421\) 1379.37 0.159683 0.0798415 0.996808i \(-0.474559\pi\)
0.0798415 + 0.996808i \(0.474559\pi\)
\(422\) 17898.1 2.06461
\(423\) 0 0
\(424\) 18844.8 2.15845
\(425\) −3414.83 −0.389750
\(426\) 0 0
\(427\) 0 0
\(428\) −14720.0 −1.66243
\(429\) 0 0
\(430\) 1414.80 0.158669
\(431\) 1655.79 0.185050 0.0925248 0.995710i \(-0.470506\pi\)
0.0925248 + 0.995710i \(0.470506\pi\)
\(432\) 0 0
\(433\) 8612.65 0.955883 0.477942 0.878392i \(-0.341383\pi\)
0.477942 + 0.878392i \(0.341383\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 36287.6 3.98592
\(437\) 6016.83 0.658636
\(438\) 0 0
\(439\) −5975.39 −0.649635 −0.324817 0.945777i \(-0.605303\pi\)
−0.324817 + 0.945777i \(0.605303\pi\)
\(440\) 35386.0 3.83400
\(441\) 0 0
\(442\) 11376.3 1.22424
\(443\) 806.532 0.0865000 0.0432500 0.999064i \(-0.486229\pi\)
0.0432500 + 0.999064i \(0.486229\pi\)
\(444\) 0 0
\(445\) 5172.51 0.551012
\(446\) 30112.6 3.19702
\(447\) 0 0
\(448\) 0 0
\(449\) 6253.04 0.657237 0.328618 0.944463i \(-0.393417\pi\)
0.328618 + 0.944463i \(0.393417\pi\)
\(450\) 0 0
\(451\) 7628.23 0.796451
\(452\) 18571.7 1.93261
\(453\) 0 0
\(454\) 7818.65 0.808254
\(455\) 0 0
\(456\) 0 0
\(457\) 160.288 0.0164069 0.00820344 0.999966i \(-0.497389\pi\)
0.00820344 + 0.999966i \(0.497389\pi\)
\(458\) −8734.60 −0.891138
\(459\) 0 0
\(460\) −18221.9 −1.84696
\(461\) −2408.80 −0.243360 −0.121680 0.992569i \(-0.538828\pi\)
−0.121680 + 0.992569i \(0.538828\pi\)
\(462\) 0 0
\(463\) −1092.89 −0.109699 −0.0548496 0.998495i \(-0.517468\pi\)
−0.0548496 + 0.998495i \(0.517468\pi\)
\(464\) 3803.20 0.380516
\(465\) 0 0
\(466\) −32896.8 −3.27021
\(467\) −15054.8 −1.49177 −0.745884 0.666076i \(-0.767973\pi\)
−0.745884 + 0.666076i \(0.767973\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 43058.3 4.22581
\(471\) 0 0
\(472\) −18061.5 −1.76133
\(473\) 537.745 0.0522739
\(474\) 0 0
\(475\) −12802.2 −1.23665
\(476\) 0 0
\(477\) 0 0
\(478\) −8617.73 −0.824615
\(479\) −10455.6 −0.997346 −0.498673 0.866790i \(-0.666179\pi\)
−0.498673 + 0.866790i \(0.666179\pi\)
\(480\) 0 0
\(481\) 21468.7 2.03511
\(482\) −11819.5 −1.11693
\(483\) 0 0
\(484\) −6536.18 −0.613841
\(485\) 18139.7 1.69831
\(486\) 0 0
\(487\) −12717.7 −1.18335 −0.591675 0.806176i \(-0.701533\pi\)
−0.591675 + 0.806176i \(0.701533\pi\)
\(488\) 5175.47 0.480087
\(489\) 0 0
\(490\) 0 0
\(491\) 20983.1 1.92863 0.964313 0.264763i \(-0.0852937\pi\)
0.964313 + 0.264763i \(0.0852937\pi\)
\(492\) 0 0
\(493\) −514.863 −0.0470350
\(494\) 42649.8 3.88442
\(495\) 0 0
\(496\) −12033.6 −1.08937
\(497\) 0 0
\(498\) 0 0
\(499\) 12718.1 1.14096 0.570480 0.821311i \(-0.306757\pi\)
0.570480 + 0.821311i \(0.306757\pi\)
\(500\) −2427.11 −0.217087
\(501\) 0 0
\(502\) 33496.0 2.97809
