Properties

Label 441.2.w.a.251.1
Level $441$
Weight $2$
Character 441.251
Analytic conductor $3.521$
Analytic rank $0$
Dimension $120$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,2,Mod(62,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.62");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.w (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(20\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 251.1
Character \(\chi\) \(=\) 441.251
Dual form 441.2.w.a.188.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.13317 - 1.70115i) q^{2} +(1.21148 + 5.30783i) q^{4} +(-1.31998 - 0.635668i) q^{5} +(-0.795783 - 2.52324i) q^{7} +(4.07748 - 8.46697i) q^{8} +O(q^{10})\) \(q+(-2.13317 - 1.70115i) q^{2} +(1.21148 + 5.30783i) q^{4} +(-1.31998 - 0.635668i) q^{5} +(-0.795783 - 2.52324i) q^{7} +(4.07748 - 8.46697i) q^{8} +(1.73438 + 3.60147i) q^{10} +(2.75661 + 2.19832i) q^{11} +(4.51813 + 3.60309i) q^{13} +(-2.59486 + 6.73625i) q^{14} +(-13.2912 + 6.40071i) q^{16} +(0.0162072 - 0.0710083i) q^{17} -4.52011i q^{19} +(1.77490 - 7.77633i) q^{20} +(-2.14065 - 9.37881i) q^{22} +(1.76402 - 0.402626i) q^{23} +(-1.77918 - 2.23102i) q^{25} +(-3.50857 - 15.3720i) q^{26} +(12.4289 - 7.28073i) q^{28} +(-2.61910 - 0.597792i) q^{29} -7.13274i q^{31} +(20.9170 + 4.77416i) q^{32} +(-0.155368 + 0.123902i) q^{34} +(-0.553525 + 3.83647i) q^{35} +(1.33034 - 5.82860i) q^{37} +(-7.68938 + 9.64217i) q^{38} +(-10.7644 + 8.58430i) q^{40} +(-11.3454 - 5.46367i) q^{41} +(-1.31339 + 0.632493i) q^{43} +(-8.32876 + 17.2949i) q^{44} +(-4.44789 - 2.14199i) q^{46} +(5.84471 - 7.32903i) q^{47} +(-5.73346 + 4.01590i) q^{49} +7.78580i q^{50} +(-13.6510 + 28.3466i) q^{52} +(9.10665 - 2.07853i) q^{53} +(-2.24126 - 4.65403i) q^{55} +(-24.6090 - 3.55058i) q^{56} +(4.57005 + 5.73067i) q^{58} +(0.107203 - 0.0516262i) q^{59} +(3.20130 + 0.730676i) q^{61} +(-12.1339 + 15.2154i) q^{62} +(-18.1023 - 22.6996i) q^{64} +(-3.67347 - 7.62804i) q^{65} +5.78127 q^{67} +0.396535 q^{68} +(7.70718 - 7.24224i) q^{70} +(-0.0872291 + 0.0199095i) q^{71} +(3.43319 - 2.73788i) q^{73} +(-12.7532 + 10.1703i) q^{74} +(23.9920 - 5.47601i) q^{76} +(3.35323 - 8.70497i) q^{77} -2.89253 q^{79} +21.6128 q^{80} +(14.9073 + 30.9552i) q^{82} +(-0.251403 - 0.315250i) q^{83} +(-0.0665309 + 0.0834271i) q^{85} +(3.87765 + 0.885047i) q^{86} +(29.8532 - 14.3765i) q^{88} +(6.88377 + 8.63197i) q^{89} +(5.49600 - 14.2676i) q^{91} +(4.27415 + 8.87536i) q^{92} +(-24.9355 + 5.69137i) q^{94} +(-2.87329 + 5.96645i) q^{95} -14.7498i q^{97} +(19.0621 + 1.18685i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 24 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 120 q + 24 q^{4} - 32 q^{16} - 44 q^{22} - 4 q^{25} - 56 q^{28} + 112 q^{34} - 76 q^{37} + 28 q^{40} + 8 q^{43} - 40 q^{46} - 84 q^{49} - 140 q^{52} + 12 q^{58} - 84 q^{61} + 24 q^{64} + 16 q^{67} + 112 q^{70} - 84 q^{76} - 24 q^{79} + 140 q^{82} - 96 q^{85} - 24 q^{88} - 112 q^{91} - 112 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{9}{14}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.13317 1.70115i −1.50838 1.20289i −0.918511 0.395396i \(-0.870607\pi\)
−0.589871 0.807498i \(-0.700821\pi\)
\(3\) 0 0
\(4\) 1.21148 + 5.30783i 0.605739 + 2.65392i
\(5\) −1.31998 0.635668i −0.590313 0.284280i 0.114784 0.993390i \(-0.463382\pi\)
−0.705097 + 0.709111i \(0.749097\pi\)
\(6\) 0 0
\(7\) −0.795783 2.52324i −0.300778 0.953694i
\(8\) 4.07748 8.46697i 1.44161 2.99353i
\(9\) 0 0
\(10\) 1.73438 + 3.60147i 0.548458 + 1.13889i
\(11\) 2.75661 + 2.19832i 0.831149 + 0.662819i 0.943691 0.330828i \(-0.107328\pi\)
−0.112542 + 0.993647i \(0.535899\pi\)
\(12\) 0 0
\(13\) 4.51813 + 3.60309i 1.25310 + 0.999317i 0.999487 + 0.0320125i \(0.0101916\pi\)
0.253617 + 0.967305i \(0.418380\pi\)
\(14\) −2.59486 + 6.73625i −0.693505 + 1.80034i
\(15\) 0 0
\(16\) −13.2912 + 6.40071i −3.32280 + 1.60018i
\(17\) 0.0162072 0.0710083i 0.00393082 0.0172220i −0.972924 0.231123i \(-0.925760\pi\)
0.976855 + 0.213901i \(0.0686171\pi\)
\(18\) 0 0
\(19\) 4.52011i 1.03698i −0.855083 0.518492i \(-0.826494\pi\)
0.855083 0.518492i \(-0.173506\pi\)
\(20\) 1.77490 7.77633i 0.396879 1.73884i
\(21\) 0 0
\(22\) −2.14065 9.37881i −0.456388 1.99957i
\(23\) 1.76402 0.402626i 0.367824 0.0839533i −0.0346140 0.999401i \(-0.511020\pi\)
0.402438 + 0.915447i \(0.368163\pi\)
\(24\) 0 0
\(25\) −1.77918 2.23102i −0.355836 0.446204i
\(26\) −3.50857 15.3720i −0.688086 3.01470i
\(27\) 0 0
\(28\) 12.4289 7.28073i 2.34883 1.37593i
