Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [441,3,Mod(128,441)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(441, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([1, 2]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("441.128");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 441 = 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 441.n (of order \(6\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(12.0163796583\) |
Analytic rank: | \(0\) |
Dimension: | \(22\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 63) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
128.1 | −3.19625 | + | 1.84536i | −2.96329 | − | 0.467854i | 4.81069 | − | 8.33236i | 5.83234i | 10.3348 | − | 3.97296i | 0 | 20.7469i | 8.56223 | + | 2.77278i | −10.7628 | − | 18.6416i | ||||||
128.2 | −2.79169 | + | 1.61178i | 0.476488 | + | 2.96192i | 3.19568 | − | 5.53509i | − | 5.53294i | −6.10417 | − | 7.50076i | 0 | 7.70873i | −8.54592 | + | 2.82264i | 8.91790 | + | 15.4463i | |||||
128.3 | −2.09020 | + | 1.20678i | 2.95029 | − | 0.543839i | 0.912615 | − | 1.58070i | 6.85138i | −5.51041 | + | 4.69707i | 0 | − | 5.24892i | 8.40848 | − | 3.20897i | −8.26808 | − | 14.3207i | |||||
128.4 | −1.26920 | + | 0.732774i | −1.95453 | − | 2.27592i | −0.926086 | + | 1.60403i | 1.15270i | 4.14843 | + | 1.45637i | 0 | − | 8.57663i | −1.35961 | + | 8.89671i | −0.844669 | − | 1.46301i | |||||
128.5 | −1.11793 | + | 0.645440i | 0.401800 | + | 2.97297i | −1.16681 | + | 2.02098i | 4.83636i | −2.36806 | − | 3.06425i | 0 | − | 8.17595i | −8.67711 | + | 2.38908i | −3.12158 | − | 5.40673i | |||||
128.6 | −0.444866 | + | 0.256844i | −2.83879 | + | 0.970187i | −1.86806 | + | 3.23558i | − | 7.02462i | 1.01370 | − | 1.16073i | 0 | − | 3.97395i | 7.11748 | − | 5.50832i | 1.80423 | + | 3.12502i | ||||
128.7 | 0.0664669 | − | 0.0383747i | 2.92647 | + | 0.660129i | −1.99705 | + | 3.45900i | − | 4.07697i | 0.219846 | − | 0.0684257i | 0 | 0.613543i | 8.12846 | + | 3.86370i | −0.156452 | − | 0.270983i | |||||
128.8 | 1.11318 | − | 0.642694i | −2.34935 | + | 1.86563i | −1.17389 | + | 2.03324i | 7.87519i | −1.41622 | + | 3.58669i | 0 | 8.15936i | 2.03887 | − | 8.76601i | 5.06133 | + | 8.76649i | ||||||
128.9 | 1.86624 | − | 1.07747i | −2.05320 | − | 2.18732i | 0.321900 | − | 0.557548i | 1.87862i | −6.18854 | − | 1.86979i | 0 | 7.23243i | −0.568739 | + | 8.98201i | 2.02416 | + | 3.50595i | ||||||
128.10 | 2.37724 | − | 1.37250i | 2.35466 | + | 1.85892i | 1.76751 | − | 3.06142i | 2.68504i | 8.14895 | + | 1.18734i | 0 | 1.27635i | 2.08880 | + | 8.75425i | 3.68521 | + | 6.38297i | ||||||
128.11 | 2.48702 | − | 1.43588i | −0.950543 | + | 2.84543i | 2.12350 | − | 3.67801i | − | 7.54889i | 1.72168 | + | 8.44150i | 0 | − | 0.709334i | −7.19294 | − | 5.40941i | −10.8393 | − | 18.7742i | ||||
410.1 | −3.19625 | − | 1.84536i | −2.96329 | + | 0.467854i | 4.81069 | + | 8.33236i | − | 5.83234i | 10.3348 | + | 3.97296i | 0 | − | 20.7469i | 8.56223 | − | 2.77278i | −10.7628 | + | 18.6416i | ||||
410.2 | −2.79169 | − | 1.61178i | 0.476488 | − | 2.96192i | 3.19568 | + | 5.53509i | 5.53294i | −6.10417 | + | 7.50076i | 0 | − | 7.70873i | −8.54592 | − | 2.82264i | 8.91790 | − | 15.4463i | |||||