\(503\) −15675.9 −1.38957 −0.694785 0.719218i \(-0.744500\pi\)
−0.694785 + 0.719218i \(0.744500\pi\)
\(504\) 0 0
\(505\) −29028.0 −2.55788
\(506\) −9544.50 −0.838547
\(507\) 0 0
\(508\) 16527.0 1.44344
\(509\) −10218.3 −0.889819 −0.444910 0.895575i \(-0.646764\pi\)
−0.444910 + 0.895575i \(0.646764\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 4500.87 0.388501
\(513\) 0 0
\(514\) 1448.92 0.124337
\(515\) −15363.1 −1.31452
\(516\) 0 0
\(517\) 16365.8 1.39220
\(518\) 0 0
\(519\) 0 0
\(520\) −80328.7 −6.77432
\(521\) −4808.13 −0.404315 −0.202157 0.979353i \(-0.564795\pi\)
−0.202157 + 0.979353i \(0.564795\pi\)
\(522\) 0 0
\(523\) −9936.18 −0.830744 −0.415372 0.909652i \(-0.636349\pi\)
−0.415372 + 0.909652i \(0.636349\pi\)
\(524\) 41497.8 3.45962
\(525\) 0 0
\(526\) 20114.4 1.66736
\(527\) 1629.06 0.134655
\(528\) 0 0
\(529\) −9110.36 −0.748777
\(530\) 22307.2 1.82823
\(531\) 0 0
\(532\) 0 0
\(533\) −17316.6 −1.40725
\(534\) 0 0
\(535\) −10836.5 −0.875709
\(536\) −35980.5 −2.89948
\(537\) 0 0
\(538\) 46208.4 3.70294
\(539\) 0 0
\(540\) 0 0
\(541\) −2048.66 −0.162808 −0.0814038 0.996681i \(-0.525940\pi\)
−0.0814038 + 0.996681i \(0.525940\pi\)
\(542\) 28509.7 2.25940
\(543\) 0 0
\(544\) −17111.0 −1.34858
\(545\) 26714.1 2.09964
\(546\) 0 0
\(547\) 6154.72 0.481091 0.240546 0.970638i \(-0.422674\pi\)
0.240546 + 0.970638i \(0.422674\pi\)
\(548\) −25820.5 −2.01277
\(549\) 0 0
\(550\) 20308.2 1.57444
\(551\) −1930.22 −0.149238
\(552\) 0 0
\(553\) 0 0
\(554\) −2384.32 −0.182852
\(555\) 0 0
\(556\) −22600.0 −1.72384
\(557\) −4446.75 −0.338267 −0.169134 0.985593i \(-0.554097\pi\)
−0.169134 + 0.985593i \(0.554097\pi\)
\(558\) 0 0
\(559\) −1220.72 −0.0923631
\(560\) 0 0
\(561\) 0 0
\(562\) −20338.7 −1.52658
\(563\) 9686.59 0.725117 0.362559 0.931961i \(-0.381903\pi\)
0.362559 + 0.931961i \(0.381903\pi\)
\(564\) 0 0
\(565\) 13672.1 1.01803
\(566\) −9779.35 −0.726248
\(567\) 0 0
\(568\) −58815.7 −4.34481
\(569\) 7306.92 0.538351 0.269176 0.963091i \(-0.413249\pi\)
0.269176 + 0.963091i \(0.413249\pi\)
\(570\) 0 0
\(571\) 9109.34 0.667625 0.333813 0.942639i \(-0.391665\pi\)
0.333813 + 0.942639i \(0.391665\pi\)
\(572\) −49093.6 −3.58864
\(573\) 0 0
\(574\) 0 0
\(575\) −6503.72 −0.471694
\(576\) 0 0
\(577\) −18707.7 −1.34976 −0.674880 0.737927i \(-0.735805\pi\)
−0.674880 + 0.737927i \(0.735805\pi\)
\(578\) −21979.4 −1.58170
\(579\) 0 0
\(580\) 5845.67 0.418497
\(581\) 0 0
\(582\) 0 0
\(583\) 8478.66 0.602316
\(584\) 26474.3 1.87588
\(585\) 0 0
\(586\) −31404.4 −2.21383
\(587\) −24610.4 −1.73046 −0.865230 0.501375i \(-0.832828\pi\)
−0.865230 + 0.501375i \(0.832828\pi\)
\(588\) 0 0
\(589\) 6107.38 0.427250
\(590\) −21380.0 −1.49187
\(591\) 0 0
\(592\) −63432.0 −4.40378