\(29\) −2.61910 0.597792i −0.486354 0.111007i −0.0276894 0.999617i \(-0.508815\pi\)
−0.458665 + 0.888609i \(0.651672\pi\)
\(30\) 0 0
\(31\) 7.13274i 1.28108i −0.767926 0.640539i \(-0.778711\pi\)
0.767926 0.640539i \(-0.221289\pi\)
\(32\) 20.9170 + 4.77416i 3.69763 + 0.843960i
\(33\) 0 0
\(34\) −0.155368 + 0.123902i −0.0266455 + 0.0212491i
\(35\) −0.553525 + 3.83647i −0.0935629 + 0.648483i
\(36\) 0 0
\(37\) 1.33034 5.82860i 0.218706 0.958216i −0.739729 0.672905i \(-0.765046\pi\)
0.958435 0.285310i \(-0.0920967\pi\)
\(38\) −7.68938 + 9.64217i −1.24738 + 1.56417i
\(39\) 0 0
\(40\) −10.7644 + 8.58430i −1.70200 + 1.35730i
\(41\) −11.3454 5.46367i −1.77186 0.853282i −0.964875 0.262709i \(-0.915384\pi\)
−0.806984 0.590573i \(-0.798902\pi\)
\(42\) 0 0
\(43\) −1.31339 + 0.632493i −0.200289 + 0.0964543i −0.531340 0.847159i \(-0.678311\pi\)
0.331050 + 0.943613i \(0.392597\pi\)
\(44\) −8.32876 + 17.2949i −1.25561 + 2.60730i
\(45\) 0 0
\(46\) −4.44789 2.14199i −0.655805 0.315819i
\(47\) 5.84471 7.32903i 0.852538 1.06905i −0.144296 0.989535i \(-0.546092\pi\)
0.996834 0.0795141i \(-0.0253369\pi\)
\(48\) 0 0
\(49\) −5.73346 + 4.01590i −0.819065 + 0.573700i
\(50\) 7.78580i 1.10108i
\(51\) 0 0
\(52\) −13.6510 + 28.3466i −1.89305 + 3.93096i
\(53\) 9.10665 2.07853i 1.25089 0.285508i 0.454752 0.890618i \(-0.349728\pi\)
0.796142 + 0.605110i \(0.206871\pi\)
\(54\) 0 0
\(55\) −2.24126 4.65403i −0.302212 0.627549i
\(56\) −24.6090 3.55058i −3.28851 0.474466i
\(57\) 0 0
\(58\) 4.57005 + 5.73067i 0.600078 + 0.752474i
\(59\) 0.107203 0.0516262i 0.0139566 0.00672116i −0.426892 0.904302i \(-0.640392\pi\)
0.440849 + 0.897581i \(0.354677\pi\)
\(60\) 0 0
\(61\) 3.20130 + 0.730676i 0.409885 + 0.0935535i 0.422491 0.906367i \(-0.361156\pi\)
−0.0126066 + 0.999921i \(0.504013\pi\)
\(62\) −12.1339 + 15.2154i −1.54100 + 1.93235i
\(63\) 0 0
\(64\) −18.1023 22.6996i −2.26279 2.83745i
\(65\) −3.67347 7.62804i −0.455638 0.946141i
\(66\) 0 0
\(67\) 5.78127 0.706294 0.353147 0.935568i \(-0.385112\pi\)
0.353147 + 0.935568i \(0.385112\pi\)
\(68\) 0.396535 0.0480869
\(69\) 0 0
\(70\) 7.70718 7.24224i 0.921184 0.865613i
\(71\) −0.0872291 + 0.0199095i −0.0103522 + 0.00236282i −0.227694 0.973733i \(-0.573119\pi\)
0.217342 + 0.976096i \(0.430261\pi\)
\(72\) 0 0
\(73\) 3.43319 2.73788i 0.401824 0.320444i −0.401640 0.915798i \(-0.631560\pi\)
0.803464 + 0.595354i \(0.202988\pi\)
\(74\) −12.7532 + 10.1703i −1.48252 + 1.18227i
\(75\) 0 0
\(76\) 23.9920 5.47601i 2.75207 0.628142i
\(77\) 3.35323 8.70497i 0.382136 0.992024i
\(78\) 0 0
\(79\) −2.89253 −0.325435 −0.162718 0.986673i \(-0.552026\pi\)
−0.162718 + 0.986673i \(0.552026\pi\)
\(80\) 21.6128 2.41639
\(81\) 0 0
\(82\) 14.9073 + 30.9552i 1.64623 + 3.41843i
\(83\) −0.251403 0.315250i −0.0275951 0.0346032i 0.767842 0.640639i \(-0.221330\pi\)
−0.795438 + 0.606036i \(0.792759\pi\)
\(84\) 0 0
\(85\) −0.0665309 + 0.0834271i −0.00721629 + 0.00904894i
\(86\) 3.87765 + 0.885047i 0.418137 + 0.0954371i
\(87\) 0 0
\(88\) 29.8532 14.3765i 3.18236 1.53254i
\(89\) 6.88377 + 8.63197i 0.729678 + 0.914987i 0.998842 0.0481072i \(-0.0153189\pi\)
−0.269164 + 0.963094i \(0.586747\pi\)
\(90\) 0 0
\(91\) 5.49600 14.2676i 0.576137 1.49565i
\(92\) 4.27415 + 8.87536i 0.445611 + 0.925320i
\(93\) 0 0
\(94\) −24.9355 + 5.69137i −2.57190 + 0.587020i
\(95\) −2.87329 + 5.96645i −0.294793 + 0.612144i
\(96\) 0 0
\(97\) 14.7498i 1.49761i −0.662790 0.748805i \(-0.730628\pi\)
0.662790 0.748805i \(-0.269372\pi\)
\(98\) 19.0621 + 1.18685i 1.92556 + 0.119890i
\(99\) 0 0
\(100\) 9.68645 12.1464i 0.968645 1.21464i
\(101\) −7.65207 3.68504i −0.761409 0.366675i 0.0125414 0.999921i \(-0.496008\pi\)
−0.773951 + 0.633246i \(0.781722\pi\)
\(102\) 0 0
\(103\) −1.92234 + 3.99179i −0.189414 + 0.393322i −0.973951 0.226760i \(-0.927187\pi\)
0.784537 + 0.620083i \(0.212901\pi\)
\(104\) 48.9299 23.5634i 4.79797 2.31058i
\(105\) 0 0
\(106\) −22.9619 11.0579i −2.23026 1.07404i
\(107\) −2.62877 + 2.09637i −0.254132 + 0.202664i −0.742267 0.670105i \(-0.766249\pi\)
0.488134 + 0.872769i \(0.337678\pi\)
\(108\) 0 0
\(109\) −7.57622 + 9.50028i −0.725670 + 0.909962i −0.998644 0.0520596i \(-0.983421\pi\)
0.272974 + 0.962022i \(0.411993\pi\)
\(110\) −3.13620 + 13.7406i −0.299025 + 1.31011i
\(111\) 0 0
\(112\) 26.7274 + 28.4433i 2.52550 + 2.68764i
\(113\) 11.1377 8.88203i 1.04775 0.835551i 0.0610528 0.998135i \(-0.480554\pi\)
0.986695 + 0.162584i \(0.0519828\pi\)
\(114\) 0 0
