Properties

Label 441.3.d.c.244.2
Level $441$
Weight $3$
Character 441.244
Analytic conductor $12.016$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,3,Mod(244,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.244");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 441.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0163796583\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2\cdot 7 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 244.2
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 441.244
Dual form 441.3.d.c.244.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{4} +O(q^{10})\) \(q-4.00000 q^{4} +12.1244i q^{13} +16.0000 q^{16} -36.3731i q^{19} +25.0000 q^{25} -60.6218i q^{31} +73.0000 q^{37} +61.0000 q^{43} -48.4974i q^{52} -96.9948i q^{61} -64.0000 q^{64} -13.0000 q^{67} +109.119i q^{73} +145.492i q^{76} +11.0000 q^{79} -193.990i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{4} + 32 q^{16} + 50 q^{25} + 146 q^{37} + 122 q^{43} - 128 q^{64} - 26 q^{67} + 22 q^{79}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) 0 0
\(4\) −4.00000 −1.00000
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 12.1244i 0.932643i 0.884615 + 0.466321i \(0.154421\pi\)
−0.884615 + 0.466321i \(0.845579\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 16.0000 1.00000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) − 36.3731i − 1.91437i −0.289474 0.957186i \(-0.593480\pi\)
0.289474 0.957186i \(-0.406520\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 25.0000 1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) − 60.6218i − 1.95554i −0.209677 0.977771i \(-0.567241\pi\)
0.209677 0.977771i \(-0.432759\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 73.0000 1.97297 0.986486 0.163843i \(-0.0523889\pi\)
0.986486 + 0.163843i \(0.0523889\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 61.0000 1.41860 0.709302 0.704904i \(-0.249010\pi\)
0.709302 + 0.704904i \(0.249010\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) − 48.4974i − 0.932643i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) − 96.9948i − 1.59008i −0.606557 0.795040i \(-0.707450\pi\)
0.606557 0.795040i \(-0.292550\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −64.0000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) −13.0000 −0.194030 −0.0970149 0.995283i \(-0.530929\pi\)
−0.0970149 + 0.995283i \(0.530929\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 109.119i 1.49478i 0.664384 + 0.747392i \(0.268694\pi\)
−0.664384 + 0.747392i \(0.731306\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 145.492i 1.91437i
\(77\) 0 0
\(78\) 0 0
\(79\) 11.0000 0.139241 0.0696203 0.997574i \(-0.477821\pi\)
0.0696203 + 0.997574i \(0.477821\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 193.990i − 1.99989i −0.0103093 0.999947i \(-0.503282\pi\)
0.0103093 0.999947i \(-0.496718\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −100.000 −1.00000
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 133.368i 1.29483i 0.762136 + 0.647417i \(0.224151\pi\)
−0.762136 + 0.647417i \(0.775849\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −71.0000 −0.651376 −0.325688 0.945477i \(-0.605596\pi\)
−0.325688 + 0.945477i \(0.605596\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −121.000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 242.487i 1.95554i
\(125\) 0 0
\(126\) 0 0
\(127\) 107.000 0.842520 0.421260 0.906940i \(-0.361588\pi\)
0.421260 + 0.906940i \(0.361588\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) − 157.617i − 1.13393i −0.823741 0.566966i \(-0.808117\pi\)
0.823741 0.566966i \(-0.191883\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −292.000 −1.97297
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 286.000 1.89404 0.947020 0.321175i \(-0.104078\pi\)
0.947020 + 0.321175i \(0.104078\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 290.985i 1.85340i 0.375796 + 0.926702i \(0.377369\pi\)
−0.375796 + 0.926702i \(0.622631\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −262.000 −1.60736 −0.803681 0.595060i \(-0.797128\pi\)
−0.803681 + 0.595060i \(0.797128\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 22.0000 0.130178
\(170\) 0 0
\(171\) 0 0
\(172\) −244.000 −1.41860
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 181.865i 1.00478i 0.864641 + 0.502390i \(0.167546\pi\)