\(593\) 18840.0 1.30466 0.652332 0.757933i \(-0.273791\pi\)
0.652332 + 0.757933i \(0.273791\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −54819.2 −3.76759
\(597\) 0 0
\(598\) 21666.7 1.48163
\(599\) 20647.6 1.40841 0.704206 0.709996i \(-0.251303\pi\)
0.704206 + 0.709996i \(0.251303\pi\)
\(600\) 0 0
\(601\) −15772.8 −1.07053 −0.535264 0.844685i \(-0.679788\pi\)
−0.535264 + 0.844685i \(0.679788\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 40827.1 2.75038
\(605\) −4811.79 −0.323350
\(606\) 0 0
\(607\) 5182.64 0.346552 0.173276 0.984873i \(-0.444565\pi\)
0.173276 + 0.984873i \(0.444565\pi\)
\(608\) −64149.2 −4.27894
\(609\) 0 0
\(610\) 6126.39 0.406640
\(611\) −37151.6 −2.45989
\(612\) 0 0
\(613\) −28839.1 −1.90016 −0.950081 0.312004i \(-0.899000\pi\)
−0.950081 + 0.312004i \(0.899000\pi\)
\(614\) 10664.4 0.700946
\(615\) 0 0
\(616\) 0 0
\(617\) 5114.80 0.333734 0.166867 0.985979i \(-0.446635\pi\)
0.166867 + 0.985979i \(0.446635\pi\)
\(618\) 0 0
\(619\) 29213.9 1.89694 0.948471 0.316864i \(-0.102630\pi\)
0.948471 + 0.316864i \(0.102630\pi\)
\(620\) −18496.1 −1.19810
\(621\) 0 0
\(622\) 6258.87 0.403469
\(623\) 0 0
\(624\) 0 0
\(625\) −16491.3 −1.05544
\(626\) −24265.4 −1.54927
\(627\) 0 0
\(628\) −55557.8 −3.53025
\(629\) 8587.18 0.544345
\(630\) 0 0
\(631\) 19557.5 1.23387 0.616934 0.787015i \(-0.288374\pi\)
0.616934 + 0.787015i \(0.288374\pi\)
\(632\) 73079.0 4.59957
\(633\) 0 0
\(634\) 25258.1 1.58222
\(635\) 12166.8 0.760356
\(636\) 0 0
\(637\) 0 0
\(638\) 3061.92 0.190004
\(639\) 0 0
\(640\) 49983.9 3.08717
\(641\) −14632.3 −0.901624 −0.450812 0.892619i \(-0.648865\pi\)
−0.450812 + 0.892619i \(0.648865\pi\)
\(642\) 0 0
\(643\) −23808.1 −1.46019 −0.730094 0.683347i \(-0.760524\pi\)
−0.730094 + 0.683347i \(0.760524\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 17059.3 1.03899
\(647\) −17322.2 −1.05256 −0.526279 0.850312i \(-0.676413\pi\)
−0.526279 + 0.850312i \(0.676413\pi\)
\(648\) 0 0
\(649\) −8126.23 −0.491498
\(650\) −46101.1 −2.78190
\(651\) 0 0
\(652\) −65596.4 −3.94011
\(653\) 3241.68 0.194268 0.0971338 0.995271i \(-0.469033\pi\)
0.0971338 + 0.995271i \(0.469033\pi\)
\(654\) 0 0
\(655\) 30549.8 1.82241
\(656\) 51164.2 3.04516
\(657\) 0 0
\(658\) 0 0
\(659\) 16358.2 0.966958 0.483479 0.875356i \(-0.339373\pi\)
0.483479 + 0.875356i \(0.339373\pi\)
\(660\) 0 0
\(661\) 12572.6 0.739814 0.369907 0.929069i \(-0.379389\pi\)
0.369907 + 0.929069i \(0.379389\pi\)
\(662\) −16106.4 −0.945606
\(663\) 0 0
\(664\) 32199.5 1.88190
\(665\) 0 0
\(666\) 0 0
\(667\) −980.582 −0.0569240
\(668\) 69078.5 4.00109
\(669\) 0 0
\(670\) −42591.5 −2.45590
\(671\) 2328.55 0.133968
\(672\) 0 0
\(673\) 13130.7 0.752082 0.376041 0.926603i \(-0.377285\pi\)
0.376041 + 0.926603i \(0.377285\pi\)