410.3 | −2.09020 | − | 1.20678i | 2.95029 | + | 0.543839i | 0.912615 | + | 1.58070i | − | 6.85138i | −5.51041 | − | 4.69707i | 0 | 5.24892i | 8.40848 | + | 3.20897i | −8.26808 | + | 14.3207i | |||||
410.4 | −1.26920 | − | 0.732774i | −1.95453 | + | 2.27592i | −0.926086 | − | 1.60403i | − | 1.15270i | 4.14843 | − | 1.45637i | 0 | 8.57663i | −1.35961 | − | 8.89671i | −0.844669 | + | 1.46301i | |||||
410.5 | −1.11793 | − | 0.645440i | 0.401800 | − | 2.97297i | −1.16681 | − | 2.02098i | − | 4.83636i | −2.36806 | + | 3.06425i | 0 | 8.17595i | −8.67711 | − | 2.38908i | −3.12158 | + | 5.40673i | |||||
410.6 | −0.444866 | − | 0.256844i | −2.83879 | − | 0.970187i | −1.86806 | − | 3.23558i | 7.02462i | 1.01370 | + | 1.16073i | 0 | 3.97395i | 7.11748 | + | 5.50832i | 1.80423 | − | 3.12502i | ||||||
410.7 | 0.0664669 | + | 0.0383747i | 2.92647 | − | 0.660129i | −1.99705 | − | 3.45900i | 4.07697i | 0.219846 | + | 0.0684257i | 0 | − | 0.613543i | 8.12846 | − | 3.86370i | −0.156452 | + | 0.270983i | |||||
410.8 | 1.11318 | + | 0.642694i | −2.34935 | − | 1.86563i | −1.17389 | − | 2.03324i | − | 7.87519i | −1.41622 | − | 3.58669i | 0 | − | 8.15936i | 2.03887 | + | 8.76601i | 5.06133 | − | 8.76649i | ||||
410.9 | 1.86624 | + | 1.07747i | −2.05320 | + | 2.18732i | 0.321900 | + | 0.557548i | − | 1.87862i | −6.18854 | + | 1.86979i | 0 | − | 7.23243i | −0.568739 | − | 8.98201i | 2.02416 | − | 3.50595i | ||||
See all 22 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
63.n | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 441.3.n.f | 22 | |
7.b | odd | 2 | 1 | 63.3.n.b | yes | 22 | |
7.c | even | 3 | 1 | 441.3.j.f | 22 | ||
7.c | even | 3 | 1 | 441.3.r.f | 22 | ||
7.d | odd | 6 | 1 | 63.3.j.b | ✓ | 22 | |
7.d | odd | 6 | 1 | 441.3.r.g | 22 | ||
9.d | odd | 6 | 1 | 441.3.j.f | 22 | ||
21.c | even | 2 | 1 | 189.3.n.b | 22 | ||
21.g | even | 6 | 1 | 189.3.j.b | 22 | ||
63.i | even | 6 | 1 | 441.3.r.g | 22 | ||
63.j | odd | 6 | 1 | 441.3.r.f | 22 | ||
63.k | odd | 6 | 1 | 189.3.n.b | 22 | ||
63.l | odd | 6 | 1 | 189.3.j.b | 22 | ||
63.n | odd | 6 | 1 | inner | 441.3.n.f | 22 | |
63.o | even | 6 | 1 | 63.3.j.b | ✓ | 22 | |
63.s | even | 6 | 1 | 63.3.n.b | yes | 22 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
63.3.j.b | ✓ | 22 | 7.d | odd | 6 | 1 | |
63.3.j.b | ✓ | 22 | 63.o | even | 6 | 1 | |
63.3.n.b | yes | 22 | 7.b | odd | 2 | 1 | |
63.3.n.b | yes | 22 | 63.s | even | 6 | 1 | |
189.3.j.b | 22 | 21.g | even | 6 | 1 | ||
189.3.j.b | 22 | 63.l | odd | 6 | 1 | ||
189.3.n.b | 22 | 21.c | even | 2 | 1 | ||
189.3.n.b | 22 | 63.k | odd | 6 | 1 | ||
441.3.j.f | 22 | 7.c | even | 3 | 1 | ||
441.3.j.f | 22 | 9.d | odd | 6 | 1 | ||
441.3.n.f | 22 | 1.a | even | 1 | 1 | trivial | |
441.3.n.f | 22 | 63.n | odd | 6 | 1 | inner | |
441.3.r.f | 22 | 7.c | even | 3 | 1 | ||
441.3.r.f | 22 | 63.j | odd | 6 | 1 | ||
441.3.r.g | 22 | 7.d | odd | 6 | 1 | ||
441.3.r.g | 22 | 63.i | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(441, [\chi])\):
\( T_{2}^{22} + 6 T_{2}^{21} - 10 T_{2}^{20} - 132 T_{2}^{19} + 63 T_{2}^{18} + 1884 T_{2}^{17} + \cdots + 2187 \)
|
\( T_{13}^{22} - 18 T_{13}^{21} + 1051 T_{13}^{20} - 8096 T_{13}^{19} + 547897 T_{13}^{18} + \cdots + 75\!\cdots\!29 \)
|