Properties

Label 441.4.a.u
Level $441$
Weight $4$
Character orbit 441.a
Self dual yes
Analytic conductor $26.020$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 441.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(26.0198423125\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{65})\)
Defining polynomial: \(x^{4} - 2 x^{3} - 35 x^{2} + 36 x + 194\)
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 7 \)
Twist minimal: no (minimal twist has level 49)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 - \beta_{1} ) q^{2} + ( 9 + \beta_{1} ) q^{4} + \beta_{3} q^{5} + ( -17 - \beta_{1} ) q^{8} +O(q^{10})\) \( q + ( -1 - \beta_{1} ) q^{2} + ( 9 + \beta_{1} ) q^{4} + \beta_{3} q^{5} + ( -17 - \beta_{1} ) q^{8} + ( -2 \beta_{2} - 4 \beta_{3} ) q^{10} + ( -22 + 6 \beta_{1} ) q^{11} + ( 6 \beta_{2} + \beta_{3} ) q^{13} + ( -39 + 9 \beta_{1} ) q^{16} + ( \beta_{2} - 9 \beta_{3} ) q^{17} + ( -11 \beta_{2} - 4 \beta_{3} ) q^{19} + ( 2 \beta_{2} + 12 \beta_{3} ) q^{20} + ( -74 + 22 \beta_{1} ) q^{22} + ( -92 - 8 \beta_{1} ) q^{23} + ( -21 + 22 \beta_{1} ) q^{25} + ( 16 \beta_{2} - 16 \beta_{3} ) q^{26} + ( -58 + 14 \beta_{1} ) q^{29} + ( -38 \beta_{2} + 4 \beta_{3} ) q^{31} + ( 31 + 47 \beta_{1} ) q^{32} + ( 21 \beta_{2} + 34 \beta_{3} ) q^{34} + ( 50 - 6 \beta_{1} ) q^{37} + ( -25 \beta_{2} + 38 \beta_{3} ) q^{38} + ( -2 \beta_{2} - 20 \beta_{3} ) q^{40} + ( 31 \beta_{2} - 3 \beta_{3} ) q^{41} + ( 170 + 70 \beta_{1} ) q^{43} + ( -102 + 26 \beta_{1} ) q^{44} + ( 220 + 92 \beta_{1} ) q^{46} + ( 26 \beta_{2} - 32 \beta_{3} ) q^{47} + ( -331 + 21 \beta_{1} ) q^{50} + ( 32 \beta_{2} + 24 \beta_{3} ) q^{52} + ( -22 - 36 \beta_{1} ) q^{53} + ( 12 \beta_{2} - 4 \beta_{3} ) q^{55} + ( -166 + 58 \beta_{1} ) q^{58} + ( -49 \beta_{2} + 20 \beta_{3} ) q^{59} + ( 68 \beta_{2} - 27 \beta_{3} ) q^{61} + ( -122 \beta_{2} + 60 \beta_{3} ) q^{62} + ( -471 - 103 \beta_{1} ) q^{64} + ( 224 + 70 \beta_{1} ) q^{65} + ( -524 - 76 \beta_{1} ) q^{67} + ( -13 \beta_{2} - 106 \beta_{3} ) q^{68} + ( -548 + 28 \beta_{1} ) q^{71} + ( -37 \beta_{2} - 25 \beta_{3} ) q^{73} + ( 46 - 50 \beta_{1} ) q^{74} + ( -63 \beta_{2} - 70 \beta_{3} ) q^{76} + ( -356 - 188 \beta_{1} ) q^{79} + ( 18 \beta_{2} - 12 \beta_{3} ) q^{80} + ( 99 \beta_{2} - 50 \beta_{3} ) q^{82} + ( -\beta_{2} + 8 \beta_{3} ) q^{83} + ( -916 - 190 \beta_{1} ) q^{85} + ( -1290 - 170 \beta_{1} ) q^{86} + ( 278 - 74 \beta_{1} ) q^{88} + ( 157 \beta_{2} + 75 \beta_{3} ) q^{89} + ( -956 - 156 \beta_{1} ) q^{92} + ( 142 \beta_{2} + 76 \beta_{3} ) q^{94} + ( -636 - 176 \beta_{1} ) q^{95} + ( -189 \beta_{2} + 91 \beta_{3} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 2q^{2} + 34q^{4} - 66q^{8} + O(q^{10}) \) \( 4q - 2q^{2} + 34q^{4} - 66q^{8} - 100q^{11} - 174q^{16} - 340q^{22} - 352q^{23} - 128q^{25} - 260q^{29} + 30q^{32} + 212q^{37} + 540q^{43} - 460q^{44} + 696q^{46} - 1366q^{50} - 16q^{53} - 780q^{58} - 1678q^{64} + 756q^{65} - 1944q^{67} - 2248q^{71} + 284q^{74} - 1048q^{79} - 3284q^{85} - 4820q^{86} + 1260q^{88} - 3512q^{92} - 2192q^{95} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - 2 x^{3} - 35 x^{2} + 36 x + 194\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( -2 \nu^{3} + 3 \nu^{2} + 100 \nu - 79 \)\()/57\)