\(674\) 39573.4 2.26159
\(675\) 0 0
\(676\) 64959.6 3.69592
\(677\) 18624.2 1.05729 0.528644 0.848843i \(-0.322701\pi\)
0.528644 + 0.848843i \(0.322701\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −32130.4 −1.81198
\(681\) 0 0
\(682\) −9688.13 −0.543956
\(683\) −25377.0 −1.42170 −0.710852 0.703341i \(-0.751691\pi\)
−0.710852 + 0.703341i \(0.751691\pi\)
\(684\) 0 0
\(685\) −19008.5 −1.06026
\(686\) 0 0
\(687\) 0 0
\(688\) 3606.78 0.199865
\(689\) −19247.2 −1.06424
\(690\) 0 0
\(691\) 2135.42 0.117562 0.0587810 0.998271i \(-0.481279\pi\)
0.0587810 + 0.998271i \(0.481279\pi\)
\(692\) −43086.2 −2.36690
\(693\) 0 0
\(694\) 44869.6 2.45422
\(695\) −16637.6 −0.908058
\(696\) 0 0
\(697\) −6926.41 −0.376408
\(698\) −1805.20 −0.0978910
\(699\) 0 0
\(700\) 0 0
\(701\) −9679.27 −0.521513 −0.260757 0.965405i \(-0.583972\pi\)
−0.260757 + 0.965405i \(0.583972\pi\)
\(702\) 0 0
\(703\) 32193.4 1.72717
\(704\) 46916.8 2.51171
\(705\) 0 0
\(706\) 29473.7 1.57119
\(707\) 0 0
\(708\) 0 0
\(709\) −25743.2 −1.36362 −0.681809 0.731530i \(-0.738807\pi\)
−0.681809 + 0.731530i \(0.738807\pi\)
\(710\) −69622.3 −3.68011
\(711\) 0 0
\(712\) 23595.7 1.24197
\(713\) 3102.63 0.162966
\(714\) 0 0
\(715\) −36141.6 −1.89038
\(716\) −75798.9 −3.95634
\(717\) 0 0
\(718\) 38862.6 2.01997
\(719\) 10508.5 0.545065 0.272532 0.962147i \(-0.412139\pi\)
0.272532 + 0.962147i \(0.412139\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 26917.5 1.38749
\(723\) 0 0
\(724\) 34644.6 1.77839
\(725\) 2086.42 0.106880
\(726\) 0 0
\(727\) −24259.4 −1.23759 −0.618797 0.785551i \(-0.712380\pi\)
−0.618797 + 0.785551i \(0.712380\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 31338.6 1.58890
\(731\) −488.271 −0.0247050
\(732\) 0 0
\(733\) 19632.2 0.989263 0.494632 0.869103i \(-0.335303\pi\)
0.494632 + 0.869103i \(0.335303\pi\)
\(734\) 34151.3 1.71737
\(735\) 0 0
\(736\) −32588.7 −1.63212
\(737\) −16188.4 −0.809101
\(738\) 0 0
\(739\) −26353.6 −1.31182 −0.655909 0.754840i \(-0.727714\pi\)
−0.655909 + 0.754840i \(0.727714\pi\)
\(740\) −97497.6 −4.84335
\(741\) 0 0
\(742\) 0 0
\(743\) −31464.6 −1.55360 −0.776799 0.629749i \(-0.783158\pi\)
−0.776799 + 0.629749i \(0.783158\pi\)
\(744\) 0 0
\(745\) −40356.7 −1.98464
\(746\) −59030.4 −2.89713
\(747\) 0 0
\(748\) −19636.7 −0.959880
\(749\) 0 0
\(750\) 0 0
\(751\) 5411.52 0.262942 0.131471 0.991320i \(-0.458030\pi\)
0.131471 + 0.991320i \(0.458030\pi\)
\(752\) 109769. 5.32296
\(753\) 0 0
\(754\) −6950.77 −0.335719
\(755\) 30056.0 1.44881
\(756\) 0 0
\(757\) 3607.94 0.173227 0.0866135 0.996242i \(-0.472395\pi\)
0.0866135 + 0.996242i \(0.472395\pi\)
\(758\) 32529.1 1.55872
\(759\) 0 0
\(760\) −120457. −5.74926
\(761\) −4663.70 −0.222154 −0.111077 0.993812i \(-0.535430\pi\)