\(115\) −2.58441 0.589874i −0.240997 0.0550060i
\(116\) 14.6259i 1.35799i
\(117\) 0 0
\(118\) −0.316506 0.0722405i −0.0291368 0.00665028i
\(119\) −0.192068 + 0.0156126i −0.0176069 + 0.00143121i
\(120\) 0 0
\(121\) 0.318544 + 1.39563i 0.0289585 + 0.126876i
\(122\) −5.58594 7.00455i −0.505727 0.634162i
\(123\) 0 0
\(124\) 37.8594 8.64116i 3.39988 0.775999i
\(125\) 2.56033 + 11.2175i 0.229003 + 1.00333i
\(126\) 0 0
\(127\) −4.26155 + 18.6711i −0.378151 + 1.65679i 0.324974 + 0.945723i \(0.394644\pi\)
−0.703125 + 0.711066i \(0.748213\pi\)
\(128\) 36.3073i 3.20914i
\(129\) 0 0
\(130\) −5.14028 + 22.5210i −0.450832 + 1.97523i
\(131\) 11.8431 5.70335i 1.03474 0.498304i 0.162153 0.986766i \(-0.448156\pi\)
0.872585 + 0.488462i \(0.162442\pi\)
\(132\) 0 0
\(133\) −11.4053 + 3.59703i −0.988965 + 0.311902i
\(134\) −12.3324 9.83479i −1.06536 0.849597i
\(135\) 0 0
\(136\) −0.535141 0.426761i −0.0458880 0.0365944i
\(137\) −1.52964 3.17632i −0.130686 0.271371i 0.825350 0.564621i \(-0.190978\pi\)
−0.956036 + 0.293249i \(0.905263\pi\)
\(138\) 0 0
\(139\) 4.97429 10.3292i 0.421914 0.876114i −0.576349 0.817204i \(-0.695523\pi\)
0.998263 0.0589101i \(-0.0187625\pi\)
\(140\) −21.0340 + 1.70979i −1.77769 + 0.144503i
\(141\) 0 0
\(142\) 0.219944 + 0.105919i 0.0184573 + 0.00888855i
\(143\) 4.53397 + 19.8646i 0.379150 + 1.66116i
\(144\) 0 0
\(145\) 3.07716 + 2.45395i 0.255544 + 0.203789i
\(146\) −11.9811 −0.991564
\(147\) 0 0
\(148\) 32.5489 2.67550
\(149\) 9.76826 + 7.78993i 0.800247 + 0.638176i 0.935775 0.352598i \(-0.114702\pi\)
−0.135528 + 0.990774i \(0.543273\pi\)
\(150\) 0 0
\(151\) 4.64786 + 20.3636i 0.378237 + 1.65717i 0.702864 + 0.711324i \(0.251904\pi\)
−0.324627 + 0.945842i \(0.605239\pi\)
\(152\) −38.2716 18.4306i −3.10424 1.49492i
\(153\) 0 0
\(154\) −21.9615 + 12.8649i −1.76971 + 1.03668i
\(155\) −4.53406 + 9.41507i −0.364184 + 0.756236i
\(156\) 0 0
\(157\) −5.01362 10.4109i −0.400131 0.830880i −0.999537 0.0304347i \(-0.990311\pi\)
0.599406 0.800445i \(-0.295403\pi\)
\(158\) 6.17027 + 4.92062i 0.490880 + 0.391464i
\(159\) 0 0
\(160\) −24.5752 19.5980i −1.94284 1.54936i
\(161\) −2.41970 4.13064i −0.190699 0.325540i
\(162\) 0 0
\(163\) 8.26562 3.98051i 0.647413 0.311778i −0.0812055 0.996697i \(-0.525877\pi\)
0.728619 + 0.684920i \(0.240163\pi\)
\(164\) 15.2555 66.8388i 1.19126 5.21923i
\(165\) 0 0
\(166\) 1.10016i 0.0853888i
\(167\) 4.71322 20.6500i 0.364720 1.59794i −0.376324 0.926488i \(-0.622812\pi\)
0.741045 0.671456i \(-0.234331\pi\)
\(168\) 0 0
\(169\) 4.53849 + 19.8844i 0.349114 + 1.52957i
\(170\) 0.283844 0.0647855i 0.0217698 0.00496882i
\(171\) 0 0
\(172\) −4.94831 6.20498i −0.377305 0.473126i
\(173\) −1.40176 6.14152i −0.106574 0.466931i −0.999848 0.0174192i \(-0.994455\pi\)
0.893274 0.449512i \(-0.148402\pi\)
\(174\) 0 0
\(175\) −4.21355 + 6.26470i −0.318515 + 0.473567i
\(176\) −50.7095 11.5741i −3.82237 0.872431i
\(177\) 0 0
\(178\) 30.1238i 2.25787i
\(179\) 10.2984 + 2.35054i 0.769737 + 0.175687i 0.589316 0.807902i \(-0.299397\pi\)
0.180420 + 0.983590i \(0.442254\pi\)
\(180\) 0 0
\(181\) −11.4269 + 9.11265i −0.849355 + 0.677338i −0.948168 0.317768i \(-0.897067\pi\)
0.0988136 + 0.995106i \(0.468495\pi\)
\(182\) −35.9952 + 21.0857i −2.66814 + 1.56298i
\(183\) 0 0
\(184\) 3.78373 16.5776i 0.278940 1.22212i
\(185\) −5.46107 + 6.84797i −0.401506 + 0.503473i
\(186\) 0 0
\(187\) 0.200776 0.160114i 0.0146822 0.0117087i
\(188\) 45.9820 + 22.1438i 3.35358 + 1.61500i
\(189\) 0 0
\(190\) 16.2790 7.83957i 1.18101 0.568742i
\(191\) 1.47744 3.06794i 0.106904 0.221988i −0.840654 0.541573i \(-0.817829\pi\)
0.947558 + 0.319585i \(0.103543\pi\)
\(192\) 0 0
\(193\) −24.4304 11.7651i −1.75854 0.846867i −0.973921 0.226886i \(-0.927146\pi\)
−0.784617 0.619981i \(-0.787140\pi\)
\(194\) −25.0915 + 31.4638i −1.80147 + 2.25897i
\(195\) 0 0
\(196\) −28.2617 25.5671i −2.01869 1.82622i
\(197\) 10.1592i 0.723813i 0.932214 + 0.361906i \(0.117874\pi\)
−0.932214 + 0.361906i \(0.882126\pi\)
\(198\) 0 0
\(199\) −0.770780 + 1.60054i −0.0546391 + 0.113459i −0.926501 0.376293i \(-0.877199\pi\)
0.871862 + 0.489752i \(0.162913\pi\)
\(200\) −26.1446 + 5.96732i −1.84870 + 0.421954i
\(201\) 0 0
\(202\) 10.0544 + 20.8781i 0.707424 + 1.46898i
\(203\) 0.575863 + 7.08432i 0.0404176 + 0.497222i
\(204\) 0 0
\(205\) 11.5026 + 14.4239i 0.803380 + 1.00741i
\(206\) 10.8913 5.24498i 0.758834 0.365435i
\(207\) 0 0
\(208\) −83.1137 18.9702i −5.76290 1.31534i
\(209\) 9.93666 12.4602i 0.687333 0.861888i
\(210\) 0 0
