Properties

Label 441.4.a.f
Level $441$
Weight $4$
Character orbit 441.a
Self dual yes
Analytic conductor $26.020$
Analytic rank $1$
Dimension $1$
CM discriminant -3
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,4,Mod(1,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 441.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.0198423125\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 9)
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 8 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( q - 8 q^{4} + 70 q^{13} + 64 q^{16} - 56 q^{19} - 125 q^{25} - 308 q^{31} + 110 q^{37} - 520 q^{43} - 560 q^{52} - 182 q^{61} - 512 q^{64} - 880 q^{67} - 1190 q^{73} + 448 q^{76} + 884 q^{79} + 1330 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 −8.00000 0 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 441.4.a.f 1
3.b odd 2 1 CM 441.4.a.f 1
7.b odd 2 1 9.4.a.a 1
7.c even 3 2 441.4.e.j 2
7.d odd 6 2 441.4.e.i 2
21.c even 2 1 9.4.a.a 1
21.g even 6 2 441.4.e.i 2
21.h odd 6 2 441.4.e.j 2
28.d even 2 1 144.4.a.d 1
35.c odd 2 1 225.4.a.d 1
35.f even 4 2 225.4.b.g 2
56.e even 2 1 576.4.a.l 1
56.h odd 2 1 576.4.a.m 1
63.l odd 6 2 81.4.c.b 2
63.o even 6 2 81.4.c.b 2
77.b even 2 1 1089.4.a.g 1
84.h odd 2 1 144.4.a.d 1
91.b odd 2 1 1521.4.a.g 1
105.g even 2 1 225.4.a.d 1
105.k odd 4 2 225.4.b.g 2
168.e odd 2 1 576.4.a.l 1
168.i even 2 1 576.4.a.m 1
231.h odd 2 1 1089.4.a.g 1
273.g even 2 1 1521.4.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9.4.a.a 1 7.b odd 2 1
9.4.a.a 1 21.c even 2 1
81.4.c.b 2 63.l odd 6 2
81.4.c.b 2 63.o even 6 2
144.4.a.d 1 28.d even 2 1
144.4.a.d 1 84.h odd 2 1
225.4.a.d 1 35.c odd 2 1
225.4.a.d 1 105.g even 2 1
225.4.b.g 2 35.f even 4 2
225.4.b.g 2 105.k odd 4 2
441.4.a.f 1 1.a even 1 1 trivial
441.4.a.f 1 3.b odd 2 1 CM
441.4.e.i 2 7.d odd 6 2
441.4.e.i 2 21.g even 6 2
441.4.e.j 2 7.c even 3 2
441.4.e.j 2 21.h odd 6 2
576.4.a.l 1 56.e even 2 1
576.4.a.l 1 168.e odd 2 1
576.4.a.m 1 56.h odd 2 1
576.4.a.m 1 168.i even 2 1
1089.4.a.g 1 77.b even 2 1
1089.4.a.g 1 231.h odd 2 1
1521.4.a.g 1 91.b odd 2 1
1521.4.a.g 1 273.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(441))\):

\( T_{2} \) Copy content Toggle raw display
\( T_{5} \) Copy content Toggle raw display
\( T_{13} - 70 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 70 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T + 56 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T + 308 \) Copy content Toggle raw display
$37$ \( T - 110 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T + 520 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T + 182 \) Copy content Toggle raw display
$67$ \( T + 880 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T + 1190 \) Copy content Toggle raw display
$79$ \( T - 884 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T - 1330 \) Copy content Toggle raw display
show more
show less