−0.111077 + 0.993812i \(0.535430\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 59769.5 2.83035
\(765\) 0 0
\(766\) −36979.1 −1.74427
\(767\) 18447.1 0.868431
\(768\) 0 0
\(769\) −9725.21 −0.456047 −0.228023 0.973656i \(-0.573226\pi\)
−0.228023 + 0.973656i \(0.573226\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −35071.7 −1.63505
\(773\) 3092.80 0.143907 0.0719536 0.997408i \(-0.477077\pi\)
0.0719536 + 0.997408i \(0.477077\pi\)
\(774\) 0 0
\(775\) −6601.60 −0.305982
\(776\) 82748.8 3.82798
\(777\) 0 0
\(778\) 27873.7 1.28447
\(779\) −25967.2 −1.19431
\(780\) 0 0
\(781\) −26462.4 −1.21242
\(782\) 8666.37 0.396303
\(783\) 0 0
\(784\) 0 0
\(785\) −40900.4 −1.85962
\(786\) 0 0
\(787\) 22812.9 1.03328 0.516640 0.856203i \(-0.327183\pi\)
0.516640 + 0.856203i \(0.327183\pi\)
\(788\) 40006.9 1.80861
\(789\) 0 0
\(790\) 86506.3 3.89589
\(791\) 0 0
\(792\) 0 0
\(793\) −5285.98 −0.236710
\(794\) 1861.71 0.0832113
\(795\) 0 0
\(796\) 29469.1 1.31219
\(797\) 34305.4 1.52467 0.762334 0.647184i \(-0.224053\pi\)
0.762334 + 0.647184i \(0.224053\pi\)
\(798\) 0 0
\(799\) −14860.1 −0.657963
\(800\) 69340.3 3.06444
\(801\) 0 0
\(802\) 27533.3 1.21226
\(803\) 11911.4 0.523465
\(804\) 0 0
\(805\) 0 0
\(806\) 21992.8 0.961119
\(807\) 0 0
\(808\) −132418. −5.76542
\(809\) 3264.80 0.141884 0.0709421 0.997480i \(-0.477399\pi\)
0.0709421 + 0.997480i \(0.477399\pi\)
\(810\) 0 0
\(811\) 27264.0 1.18048 0.590239 0.807228i \(-0.299033\pi\)
0.590239 + 0.807228i \(0.299033\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −51068.4 −2.19895
\(815\) −48290.6 −2.07552
\(816\) 0 0
\(817\) −1830.53 −0.0783871
\(818\) −1744.84 −0.0745805
\(819\) 0 0
\(820\) 78641.4 3.34912
\(821\) −36334.2 −1.54454 −0.772272 0.635292i \(-0.780880\pi\)
−0.772272 + 0.635292i \(0.780880\pi\)
\(822\) 0 0
\(823\) 7791.80 0.330019 0.165009 0.986292i \(-0.447235\pi\)
0.165009 + 0.986292i \(0.447235\pi\)
\(824\) −70082.4 −2.96291
\(825\) 0 0
\(826\) 0 0
\(827\) 36082.7 1.51719 0.758596 0.651561i \(-0.225886\pi\)
0.758596 + 0.651561i \(0.225886\pi\)
\(828\) 0 0
\(829\) −42995.0 −1.80130 −0.900650 0.434545i \(-0.856909\pi\)
−0.900650 + 0.434545i \(0.856909\pi\)
\(830\) 38115.7 1.59399
\(831\) 0 0
\(832\) −106505. −4.43796
\(833\) 0 0
\(834\) 0 0
\(835\) 50854.0 2.10764
\(836\) −73618.3 −3.04562
\(837\) 0 0
\(838\) 23845.9 0.982986
\(839\) −28252.8 −1.16257 −0.581283 0.813701i \(-0.697449\pi\)
−0.581283 + 0.813701i \(0.697449\pi\)
\(840\) 0 0
\(841\) −24074.4 −0.987102
\(842\) 7448.49 0.304860
\(843\) 0 0
\(844\) 70132.0 2.86024
\(845\) 47821.8 1.94689
\(846\) 0 0
\(847\) 0 0
\(848\) 56868.2 2.30290
\(849\) 0 0
\(850\) −18439.8 −0.744093
\(851\) 16354.7 0.658793
\(852\) 0 0
\(853\) 28994.8 1.16385 0.581924 0.813243i \(-0.302300\pi\)