\(211\) 1.59686 + 2.00239i 0.109932 + 0.137851i 0.833753 0.552137i \(-0.186187\pi\)
−0.723821 + 0.689987i \(0.757616\pi\)
\(212\) 22.0650 + 45.8185i 1.51543 + 3.14683i
\(213\) 0 0
\(214\) 9.17385 0.627112
\(215\) 2.13570 0.145653
\(216\) 0 0
\(217\) −17.9976 + 5.67612i −1.22176 + 0.385320i
\(218\) 32.3228 7.37747i 2.18918 0.499665i
\(219\) 0 0
\(220\) 21.9876 17.5345i 1.48240 1.18218i
\(221\) 0.329076 0.262429i 0.0221360 0.0176529i
\(222\) 0 0
\(223\) 9.80139 2.23710i 0.656350 0.149808i 0.118640 0.992937i \(-0.462147\pi\)
0.537710 + 0.843130i \(0.319290\pi\)
\(224\) −4.59903 56.5777i −0.307285 3.78025i
\(225\) 0 0
\(226\) −38.8683 −2.58548
\(227\) 8.61559 0.571837 0.285918 0.958254i \(-0.407701\pi\)
0.285918 + 0.958254i \(0.407701\pi\)
\(228\) 0 0
\(229\) −0.485330 1.00780i −0.0320715 0.0665971i 0.884318 0.466886i \(-0.154624\pi\)
−0.916389 + 0.400289i \(0.868910\pi\)
\(230\) 4.50952 + 5.65476i 0.297349 + 0.372864i
\(231\) 0 0
\(232\) −15.7408 + 19.7383i −1.03343 + 1.29589i
\(233\) −22.2452 5.07733i −1.45733 0.332627i −0.580831 0.814024i \(-0.697272\pi\)
−0.876503 + 0.481397i \(0.840130\pi\)
\(234\) 0 0
\(235\) −12.3737 + 5.95887i −0.807172 + 0.388714i
\(236\) 0.403898 + 0.506472i 0.0262915 + 0.0329685i
\(237\) 0 0
\(238\) 0.436274 + 0.293432i 0.0282795 + 0.0190204i
\(239\) 6.59530 + 13.6953i 0.426614 + 0.885874i 0.997878 + 0.0651074i \(0.0207390\pi\)
−0.571264 + 0.820766i \(0.693547\pi\)
\(240\) 0 0
\(241\) 4.66449 1.06464i 0.300466 0.0685795i −0.0696299 0.997573i \(-0.522182\pi\)
0.370096 + 0.928993i \(0.379325\pi\)
\(242\) 1.69467 3.51902i 0.108937 0.226211i
\(243\) 0 0
\(244\) 17.8772i 1.14447i
\(245\) 10.1208 1.65633i 0.646596 0.105819i
\(246\) 0 0
\(247\) 16.2864 20.4224i 1.03628 1.29945i
\(248\) −60.3927 29.0836i −3.83494 1.84681i
\(249\) 0 0
\(250\) 13.6211 28.2844i 0.861472 1.78887i
\(251\) −8.64206 + 4.16179i −0.545482 + 0.262690i −0.686267 0.727350i \(-0.740752\pi\)
0.140785 + 0.990040i \(0.455037\pi\)
\(252\) 0 0
\(253\) 5.74782 + 2.76800i 0.361362 + 0.174023i
\(254\) 40.8529 32.5791i 2.56334 2.04419i
\(255\) 0 0
\(256\) 25.5594 32.0504i 1.59746 2.00315i
\(257\) 1.20901 5.29704i 0.0754162 0.330420i −0.923120 0.384513i \(-0.874369\pi\)
0.998536 + 0.0540927i \(0.0172266\pi\)
\(258\) 0 0
\(259\) −15.7656 + 1.28154i −0.979627 + 0.0796309i
\(260\) 36.0380 28.7394i 2.23498 1.78234i
\(261\) 0 0
\(262\) −34.9657 7.98068i −2.16019 0.493048i
\(263\) 15.2273i 0.938953i 0.882945 + 0.469476i \(0.155557\pi\)
−0.882945 + 0.469476i \(0.844443\pi\)
\(264\) 0 0
\(265\) −13.3418 3.04519i −0.819582 0.187064i
\(266\) 30.4486 + 11.7290i 1.86692 + 0.719154i
\(267\) 0 0
\(268\) 7.00388 + 30.6860i 0.427830 + 1.87445i
\(269\) −2.44899 3.07094i −0.149318 0.187238i 0.701547 0.712623i \(-0.252493\pi\)
−0.850865 + 0.525385i \(0.823921\pi\)
\(270\) 0 0
\(271\) 23.2419 5.30480i 1.41184 0.322244i 0.552444 0.833550i \(-0.313695\pi\)
0.859398 + 0.511307i \(0.170838\pi\)
\(272\) 0.239090 + 1.04752i 0.0144970 + 0.0635154i
\(273\) 0 0
\(274\) −2.14042 + 9.37778i −0.129307 + 0.566533i
\(275\) 10.0613i 0.606717i
\(276\) 0 0
\(277\) −0.283943 + 1.24404i −0.0170605 + 0.0747470i −0.982742 0.184984i \(-0.940777\pi\)
0.965681 + 0.259731i \(0.0836339\pi\)
\(278\) −28.1826 + 13.5720i −1.69028 + 0.813996i
\(279\) 0 0
\(280\) 30.2263 + 20.3298i 1.80637 + 1.21494i
\(281\) −3.91830 3.12474i −0.233746 0.186406i 0.499611 0.866250i \(-0.333476\pi\)
−0.733357 + 0.679844i \(0.762048\pi\)
\(282\) 0 0
\(283\) 12.6385 + 10.0788i 0.751279 + 0.599125i 0.922450 0.386116i \(-0.126184\pi\)
−0.171171 + 0.985241i \(0.554755\pi\)
\(284\) −0.211352 0.438878i −0.0125415 0.0260426i
\(285\) 0 0
\(286\) 24.1209 50.0877i 1.42630 2.96174i
\(287\) −4.75764 + 32.9751i −0.280835 + 1.94646i
\(288\) 0 0
\(289\) 15.3117 + 7.37372i 0.900688 + 0.433748i
\(290\) −2.38957 10.4694i −0.140321 0.614784i
\(291\) 0 0
\(292\) 18.6914 + 14.9059i 1.09383 + 0.872303i
\(293\) −20.4628 −1.19545 −0.597726 0.801701i \(-0.703929\pi\)
−0.597726 + 0.801701i \(0.703929\pi\)
\(294\) 0 0
\(295\) −0.174323 −0.0101495
\(296\) −43.9262 35.0299i −2.55316 2.03607i
\(297\) 0 0
\(298\) −7.58556 33.2345i −0.439420 1.92522i
\(299\) 9.42077 + 4.53681i 0.544817 + 0.262370i
\(300\) 0 0
\(301\) 2.64110 + 2.81066i 0.152231 + 0.162004i
\(302\) 24.7268 51.3458i 1.42287 2.95462i
\(303\) 0 0
\(304\) 28.9319 + 60.0777i 1.65936 + 3.44569i
\(305\) −3.76118 2.99944i −0.215365 0.171748i
\(306\) 0 0
\(307\) −2.25444 1.79785i −0.128667 0.102609i 0.557042 0.830485i \(-0.311936\pi\)