−0.864641 + 0.502390i \(0.832454\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −239.000 −1.23834 −0.619171 0.785256i \(-0.712531\pi\)
−0.619171 + 0.785256i \(0.712531\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 96.9948i 0.487411i 0.969849 + 0.243706i \(0.0783631\pi\)
−0.969849 + 0.243706i \(0.921637\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 193.990i 0.932643i
\(209\) 0 0
\(210\) 0 0
\(211\) 166.000 0.786730 0.393365 0.919382i \(-0.371311\pi\)
0.393365 + 0.919382i \(0.371311\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 290.985i − 1.30486i −0.757848 0.652432i \(-0.773749\pi\)
0.757848 0.652432i \(-0.226251\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) − 206.114i − 0.900061i −0.893013 0.450031i \(-0.851413\pi\)
0.893013 0.450031i \(-0.148587\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) − 387.979i − 1.60987i −0.593361 0.804936i \(-0.702199\pi\)
0.593361 0.804936i \(-0.297801\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 387.979i 1.59008i
\(245\) 0 0
\(246\) 0 0
\(247\) 441.000 1.78543
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 256.000 1.00000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 52.0000 0.194030
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) − 484.974i − 1.78957i −0.446494 0.894786i \(-0.647328\pi\)
0.446494 0.894786i \(-0.352672\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 407.000 1.46931 0.734657 0.678439i \(-0.237343\pi\)
0.734657 + 0.678439i \(0.237343\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) − 230.363i − 0.814003i −0.913428 0.407001i \(-0.866574\pi\)
0.913428 0.407001i \(-0.133426\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 289.000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) − 436.477i − 1.49478i
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) − 581.969i − 1.91437i
\(305\) 0 0
\(306\) 0 0
\(307\) − 60.6218i − 0.197465i −0.995114 0.0987325i \(-0.968521\pi\)
0.995114 0.0987325i \(-0.0314788\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 181.865i 0.581039i 0.956869 + 0.290520i \(0.0938282\pi\)
−0.956869 + 0.290520i \(0.906172\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −44.0000 −0.139241
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 303.109i 0.932643i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 661.000 1.99698 0.998489 0.0549442i \(-0.0174981\pi\)
0.998489 + 0.0549442i \(0.0174981\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 649.000 1.92582 0.962908 0.269830i \(-0.0869675\pi\)
0.962908 + 0.269830i \(0.0869675\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 484.974i 1.38961i 0.719198 + 0.694805i \(0.244510\pi\)
−0.719198 + 0.694805i \(0.755490\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −962.000 −2.66482
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 545.596i − 1.48664i −0.668937 0.743319i \(-0.733251\pi\)
0.668937 0.743319i \(-0.266749\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −577.000 −1.54692 −0.773458 0.633847i \(-0.781475\pi\)
−0.773458 + 0.633847i \(0.781475\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −611.000 −1.61214 −0.806069 0.591822i \(-0.798409\pi\)
−0.806069 + 0.591822i \(0.798409\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 775.959i 1.99989i
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 666.840i − 1.67970i −0.542821 0.839848i \(-0.682644\pi\)
0.542821 0.839848i \(-0.317356\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 400.000 1.00000
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 735.000 1.82382
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 278.860i 0.681810i 0.940098 + 0.340905i \(0.110733\pi\)
−0.940098 + 0.340905i \(0.889267\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 533.472i − 1.29483i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) −481.000 −1.14252 −0.571259 0.820770i \(-0.693545\pi\)
−0.571259 + 0.820770i \(0.693545\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 788.083i 1.82005i 0.414550 + 0.910027i \(0.363939\pi\)
−0.414550 + 0.910027i \(0.636061\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 284.000 0.651376
\(437\) 0 0
\(438\) 0 0
\(439\) 872.954i 1.98850i 0.107062 + 0.994252i \(0.465856\pi\)
−0.107062 + 0.994252i \(0.534144\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −767.000 −1.67834 −0.839168 0.543872i \(-0.816958\pi\)
