Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [441,3,Mod(263,441)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(441, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([1, 4]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("441.263");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 441 = 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 441.j (of order \(6\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(12.0163796583\) |
Analytic rank: | \(0\) |
Dimension: | \(22\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 63) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
263.1 | − | 3.69072i | 1.07647 | + | 2.80021i | −9.62138 | −5.05096 | − | 2.91617i | 10.3348 | − | 3.97296i | 0 | 20.7469i | −6.68241 | + | 6.02872i | −10.7628 | + | 18.6416i | |||||||
263.2 | − | 3.22356i | 2.32685 | − | 1.89361i | −6.39137 | 4.79167 | + | 2.76647i | −6.10417 | − | 7.50076i | 0 | 7.70873i | 1.82848 | − | 8.81230i | 8.91790 | − | 15.4463i | |||||||
263.3 | − | 2.41355i | −1.94613 | − | 2.28311i | −1.82523 | −5.93347 | − | 3.42569i | −5.51041 | + | 4.69707i | 0 | − | 5.24892i | −1.42519 | + | 8.88644i | −8.26808 | + | 14.3207i | ||||||
263.4 | − | 1.46555i | −0.993737 | + | 2.83063i | 1.85217 | −0.998268 | − | 0.576350i | 4.14843 | + | 1.45637i | 0 | − | 8.57663i | −7.02497 | − | 5.62581i | −0.844669 | + | 1.46301i | ||||||
263.5 | − | 1.29088i | 2.37377 | − | 1.83445i | 2.33363 | −4.18841 | − | 2.41818i | −2.36806 | − | 3.06425i | 0 | − | 8.17595i | 2.26955 | − | 8.70914i | −3.12158 | + | 5.40673i | ||||||
263.6 | − | 0.513687i | 2.25960 | + | 1.97337i | 3.73613 | 6.08350 | + | 3.51231i | 1.01370 | − | 1.16073i | 0 | − | 3.97395i | 1.21160 | + | 8.91807i | 1.80423 | − | 3.12502i | ||||||
263.7 | 0.0767494i | −0.891547 | − | 2.86446i | 3.99411 | 3.53076 | + | 2.03848i | 0.219846 | − | 0.0684257i | 0 | 0.613543i | −7.41029 | + | 5.10760i | −0.156452 | + | 0.270983i | ||||||||
263.8 | 1.28539i | 2.79035 | + | 1.10178i | 2.34778 | −6.82011 | − | 3.93759i | −1.41622 | + | 3.58669i | 0 | 8.15936i | 6.57215 | + | 6.14872i | 5.06133 | − | 8.76649i | ||||||||
263.9 | 2.15495i | −0.867675 | + | 2.87178i | −0.643801 | −1.62693 | − | 0.939308i | −6.18854 | − | 1.86979i | 0 | 7.23243i | −7.49428 | − | 4.98355i | 2.02416 | − | 3.50595i | ||||||||
263.10 | 2.74500i | 0.432548 | − | 2.96865i | −3.53503 | −2.32531 | − | 1.34252i | 8.14895 | + | 1.18734i | 0 | 1.27635i | −8.62581 | − | 2.56817i | 3.68521 | − | 6.38297i | ||||||||
263.11 | 2.87176i | 2.93949 | − | 0.599520i | −4.24700 | 6.53753 | + | 3.77444i | 1.72168 | + | 8.44150i | 0 | − | 0.709334i | 8.28115 | − | 3.52456i | −10.8393 | + | 18.7742i | |||||||
275.1 | − | 2.87176i | 2.93949 | + | 0.599520i | −4.24700 | 6.53753 | − | 3.77444i | 1.72168 | − | 8.44150i | 0 | 0.709334i | 8.28115 | + | 3.52456i | −10.8393 | − | 18.7742i | |||||||
275.2 | − | 2.74500i | 0.432548 | + | 2.96865i | −3.53503 | −2.32531 | + | 1.34252i | 8.14895 | − | 1.18734i | 0 | − | 1.27635i | −8.62581 | + | 2.56817i | 3.68521 | + | 6.38297i | ||||||