−0.685709 + 0.727876i \(0.740508\pi\)
\(308\) 50.2669 + 7.25249i 2.86422 + 0.413249i
\(309\) 0 0
\(310\) 25.6884 12.3709i 1.45900 0.702618i
\(311\) −6.09451 + 26.7018i −0.345588 + 1.51412i 0.441490 + 0.897266i \(0.354450\pi\)
−0.787078 + 0.616854i \(0.788407\pi\)
\(312\) 0 0
\(313\) 24.6969i 1.39595i 0.716121 + 0.697976i \(0.245916\pi\)
−0.716121 + 0.697976i \(0.754084\pi\)
\(314\) −7.01556 + 30.7372i −0.395911 + 1.73460i
\(315\) 0 0
\(316\) −3.50424 15.3531i −0.197129 0.863678i
\(317\) −14.6984 + 3.35481i −0.825544 + 0.188425i −0.614365 0.789022i \(-0.710588\pi\)
−0.211180 + 0.977447i \(0.567731\pi\)
\(318\) 0 0
\(319\) −5.90569 7.40550i −0.330655 0.414628i
\(320\) 9.46528 + 41.4701i 0.529125 + 2.31825i
\(321\) 0 0
\(322\) −1.86520 + 12.9276i −0.103943 + 0.720429i
\(323\) −0.320965 0.0732582i −0.0178590 0.00407620i
\(324\) 0 0
\(325\) 16.4906i 0.914733i
\(326\) −24.4034 5.56993i −1.35158 0.308490i
\(327\) 0 0
\(328\) −92.5216 + 73.7835i −5.10865 + 4.07401i
\(329\) −23.1440 8.91526i −1.27597 0.491514i
\(330\) 0 0
\(331\) −3.13342 + 13.7284i −0.172228 + 0.754582i 0.812850 + 0.582474i \(0.197915\pi\)
−0.985078 + 0.172108i \(0.944942\pi\)
\(332\) 1.36872 1.71633i 0.0751185 0.0941956i
\(333\) 0 0
\(334\) −45.1828 + 36.0321i −2.47229 + 1.97159i
\(335\) −7.63115 3.67497i −0.416934 0.200785i
\(336\) 0 0
\(337\) −1.80007 + 0.866866i −0.0980558 + 0.0472212i −0.482269 0.876023i \(-0.660187\pi\)
0.384213 + 0.923245i \(0.374473\pi\)
\(338\) 24.1450 50.1375i 1.31331 2.72712i
\(339\) 0 0
\(340\) −0.523418 0.252065i −0.0283863 0.0136701i
\(341\) 15.6801 19.6622i 0.849123 1.06477i
\(342\) 0 0
\(343\) 14.6957 + 11.2711i 0.793491 + 0.608582i
\(344\) 13.6994i 0.738621i
\(345\) 0 0
\(346\) −7.45744 + 15.4855i −0.400915 + 0.832508i
\(347\) 20.7078 4.72642i 1.11165 0.253728i 0.373012 0.927826i \(-0.378325\pi\)
0.738641 + 0.674099i \(0.235468\pi\)
\(348\) 0 0
\(349\) −6.81637 14.1543i −0.364872 0.757664i 0.635018 0.772497i \(-0.280993\pi\)
−0.999890 + 0.0148331i \(0.995278\pi\)
\(350\) 19.6454 6.19581i 1.05009 0.331180i
\(351\) 0 0
\(352\) 47.1648 + 59.1427i 2.51389 + 3.15232i
\(353\) −13.6112 + 6.55479i −0.724449 + 0.348876i −0.759498 0.650509i \(-0.774556\pi\)
0.0350491 + 0.999386i \(0.488841\pi\)
\(354\) 0 0
\(355\) 0.127796 + 0.0291687i 0.00678273 + 0.00154811i
\(356\) −37.4775 + 46.9953i −1.98631 + 2.49075i
\(357\) 0 0
\(358\) −17.9696 22.5332i −0.949723 1.19091i
\(359\) −0.547033 1.13592i −0.0288713 0.0599518i 0.886034 0.463619i \(-0.153450\pi\)
−0.914906 + 0.403668i \(0.867735\pi\)
\(360\) 0 0
\(361\) −1.43137 −0.0753354
\(362\) 39.8775 2.09592
\(363\) 0 0
\(364\) 82.3883 + 11.8870i 4.31832 + 0.623046i
\(365\) −6.27211 + 1.43157i −0.328297 + 0.0749318i
\(366\) 0 0
\(367\) 6.88746 5.49257i 0.359523 0.286710i −0.427024 0.904240i \(-0.640438\pi\)
0.786547 + 0.617530i \(0.211867\pi\)
\(368\) −20.8689 + 16.6424i −1.08786 + 0.867543i
\(369\) 0 0
\(370\) 23.2988 5.31781i 1.21125 0.276460i
\(371\) −12.4915 21.3242i −0.648529 1.10710i
\(372\) 0 0
\(373\) 22.5978 1.17007 0.585036 0.811008i \(-0.301081\pi\)
0.585036 + 0.811008i \(0.301081\pi\)
\(374\) −0.700667 −0.0362306
\(375\) 0 0
\(376\) −38.2230 79.3709i −1.97120 4.09324i
\(377\) −9.67953 12.1377i −0.498521 0.625126i
\(378\) 0 0
\(379\) 0.280801 0.352114i 0.0144238 0.0180869i −0.774567 0.632492i \(-0.782032\pi\)
0.788991 + 0.614405i \(0.210604\pi\)
\(380\) −35.1498 8.02272i −1.80315 0.411557i
\(381\) 0 0
\(382\) −8.37066 + 4.03110i −0.428280 + 0.206249i
\(383\) −11.2565 14.1152i −0.575180 0.721253i 0.406102 0.913828i \(-0.366888\pi\)
−0.981282 + 0.192575i \(0.938316\pi\)
\(384\) 0 0
\(385\) −9.95966 + 9.35884i −0.507592 + 0.476971i
\(386\) 32.1001 + 66.6566i 1.63385 + 3.39273i
\(387\) 0 0
\(388\) 78.2893 17.8690i 3.97453 0.907162i
\(389\) 0.724287 1.50400i 0.0367228 0.0762557i −0.881800 0.471623i \(-0.843668\pi\)
0.918523 + 0.395367i \(0.129383\pi\)
\(390\) 0 0
\(391\) 0.131786i 0.00666468i
\(392\) 10.6245 + 64.9198i 0.536617 + 3.27894i
\(393\) 0 0
\(394\) 17.2823 21.6713i 0.870670 1.09179i
\(395\) 3.81808 + 1.83869i 0.192108 + 0.0925145i
\(396\) 0 0
\(397\) −3.34201 + 6.93975i −0.167731 + 0.348296i −0.967843 0.251553i \(-0.919059\pi\)
0.800113 + 0.599849i \(0.204773\pi\)
\(398\) 4.36697 2.10302i 0.218896 0.105415i
\(399\) 0 0
\(400\) 37.9275 + 18.2649i 1.89638 + 0.913247i
\(401\) −0.0933946 + 0.0744797i −0.00466390 + 0.00371934i −0.625819 0.779968i \(-0.715235\pi\)