0.581924 + 0.813243i \(0.302300\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −49433.5 −1.97384
\(857\) 8632.87 0.344099 0.172050 0.985088i \(-0.444961\pi\)
0.172050 + 0.985088i \(0.444961\pi\)
\(858\) 0 0
\(859\) 33947.1 1.34838 0.674191 0.738557i \(-0.264493\pi\)
0.674191 + 0.738557i \(0.264493\pi\)
\(860\) 5543.76 0.219815
\(861\) 0 0
\(862\) 8941.09 0.353288
\(863\) −70.6612 −0.00278718 −0.00139359 0.999999i \(-0.500444\pi\)
−0.00139359 + 0.999999i \(0.500444\pi\)
\(864\) 0 0
\(865\) −31719.1 −1.24680
\(866\) 46507.5 1.82493
\(867\) 0 0
\(868\) 0 0
\(869\) 32879.8 1.28351
\(870\) 0 0
\(871\) 36748.8 1.42961
\(872\) 121863. 4.73257
\(873\) 0 0
\(874\) 32490.3 1.25744
\(875\) 0 0
\(876\) 0 0
\(877\) −11175.3 −0.430289 −0.215144 0.976582i \(-0.569022\pi\)
−0.215144 + 0.976582i \(0.569022\pi\)
\(878\) −32266.5 −1.24025
\(879\) 0 0
\(880\) 106785. 4.09059
\(881\) −14341.3 −0.548433 −0.274216 0.961668i \(-0.588418\pi\)
−0.274216 + 0.961668i \(0.588418\pi\)
\(882\) 0 0
\(883\) −23559.2 −0.897884 −0.448942 0.893561i \(-0.648199\pi\)
−0.448942 + 0.893561i \(0.648199\pi\)
\(884\) 44576.8 1.69602
\(885\) 0 0
\(886\) 4355.20 0.165142
\(887\) −31744.4 −1.20166 −0.600831 0.799376i \(-0.705163\pi\)
−0.600831 + 0.799376i \(0.705163\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 27931.1 1.05197
\(891\) 0 0
\(892\) 117993. 4.42904
\(893\) −55710.7 −2.08767
\(894\) 0 0
\(895\) −55801.4 −2.08406
\(896\) 0 0
\(897\) 0 0
\(898\) 33765.8 1.25477
\(899\) −995.339 −0.0369259
\(900\) 0 0
\(901\) −7698.59 −0.284658
\(902\) 41191.8 1.52055
\(903\) 0 0
\(904\) 62368.5 2.29463
\(905\) 25504.6 0.936796
\(906\) 0 0
\(907\) 6062.67 0.221949 0.110974 0.993823i \(-0.464603\pi\)
0.110974 + 0.993823i \(0.464603\pi\)
\(908\) 30636.6 1.11973
\(909\) 0 0
\(910\) 0 0
\(911\) −25862.9 −0.940589 −0.470295 0.882509i \(-0.655852\pi\)
−0.470295 + 0.882509i \(0.655852\pi\)
\(912\) 0 0
\(913\) 14487.2 0.525144
\(914\) 865.539 0.0313233
\(915\) 0 0
\(916\) −34225.7 −1.23455
\(917\) 0 0
\(918\) 0 0
\(919\) 1455.14 0.0522314 0.0261157 0.999659i \(-0.491686\pi\)
0.0261157 + 0.999659i \(0.491686\pi\)
\(920\) −61193.9 −2.19294
\(921\) 0 0
\(922\) −13007.3 −0.464612
\(923\) 60071.6 2.14223
\(924\) 0 0
\(925\) −34798.6 −1.23694
\(926\) −5901.48 −0.209433
\(927\) 0 0
\(928\) 10454.6 0.369816
\(929\) 3077.74 0.108695 0.0543474 0.998522i \(-0.482692\pi\)
0.0543474 + 0.998522i \(0.482692\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −128903. −4.53042
\(933\) 0 0
\(934\) −81294.8 −2.84802
\(935\) −14456.1 −0.505632
\(936\) 0 0
\(937\) 5354.80 0.186695 0.0933477 0.995634i \(-0.470243\pi\)
0.0933477 + 0.995634i \(0.470243\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 168719. 5.85428