−0.839168 + 0.543872i \(0.816958\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −397.000 −0.857451 −0.428726 0.903435i \(-0.641037\pi\)
−0.428726 + 0.903435i \(0.641037\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) − 909.327i − 1.91437i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 885.078i 1.84008i
\(482\) 0 0
\(483\) 0 0
\(484\) 484.000 1.00000
\(485\) 0 0
\(486\) 0 0
\(487\) 349.000 0.716632 0.358316 0.933600i \(-0.383351\pi\)
0.358316 + 0.933600i \(0.383351\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) − 969.948i − 1.95554i
\(497\) 0 0
\(498\) 0 0
\(499\) −851.000 −1.70541 −0.852705 0.522392i \(-0.825040\pi\)
−0.852705 + 0.522392i \(0.825040\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −428.000 −0.842520
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 1030.57i 1.97050i 0.171128 + 0.985249i \(0.445259\pi\)
−0.171128 + 0.985249i \(0.554741\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −529.000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −241.000 −0.445471 −0.222736 0.974879i \(-0.571499\pi\)
−0.222736 + 0.974879i \(0.571499\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 506.000 0.925046 0.462523 0.886607i \(-0.346944\pi\)
0.462523 + 0.886607i \(0.346944\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 630.466i 1.13393i
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 739.586i 1.32305i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) −181.000 −0.316988 −0.158494 0.987360i \(-0.550664\pi\)
−0.158494 + 0.987360i \(0.550664\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1151.81i 1.99621i 0.0615251 + 0.998106i \(0.480404\pi\)
−0.0615251 + 0.998106i \(0.519596\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) −2205.00 −3.74363
\(590\) 0 0
\(591\) 0 0
\(592\) 1168.00 1.97297
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 84.8705i 0.141215i 0.997504 + 0.0706077i \(0.0224939\pi\)
−0.997504 + 0.0706077i \(0.977506\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −1144.00 −1.89404
\(605\) 0 0
\(606\) 0 0
\(607\) − 254.611i − 0.419459i −0.977759 0.209729i \(-0.932742\pi\)
0.977759 0.209729i \(-0.0672583\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −1126.00 −1.83687 −0.918434 0.395574i \(-0.870546\pi\)
−0.918434 + 0.395574i \(0.870546\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) − 424.352i − 0.685545i −0.939418 0.342773i \(-0.888634\pi\)
0.939418 0.342773i \(-0.111366\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 625.000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) − 1163.94i − 1.85340i
\(629\) 0 0
\(630\) 0 0
\(631\) 674.000 1.06815 0.534073 0.845438i \(-0.320661\pi\)
0.534073 + 0.845438i \(0.320661\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 351.606i 0.546822i 0.961897 + 0.273411i \(0.0881518\pi\)
−0.961897 + 0.273411i \(0.911848\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 1048.00 1.60736
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 763.834i 1.15557i 0.816188 + 0.577787i \(0.196084\pi\)
−0.816188 + 0.577787i \(0.803916\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −23.0000 −0.0341753 −0.0170877 0.999854i \(-0.505439\pi\)
−0.0170877 + 0.999854i \(0.505439\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −88.0000 −0.130178
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 976.000 1.41860
\(689\) 0 0
\(690\) 0 0
\(691\) 933.575i 1.35105i 0.737337 + 0.675525i \(0.236083\pi\)
−0.737337 + 0.675525i \(0.763917\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) − 2655.23i − 3.77700i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 934.000 1.31735 0.658674 0.752428i \(-0.271118\pi\)
0.658674 + 0.752428i \(0.271118\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) − 727.461i − 1.00478i
\(725\) 0 0
\(726\) 0 0
\(727\) − 1103.32i − 1.51763i −0.651307 0.758815i \(-0.725779\pi\)
0.651307 0.758815i \(-0.274221\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) − 375.855i − 0.512763i −0.966576 0.256381i \(-0.917470\pi\)
0.966576 0.256381i \(-0.0825303\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1331.00 1.80108 0.900541 0.434771i \(-0.143171\pi\)
0.900541 + 0.434771i \(0.143171\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −179.000 −0.238349 −0.119174 0.992873i \(-0.538025\pi\)
−0.119174 + 0.992873i \(0.538025\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 838.000 1.10700 0.553501 0.832849i \(-0.313292\pi\)