0.621155 + 0.783688i \(0.286664\pi\)
\(402\) 0 0
\(403\) 25.6999 32.2267i 1.28020 1.60532i
\(404\) 10.2893 45.0803i 0.511911 2.24283i
\(405\) 0 0
\(406\) 10.8231 16.0917i 0.537140 0.798618i
\(407\) 16.4804 13.1427i 0.816901 0.651457i
\(408\) 0 0
\(409\) −8.45967 1.93086i −0.418304 0.0954751i 0.00818811 0.999966i \(-0.497394\pi\)
−0.426492 + 0.904491i \(0.640251\pi\)
\(410\) 50.3363i 2.48593i
\(411\) 0 0
\(412\) −23.5166 5.36752i −1.15858 0.264438i
\(413\) −0.215576 0.229415i −0.0106078 0.0112888i
\(414\) 0 0
\(415\) 0.131453 + 0.575932i 0.00645276 + 0.0282714i
\(416\) 77.3038 + 96.9360i 3.79013 + 4.75268i
\(417\) 0 0
\(418\) −42.3932 + 9.67598i −2.07352 + 0.473267i
\(419\) −4.97988 21.8183i −0.243283 1.06589i −0.938007 0.346616i \(-0.887331\pi\)
0.694724 0.719276i \(-0.255527\pi\)
\(420\) 0 0
\(421\) −3.38186 + 14.8169i −0.164822 + 0.722131i 0.823192 + 0.567764i \(0.192191\pi\)
−0.988013 + 0.154368i \(0.950666\pi\)
\(422\) 6.98795i 0.340168i
\(423\) 0 0
\(424\) 19.5333 85.5809i 0.948620 4.15618i
\(425\) −0.187256 + 0.0901780i −0.00908327 + 0.00437427i
\(426\) 0 0
\(427\) −0.703872 8.65910i −0.0340628 0.419043i
\(428\) −14.3119 11.4134i −0.691791 0.551685i
\(429\) 0 0
\(430\) −4.55581 3.63314i −0.219701 0.175206i
\(431\) 10.0936 + 20.9597i 0.486193 + 1.00959i 0.989372 + 0.145408i \(0.0464496\pi\)
−0.503178 + 0.864183i \(0.667836\pi\)
\(432\) 0 0
\(433\) 4.12640 8.56856i 0.198302 0.411779i −0.777977 0.628292i \(-0.783754\pi\)
0.976280 + 0.216513i \(0.0694685\pi\)
\(434\) 48.0479 + 18.5085i 2.30637 + 0.888435i
\(435\) 0 0
\(436\) −59.6044 28.7039i −2.85453 1.37467i
\(437\) −1.81991 7.97356i −0.0870583 0.381427i
\(438\) 0 0
\(439\) 1.45640 + 1.16144i 0.0695101 + 0.0554325i 0.657629 0.753342i \(-0.271560\pi\)
−0.588118 + 0.808775i \(0.700131\pi\)
\(440\) −48.5443 −2.31426
\(441\) 0 0
\(442\) −1.14841 −0.0546241
\(443\) −21.6172 17.2392i −1.02707 0.819057i −0.0433990 0.999058i \(-0.513819\pi\)
−0.983667 + 0.180000i \(0.942390\pi\)
\(444\) 0 0
\(445\) −3.59936 15.7698i −0.170626 0.747561i
\(446\) −24.7137 11.9015i −1.17023 0.563552i
\(447\) 0 0
\(448\) −42.8710 + 63.7405i −2.02546 + 3.01146i
\(449\) −1.12501 + 2.33611i −0.0530926 + 0.110248i −0.925827 0.377947i \(-0.876630\pi\)
0.872735 + 0.488195i \(0.162344\pi\)
\(450\) 0 0
\(451\) −19.2640 40.0021i −0.907107 1.88363i
\(452\) 60.6374 + 48.3567i 2.85214 + 2.27451i
\(453\) 0 0
\(454\) −18.3785 14.6564i −0.862548 0.687859i
\(455\) −16.3241 + 15.3393i −0.765284 + 0.719117i
\(456\) 0 0
\(457\) −17.3537 + 8.35711i −0.811773 + 0.390929i −0.793248 0.608899i \(-0.791611\pi\)
−0.0185252 + 0.999828i \(0.505897\pi\)
\(458\) −0.679121 + 2.97542i −0.0317333 + 0.139032i
\(459\) 0 0
\(460\) 14.4322i 0.672906i
\(461\) −2.93845 + 12.8742i −0.136857 + 0.599610i 0.859258 + 0.511543i \(0.170926\pi\)
−0.996115 + 0.0880666i \(0.971931\pi\)
\(462\) 0 0
\(463\) 5.06271 + 22.1812i 0.235284 + 1.03085i 0.945182 + 0.326543i \(0.105884\pi\)
−0.709898 + 0.704304i \(0.751259\pi\)
\(464\) 38.6372 8.81870i 1.79369 0.409398i
\(465\) 0 0
\(466\) 38.8157 + 48.6733i 1.79810 + 2.25475i
\(467\) 2.10430 + 9.21953i 0.0973753 + 0.426629i 0.999993 0.00381464i \(-0.00121424\pi\)
−0.902617 + 0.430444i \(0.858357\pi\)
\(468\) 0 0
\(469\) −4.60063 14.5875i −0.212438 0.673589i
\(470\) 36.5322 + 8.33824i 1.68511 + 0.384614i
\(471\) 0 0
\(472\) 1.11819i 0.0514689i
\(473\) −5.01092 1.14371i −0.230402 0.0525878i
\(474\) 0 0
\(475\) −10.0844 + 8.04208i −0.462706 + 0.368996i
\(476\) −0.315556 1.00055i −0.0144635 0.0458602i
\(477\) 0 0
\(478\) 9.22879 40.4340i 0.422115 1.84941i
\(479\) −17.2516 + 21.6328i −0.788246 + 0.988429i 0.211693 + 0.977336i \(0.432102\pi\)
−0.999938 + 0.0110924i \(0.996469\pi\)
\(480\) 0 0
\(481\) 27.0116 21.5410i 1.23162 0.982187i
\(482\) −11.7613 5.66393i −0.535712 0.257985i
\(483\) 0 0
\(484\) −7.02187 + 3.38156i −0.319176 + 0.153707i
\(485\) −9.37595 + 19.4694i −0.425740 + 0.884058i
\(486\) 0 0
\(487\) 35.6076 + 17.1477i 1.61353 + 0.777037i 0.999921 0.0125691i \(-0.00400099\pi\)
0.613614 + 0.789606i \(0.289715\pi\)
\(488\) 19.2399 24.1260i 0.870947 1.09213i
\(489\) 0 0
\(490\) −24.4071 13.6838i −1.10260 0.618171i
\(491\) 8.27699i 0.373535i 0.982404 + 0.186768i \(0.0598012\pi\)
−0.982404 + 0.186768i \(0.940199\pi\)
\(492\) 0 0
\(493\) −0.0848964 + 0.176289i −0.00382354 + 0.00793966i
\(494\) −69.4832 + 15.8591i −3.12620 + 0.713534i
\(495\) 0 0
\(496\) 45.6546 + 94.8027i 2.04995 + 4.25677i
\(497\) 0.119652 + 0.204256i 0.00536711 + 0.00916214i