\(941\) −47797.8 −1.65586 −0.827930 0.560832i \(-0.810482\pi\)
−0.827930 + 0.560832i \(0.810482\pi\)
\(942\) 0 0
\(943\) −13191.7 −0.455547
\(944\) −54504.4 −1.87920
\(945\) 0 0
\(946\) 2903.78 0.0997990
\(947\) 2491.69 0.0855006 0.0427503 0.999086i \(-0.486388\pi\)
0.0427503 + 0.999086i \(0.486388\pi\)
\(948\) 0 0
\(949\) −27039.6 −0.924914
\(950\) −69130.9 −2.36095
\(951\) 0 0
\(952\) 0 0
\(953\) 13130.4 0.446313 0.223156 0.974783i \(-0.428364\pi\)
0.223156 + 0.974783i \(0.428364\pi\)
\(954\) 0 0
\(955\) 44001.0 1.49093
\(956\) −33767.7 −1.14239
\(957\) 0 0
\(958\) −56459.3 −1.90409
\(959\) 0 0
\(960\) 0 0
\(961\) −26641.7 −0.894286
\(962\) 115929. 3.88534
\(963\) 0 0
\(964\) −46313.4 −1.54736
\(965\) −25819.0 −0.861287
\(966\) 0 0
\(967\) 43314.8 1.44044 0.720222 0.693743i \(-0.244040\pi\)
0.720222 + 0.693743i \(0.244040\pi\)
\(968\) −21950.2 −0.728827
\(969\) 0 0
\(970\) 97952.8 3.24235
\(971\) −19755.8 −0.652929 −0.326464 0.945210i \(-0.605857\pi\)
−0.326464 + 0.945210i \(0.605857\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −68674.1 −2.25920
\(975\) 0 0
\(976\) 15618.1 0.512217
\(977\) 11140.1 0.364794 0.182397 0.983225i \(-0.441614\pi\)
0.182397 + 0.983225i \(0.441614\pi\)
\(978\) 0 0
\(979\) 10616.2 0.346573
\(980\) 0 0
\(981\) 0 0
\(982\) 113307. 3.68205
\(983\) −3575.76 −0.116021 −0.0580107 0.998316i \(-0.518476\pi\)
−0.0580107 + 0.998316i \(0.518476\pi\)
\(984\) 0 0
\(985\) 29452.2 0.952716
\(986\) −2780.21 −0.0897971
\(987\) 0 0
\(988\) 167119. 5.38133
\(989\) −929.937 −0.0298992
\(990\) 0 0
\(991\) 22391.8 0.717760 0.358880 0.933384i \(-0.383159\pi\)
0.358880 + 0.933384i \(0.383159\pi\)
\(992\) −33079.2 −1.05873
\(993\) 0 0
\(994\) 0 0
\(995\) 21694.5 0.691218
\(996\) 0 0
\(997\) 17466.5 0.554834 0.277417 0.960750i \(-0.410522\pi\)
0.277417 + 0.960750i \(0.410522\pi\)
\(998\) 68676.4 2.17827
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.4.a.x.1.8 yes 8
3.2 odd 2 inner 441.4.a.x.1.1 8
7.2 even 3 441.4.e.z.361.1 16
7.3 odd 6 441.4.e.z.226.2 16
7.4 even 3 441.4.e.z.226.1 16
7.5 odd 6 441.4.e.z.361.2 16
7.6 odd 2 inner 441.4.a.x.1.7 yes 8
21.2 odd 6 441.4.e.z.361.8 16
21.5 even 6 441.4.e.z.361.7 16
21.11 odd 6 441.4.e.z.226.8 16
21.17 even 6 441.4.e.z.226.7 16
21.20 even 2 inner 441.4.a.x.1.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.4.a.x.1.1 8 3.2 odd 2 inner
441.4.a.x.1.2 yes 8 21.20 even 2 inner
441.4.a.x.1.7 yes 8 7.6 odd 2 inner
441.4.a.x.1.8 yes 8 1.1 even 1 trivial
441.4.e.z.226.1 16 7.4 even 3
441.4.e.z.226.2 16 7.3 odd 6
441.4.e.z.226.7 16 21.17 even 6
441.4.e.z.226.8 16 21.11 odd 6
441.4.e.z.361.1 16 7.2 even 3
441.4.e.z.361.2 16 7.5 odd 6
441.4.e.z.361.7 16 21.5 even 6
441.4.e.z.361.8 16 21.2 odd 6