0.553501 + 0.832849i \(0.313292\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 1273.06i 1.65547i 0.561118 + 0.827736i \(0.310371\pi\)
−0.561118 + 0.827736i \(0.689629\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 956.000 1.23834
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) − 1515.54i − 1.95554i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 193.990i − 0.246493i −0.992376 0.123246i \(-0.960669\pi\)
0.992376 0.123246i \(-0.0393305\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1176.00 1.48298
\(794\) 0 0
\(795\) 0 0
\(796\) − 387.979i − 0.487411i
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 581.969i 0.717594i 0.933416 + 0.358797i \(0.116813\pi\)
−0.933416 + 0.358797i \(0.883187\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 2218.76i − 2.71574i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 1058.00 1.28554 0.642770 0.766059i \(-0.277785\pi\)
0.642770 + 0.766059i \(0.277785\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) − 400.104i − 0.482634i −0.970446 0.241317i \(-0.922421\pi\)
0.970446 0.241317i \(-0.0775794\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 775.959i − 0.932643i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −841.000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) −664.000 −0.786730
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 1636.79i 1.91886i 0.281946 + 0.959430i \(0.409020\pi\)
−0.281946 + 0.959430i \(0.590980\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 969.948i 1.12916i 0.825378 + 0.564580i \(0.190962\pi\)
−0.825378 + 0.564580i \(0.809038\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) − 157.617i − 0.180961i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −598.000 −0.681870 −0.340935 0.940087i \(-0.610744\pi\)
−0.340935 + 0.940087i \(0.610744\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) −443.000 −0.501699 −0.250849 0.968026i \(-0.580710\pi\)
−0.250849 + 0.968026i \(0.580710\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 1163.94i 1.30486i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1667.00 −1.83793 −0.918964 0.394342i \(-0.870972\pi\)
−0.918964 + 0.394342i \(0.870972\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 824.456i 0.900061i
\(917\) 0 0
\(918\) 0 0
\(919\) 1837.00 1.99891 0.999456 0.0329825i \(-0.0105006\pi\)
0.999456 + 0.0329825i \(0.0105006\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 1825.00 1.97297
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 1758.03i − 1.87623i −0.346318 0.938117i \(-0.612568\pi\)
0.346318 0.938117i \(-0.387432\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) −1323.00 −1.39410
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −2714.00 −2.82414
\(962\) 0 0
\(963\) 0 0
\(964\) 1551.92i 1.60987i
\(965\) 0 0
\(966\) 0 0
\(967\) 1787.00 1.84798 0.923992 0.382412i \(-0.124907\pi\)
0.923992 + 0.382412i \(0.124907\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) − 1551.92i − 1.59008i
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −1764.00 −1.78543
\(989\) 0 0
\(990\) 0 0
\(991\) 1693.00 1.70838 0.854188 0.519965i \(-0.174055\pi\)
0.854188 + 0.519965i \(0.174055\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1952.02i 1.95789i 0.204112 + 0.978947i \(0.434569\pi\)
−0.204112 + 0.978947i \(0.565431\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.3.d.c.244.2 2
3.2 odd 2 CM 441.3.d.c.244.2 2
7.2 even 3 63.3.m.b.10.1 2
7.3 odd 6 63.3.m.b.19.1 yes 2
7.4 even 3 441.3.m.c.19.1 2
7.5 odd 6 441.3.m.c.325.1 2
7.6 odd 2 inner 441.3.d.c.244.1 2
21.2 odd 6 63.3.m.b.10.1 2
21.5 even 6 441.3.m.c.325.1 2
21.11 odd 6 441.3.m.c.19.1 2
21.17 even 6 63.3.m.b.19.1 yes 2
21.20 even 2 inner 441.3.d.c.244.1 2
28.3 even 6 1008.3.cg.d.145.1 2
28.23 odd 6 1008.3.cg.d.577.1 2
84.23 even 6 1008.3.cg.d.577.1 2
84.59 odd 6 1008.3.cg.d.145.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.3.m.b.10.1 2 7.2 even 3
63.3.m.b.10.1 2 21.2 odd 6
63.3.m.b.19.1 yes 2 7.3 odd 6
63.3.m.b.19.1 yes 2 21.17 even 6
441.3.d.c.244.1 2 7.6 odd 2 inner
441.3.d.c.244.1 2 21.20 even 2 inner
441.3.d.c.244.2 2 1.1 even 1 trivial
441.3.d.c.244.2 2 3.2 odd 2 CM
441.3.m.c.19.1 2 7.4 even 3
441.3.m.c.19.1 2 21.11 odd 6
441.3.m.c.325.1 2 7.5 odd 6
441.3.m.c.325.1 2 21.5 even 6
1008.3.cg.d.145.1 2 28.3 even 6
1008.3.cg.d.145.1 2 84.59 odd 6
1008.3.cg.d.577.1 2 28.23 odd 6
1008.3.cg.d.577.1 2 84.23 even 6