\(498\) 0 0
\(499\) −3.45628 4.33403i −0.154724 0.194018i 0.698428 0.715681i \(-0.253883\pi\)
−0.853152 + 0.521663i \(0.825312\pi\)
\(500\) −56.4390 + 27.1796i −2.52403 + 1.21551i
\(501\) 0 0
\(502\) 25.5148 + 5.82359i 1.13878 + 0.259920i
\(503\) −14.2223 + 17.8342i −0.634141 + 0.795187i −0.990257 0.139255i \(-0.955529\pi\)
0.356116 + 0.934442i \(0.384101\pi\)
\(504\) 0 0
\(505\) 7.75810 + 9.72835i 0.345231 + 0.432906i
\(506\) −7.55231 15.6825i −0.335741 0.697173i
\(507\) 0 0
\(508\) −104.266 −4.62604
\(509\) −10.5120 −0.465936 −0.232968 0.972484i \(-0.574844\pi\)
−0.232968 + 0.972484i \(0.574844\pi\)
\(510\) 0 0
\(511\) −9.64038 6.48399i −0.426465 0.286835i
\(512\) −38.2512 + 8.73059i −1.69048 + 0.385841i
\(513\) 0 0
\(514\) −11.5901 + 9.24278i −0.511217 + 0.407682i
\(515\) 5.07490 4.04710i 0.223627 0.178337i
\(516\) 0 0
\(517\) 32.2231 7.35472i 1.41717 0.323460i
\(518\) 35.8108 + 24.0859i 1.57344 + 1.05827i
\(519\) 0 0
\(520\) −79.5649 −3.48915
\(521\) 10.3652 0.454108 0.227054 0.973882i \(-0.427091\pi\)
0.227054 + 0.973882i \(0.427091\pi\)
\(522\) 0 0
\(523\) −15.5673 32.3258i −0.680710 1.41351i −0.899142 0.437657i \(-0.855808\pi\)
0.218432 0.975852i \(-0.429906\pi\)
\(524\) 44.6201 + 55.9518i 1.94924 + 2.44427i
\(525\) 0 0
\(526\) 25.9038 32.4824i 1.12946 1.41630i
\(527\) −0.506484 0.115602i −0.0220628 0.00503569i
\(528\) 0 0
\(529\) −17.7726 + 8.55884i −0.772723 + 0.372124i
\(530\) 23.2801 + 29.1924i 1.01122 + 1.26804i
\(531\) 0 0
\(532\) −32.9097 56.1798i −1.42682 2.43570i
\(533\) −31.5741 65.5642i −1.36762 2.83990i
\(534\) 0 0
\(535\) 4.80251 1.09614i 0.207631 0.0473904i
\(536\) 23.5730 48.9498i 1.01820 2.11431i
\(537\) 0 0
\(538\) 10.7169i 0.462040i
\(539\) −24.6332 1.53372i −1.06103 0.0660621i
\(540\) 0 0
\(541\) 3.39539 4.25769i 0.145979 0.183052i −0.703466 0.710729i \(-0.748365\pi\)
0.849445 + 0.527677i \(0.176937\pi\)
\(542\) −58.6032 28.2218i −2.51722 1.21223i
\(543\) 0 0
\(544\) 0.678010 1.40790i 0.0290694 0.0603633i
\(545\) 16.0395 7.72421i 0.687056 0.330869i
\(546\) 0 0
\(547\) −6.43439 3.09864i −0.275115 0.132488i 0.291240 0.956650i \(-0.405932\pi\)
−0.566354 + 0.824162i \(0.691647\pi\)
\(548\) 15.0063 11.9671i 0.641036 0.511209i
\(549\) 0 0
\(550\) −17.1157 + 21.4624i −0.729816 + 0.915160i
\(551\) −2.70208 + 11.8386i −0.115113 + 0.504341i
\(552\) 0 0
\(553\) 2.30183 + 7.29854i 0.0978836 + 0.310366i
\(554\) 2.72199 2.17072i 0.115646 0.0922250i
\(555\) 0 0
\(556\) 60.8521 + 13.8891i 2.58070 + 0.589029i
\(557\) 38.5139i 1.63189i 0.578131 + 0.815944i \(0.303782\pi\)
−0.578131 + 0.815944i \(0.696218\pi\)
\(558\) 0 0
\(559\) −8.21298 1.87456i −0.347372 0.0792854i
\(560\) −17.1991 54.5343i −0.726796 2.30450i
\(561\) 0 0
\(562\) 3.04276 + 13.3312i 0.128351 + 0.562343i
\(563\) −22.1754 27.8071i −0.934582 1.17193i −0.984888 0.173195i \(-0.944591\pi\)
0.0503056 0.998734i \(-0.483980\pi\)
\(564\) 0 0
\(565\) −20.3476 + 4.64420i −0.856028 + 0.195383i
\(566\) −9.81443 42.9998i −0.412531 1.80742i
\(567\) 0 0
\(568\) −0.187102 + 0.819747i −0.00785062 + 0.0343958i
\(569\) 17.9670i 0.753215i 0.926373 + 0.376607i \(0.122909\pi\)
−0.926373 + 0.376607i \(0.877091\pi\)
\(570\) 0 0
\(571\) −1.78530 + 7.82192i −0.0747125 + 0.327337i −0.998448 0.0556944i \(-0.982263\pi\)
0.923735 + 0.383031i \(0.125120\pi\)
\(572\) −99.9453 + 48.1311i −4.17892 + 2.01246i
\(573\) 0 0
\(574\) 66.2445 62.2482i 2.76499 2.59819i
\(575\) −4.03677 3.21922i −0.168345 0.134251i
\(576\) 0 0
\(577\) 24.0467 + 19.1766i 1.00108 + 0.798334i 0.979502 0.201433i \(-0.0645599\pi\)
0.0215767 + 0.999767i \(0.493131\pi\)
\(578\) −20.1187 41.7769i −0.836827 1.73769i
\(579\) 0 0
\(580\) −9.29725 + 19.3059i −0.386047 + 0.801636i
\(581\) −0.595388 + 0.885221i −0.0247008 + 0.0367252i
\(582\) 0 0
\(583\) 29.6728 + 14.2896i 1.22892 + 0.591817i
\(584\) −9.18277 40.2323i −0.379986 1.66483i
\(585\) 0 0
\(586\) 43.6508 + 34.8103i 1.80320 + 1.43800i
\(587\) 40.1365 1.65661 0.828305 0.560277i \(-0.189306\pi\)
0.828305 + 0.560277i \(0.189306\pi\)
\(588\) 0 0
\(589\) −32.2408 −1.32846
\(590\) 0.371861 + 0.296549i 0.0153093 + 0.0122087i
\(591\) 0 0
\(592\) 19.6253 + 85.9842i 0.806596 + 3.53393i
\(593\) 5.84985 + 2.81714i 0.240224 + 0.115686i 0.550123 0.835084i \(-0.314581\pi\)
−0.309899 + 0.950770i \(0.600295\pi\)
\(594\) 0 0
\(595\) 0.263451 + 0.101483i 0.0108004 + 0.00416041i
\(596\) −29.5136 + 61.2856i −1.20892 + 2.51036i
\(597\) 0 0
\(598\) −12.3784 25.7039i −0.506189 1.05111i