275.3 | − | 2.15495i | −0.867675 | − | 2.87178i | −0.643801 | −1.62693 | + | 0.939308i | −6.18854 | + | 1.86979i | 0 | − | 7.23243i | −7.49428 | + | 4.98355i | 2.02416 | + | 3.50595i | ||||||
275.4 | − | 1.28539i | 2.79035 | − | 1.10178i | 2.34778 | −6.82011 | + | 3.93759i | −1.41622 | − | 3.58669i | 0 | − | 8.15936i | 6.57215 | − | 6.14872i | 5.06133 | + | 8.76649i | ||||||
275.5 | − | 0.0767494i | −0.891547 | + | 2.86446i | 3.99411 | 3.53076 | − | 2.03848i | 0.219846 | + | 0.0684257i | 0 | − | 0.613543i | −7.41029 | − | 5.10760i | −0.156452 | − | 0.270983i | ||||||
275.6 | 0.513687i | 2.25960 | − | 1.97337i | 3.73613 | 6.08350 | − | 3.51231i | 1.01370 | + | 1.16073i | 0 | 3.97395i | 1.21160 | − | 8.91807i | 1.80423 | + | 3.12502i | ||||||||
275.7 | 1.29088i | 2.37377 | + | 1.83445i | 2.33363 | −4.18841 | + | 2.41818i | −2.36806 | + | 3.06425i | 0 | 8.17595i | 2.26955 | + | 8.70914i | −3.12158 | − | 5.40673i | ||||||||
275.8 | 1.46555i | −0.993737 | − | 2.83063i | 1.85217 | −0.998268 | + | 0.576350i | 4.14843 | − | 1.45637i | 0 | 8.57663i | −7.02497 | + | 5.62581i | −0.844669 | − | 1.46301i | ||||||||
275.9 | 2.41355i | −1.94613 | + | 2.28311i | −1.82523 | −5.93347 | + | 3.42569i | −5.51041 | − | 4.69707i | 0 | 5.24892i | −1.42519 | − | 8.88644i | −8.26808 | − | 14.3207i | ||||||||
See all 22 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
63.j | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 441.3.j.f | 22 | |
7.b | odd | 2 | 1 | 63.3.j.b | ✓ | 22 | |
7.c | even | 3 | 1 | 441.3.n.f | 22 | ||
7.c | even | 3 | 1 | 441.3.r.f | 22 | ||
7.d | odd | 6 | 1 | 63.3.n.b | yes | 22 | |
7.d | odd | 6 | 1 | 441.3.r.g | 22 | ||
9.d | odd | 6 | 1 | 441.3.n.f | 22 | ||
21.c | even | 2 | 1 | 189.3.j.b | 22 | ||
21.g | even | 6 | 1 | 189.3.n.b | 22 | ||
63.i | even | 6 | 1 | 63.3.j.b | ✓ | 22 | |
63.j | odd | 6 | 1 | inner | 441.3.j.f | 22 | |
63.l | odd | 6 | 1 | 189.3.n.b | 22 | ||
63.n | odd | 6 | 1 | 441.3.r.f | 22 | ||
63.o | even | 6 | 1 | 63.3.n.b | yes | 22 | |
63.s | even | 6 | 1 | 441.3.r.g | 22 | ||
63.t | odd | 6 | 1 | 189.3.j.b | 22 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
63.3.j.b | ✓ | 22 | 7.b | odd | 2 | 1 | |
63.3.j.b | ✓ | 22 | 63.i | even | 6 | 1 | |
63.3.n.b | yes | 22 | 7.d | odd | 6 | 1 | |
63.3.n.b | yes | 22 | 63.o | even | 6 | 1 | |
189.3.j.b | 22 | 21.c | even | 2 | 1 | ||
189.3.j.b | 22 | 63.t | odd | 6 | 1 | ||
189.3.n.b | 22 | 21.g | even | 6 | 1 | ||
189.3.n.b | 22 | 63.l | odd | 6 | 1 | ||
441.3.j.f | 22 | 1.a | even | 1 | 1 | trivial | |
441.3.j.f | 22 | 63.j | odd | 6 | 1 | inner | |
441.3.n.f | 22 | 7.c | even | 3 | 1 | ||
441.3.n.f | 22 | 9.d | odd | 6 | 1 | ||
441.3.r.f | 22 | 7.c | even | 3 | 1 | ||
441.3.r.f | 22 | 63.n | odd | 6 | 1 | ||
441.3.r.g | 22 | 7.d | odd | 6 | 1 | ||
441.3.r.g | 22 | 63.s | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(441, [\chi])\):
\( T_{2}^{22} + 56 T_{2}^{20} + 1326 T_{2}^{18} + 17369 T_{2}^{16} + 138193 T_{2}^{14} + 690216 T_{2}^{12} + \cdots + 2187 \)
|
\( T_{5}^{22} + 12 T_{5}^{21} - 94 T_{5}^{20} - 1704 T_{5}^{19} + 6369 T_{5}^{18} + 161319 T_{5}^{17} + \cdots + 112049133289443 \)
|