\(\beta_{2}\)\(=\)\((\)\( -\nu^{3} + 11 \nu^{2} + 12 \nu - 182 \)\()/19\)
\(\beta_{3}\)\(=\)\((\)\( 11 \nu^{3} + 12 \nu^{2} - 265 \nu - 392 \)\()/57\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{3} - \beta_{2} + 7 \beta_{1} + 7\)\()/7\)
\(\nu^{2}\)\(=\)\((\)\(4 \beta_{3} + 10 \beta_{2} + 7 \beta_{1} + 133\)\()/7\)
\(\nu^{3}\)\(=\)\(8 \beta_{3} - 5 \beta_{2} + 23 \beta_{1} + 39\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.11692
5.94534
−4.94534
−2.11692
−4.53113 0 12.5311 −13.4791 0 0 −20.5311 0 61.0753
1.2 −4.53113 0 12.5311 13.4791 0 0 −20.5311 0 −61.0753
1.3 3.53113 0 4.46887 −2.07730 0 0 −12.4689 0 −7.33521
1.4 3.53113 0 4.46887 2.07730 0 0 −12.4689 0 7.33521
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(7\) \(1\)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 441.4.a.u 4
3.b odd 2 1 49.4.a.e 4
7.b odd 2 1 inner 441.4.a.u 4
7.c even 3 2 441.4.e.y 8
7.d odd 6 2 441.4.e.y 8
12.b even 2 1 784.4.a.bf 4
15.d odd 2 1 1225.4.a.bb 4
21.c even 2 1 49.4.a.e 4
21.g even 6 2 49.4.c.e 8
21.h odd 6 2 49.4.c.e 8
84.h odd 2 1 784.4.a.bf 4
105.g even 2 1 1225.4.a.bb 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
49.4.a.e 4 3.b odd 2 1
49.4.a.e 4 21.c even 2 1
49.4.c.e 8 21.g even 6 2
49.4.c.e 8 21.h odd 6 2
441.4.a.u 4 1.a even 1 1 trivial
441.4.a.u 4 7.b odd 2 1 inner
441.4.e.y 8 7.c even 3 2
441.4.e.y 8 7.d odd 6 2
784.4.a.bf 4 12.b even 2 1
784.4.a.bf 4 84.h odd 2 1
1225.4.a.bb 4 15.d odd 2 1
1225.4.a.bb 4 105.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(441))\):

\( T_{2}^{2} + T_{2} - 16 \)
\( T_{5}^{4} - 186 T_{5}^{2} + 784 \)
\( T_{13}^{4} - 3234 T_{13}^{2} + 2458624 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( -16 + T + T^{2} )^{2} \)
$3$ \( T^{4} \)
$5$ \( 784 - 186 T^{2} + T^{4} \)
$7$ \( T^{4} \)
$11$ \( ( 40 + 50 T + T^{2} )^{2} \)
$13$ \( 2458624 - 3234 T^{2} + T^{4} \)
$17$ \( 9746884 - 14564 T^{2} + T^{4} \)
$19$ \( 52591504 - 14746 T^{2} + T^{4} \)
$23$ \( ( 6704 + 176 T + T^{2} )^{2} \)
$29$ \( ( 1040 + 130 T + T^{2} )^{2} \)
$31$ \( 629407744 - 100104 T^{2} + T^{4} \)
$37$ \( ( 2224 - 106 T + T^{2} )^{2} \)
$41$ \( 307721764 - 66836 T^{2} + T^{4} \)
$43$ \( ( -61400 - 270 T + T^{2} )^{2} \)
$47$ \( 8332038400 - 187240 T^{2} + T^{4} \)
$53$ \( ( -21044 + 8 T + T^{2} )^{2} \)
$59$ \( 1600960144 - 189354 T^{2} + T^{4} \)
$61$ \( 5022273424 - 360266 T^{2} + T^{4} \)
$67$ \( ( 142336 + 972 T + T^{2} )^{2} \)
$71$ \( ( 303104 + 1124 T + T^{2} )^{2} \)
$73$ \( 12428236324 - 276756 T^{2} + T^{4} \)
$79$ \( ( -505696 + 524 T + T^{2} )^{2} \)
$83$ \( 6492304 - 11466 T^{2} + T^{4} \)
$89$ \( 2844693770884 - 3623876 T^{2} + T^{4} \)
$97$ \( 841222821124 - 3082884 T^{2} + T^{4} \)
show more
show less