\(599\) 17.3733 + 13.8548i 0.709855 + 0.566090i 0.910468 0.413580i \(-0.135722\pi\)
−0.200613 + 0.979671i \(0.564293\pi\)
\(600\) 0 0
\(601\) 1.77391 + 1.41465i 0.0723593 + 0.0577046i 0.659001 0.752142i \(-0.270979\pi\)
−0.586642 + 0.809846i \(0.699551\pi\)
\(602\) −0.852580 10.4885i −0.0347486 0.427480i
\(603\) 0 0
\(604\) −102.456 + 49.3401i −4.16887 + 2.00762i
\(605\) 0.466688 2.04469i 0.0189736 0.0831286i
\(606\) 0 0
\(607\) 11.1437i 0.452309i 0.974091 + 0.226155i \(0.0726154\pi\)
−0.974091 + 0.226155i \(0.927385\pi\)
\(608\) 21.5797 94.5469i 0.875173 3.83438i
\(609\) 0 0
\(610\) 2.92075 + 12.7967i 0.118258 + 0.518122i
\(611\) 52.8143 12.0545i 2.13664 0.487674i
\(612\) 0 0
\(613\) 13.0330 + 16.3429i 0.526399 + 0.660084i 0.971954 0.235171i \(-0.0755650\pi\)
−0.445555 + 0.895255i \(0.646994\pi\)
\(614\) 1.75069 + 7.67026i 0.0706520 + 0.309547i
\(615\) 0 0
\(616\) −60.0320 63.8860i −2.41876 2.57404i
\(617\) −38.9482 8.88967i −1.56799 0.357884i −0.651728 0.758453i \(-0.725955\pi\)
−0.916267 + 0.400569i \(0.868813\pi\)
\(618\) 0 0
\(619\) 30.9056i 1.24220i 0.783730 + 0.621101i \(0.213315\pi\)
−0.783730 + 0.621101i \(0.786685\pi\)
\(620\) −55.4665 12.6599i −2.22759 0.508433i
\(621\) 0 0
\(622\) 58.4244 46.5919i 2.34260 1.86816i
\(623\) 16.3025 24.2386i 0.653147 0.971097i
\(624\) 0 0
\(625\) 0.576143 2.52425i 0.0230457 0.100970i
\(626\) 42.0131 52.6828i 1.67918 2.10563i
\(627\) 0 0
\(628\) 49.1854 39.2241i 1.96271 1.56521i
\(629\) −0.392318 0.188930i −0.0156427 0.00753314i
\(630\) 0 0
\(631\) 37.0455 17.8402i 1.47476 0.710207i 0.488068 0.872806i \(-0.337702\pi\)
0.986692 + 0.162599i \(0.0519877\pi\)
\(632\) −11.7942 + 24.4910i −0.469149 + 0.974199i
\(633\) 0 0
\(634\) 37.0613 + 17.8478i 1.47189 + 0.708825i
\(635\) 17.4938 21.9365i 0.694219 0.870523i
\(636\) 0 0
\(637\) −40.3742 2.51380i −1.59968 0.0996002i
\(638\) 25.8437i 1.02316i
\(639\) 0 0
\(640\) 23.0794 47.9248i 0.912293 1.89440i
\(641\) 9.56366 2.18284i 0.377742 0.0862171i −0.0294344 0.999567i \(-0.509371\pi\)
0.407176 + 0.913350i \(0.366513\pi\)
\(642\) 0 0
\(643\) 5.92252 + 12.2982i 0.233561 + 0.484995i 0.984502 0.175375i \(-0.0561138\pi\)
−0.750940 + 0.660370i \(0.770399\pi\)
\(644\) 18.9933 17.8475i 0.748442 0.703292i
\(645\) 0 0
\(646\) 0.560051 + 0.702282i 0.0220349 + 0.0276309i
\(647\) −11.6891 + 5.62917i −0.459546 + 0.221306i −0.649310 0.760524i \(-0.724942\pi\)
0.189764 + 0.981830i \(0.439228\pi\)
\(648\) 0 0
\(649\) 0.409008 + 0.0933534i 0.0160550 + 0.00366444i
\(650\) −28.0529 + 35.1773i −1.10033 + 1.37977i
\(651\) 0 0
\(652\) 31.1415 + 39.0502i 1.21960 + 1.52932i
\(653\) 1.93538 + 4.01886i 0.0757374 + 0.157270i 0.935399 0.353593i \(-0.115040\pi\)
−0.859662 + 0.510863i \(0.829326\pi\)
\(654\) 0 0
\(655\) −19.2581 −0.752476
\(656\) 185.766 7.25294
\(657\) 0 0
\(658\) 34.2040 + 58.3892i 1.33341 + 2.27625i
\(659\) 30.2786 6.91089i 1.17949 0.269210i 0.412551 0.910934i \(-0.364638\pi\)
0.766935 + 0.641724i \(0.221781\pi\)
\(660\) 0 0
\(661\) 12.1178 9.66364i 0.471329 0.375872i −0.358827 0.933404i \(-0.616823\pi\)
0.830155 + 0.557532i \(0.188252\pi\)
\(662\) 30.0382 23.9547i 1.16747 0.931025i
\(663\) 0 0
\(664\) −3.69431 + 0.843201i −0.143367 + 0.0327225i
\(665\) 17.3413 + 2.50199i 0.672466 + 0.0970232i
\(666\) 0 0
\(667\) −4.86083 −0.188212
\(668\) 115.317 4.46174
\(669\) 0 0
\(670\) 10.0269 + 20.8211i 0.387373 + 0.804388i
\(671\) 7.21848 + 9.05168i 0.278666 + 0.349436i
\(672\) 0 0
\(673\) 4.35420 5.46000i 0.167842 0.210467i −0.690796 0.723050i \(-0.742740\pi\)
0.858638 + 0.512582i \(0.171311\pi\)
\(674\) 5.31452 + 1.21300i 0.204708 + 0.0467232i
\(675\) 0 0
\(676\) −100.045 + 48.1791i −3.84788 + 1.85304i
\(677\) −16.8312 21.1057i −0.646877 0.811158i 0.344967 0.938615i \(-0.387890\pi\)
−0.991844 + 0.127457i \(0.959319\pi\)
\(678\) 0 0
\(679\) −37.2171 + 11.7376i −1.42826 + 0.450448i
\(680\) 0.435097 + 0.903487i 0.0166852 + 0.0346472i
\(681\) 0 0
\(682\) −66.8966 + 15.2687i −2.56160 + 0.584669i
\(683\) 1.44083 2.99191i 0.0551318 0.114482i −0.871583 0.490248i \(-0.836906\pi\)
0.926715 + 0.375766i \(0.122620\pi\)
\(684\) 0 0
\(685\) 5.16502i 0.197345i
\(686\) −12.1746 49.0427i −0.464828 1.87246i
\(687\) 0 0
\(688\) 13.4081 16.8132i 0.511178 0.640997i
\(689\) 48.6342 + 23.4210i 1.85281 + 0.892268i
\(690\) 0 0
\(691\) 13.0674 27.1348i 0.497109 1.03226i −0.489928 0.871763i \(-0.662977\pi\)
0.987037 0.160495i \(-0.0513090\pi\)
\(692\) 30.9000 14.8806i 1.17464 0.565677i
\(693\) 0 0
\(694\) −52.2137 25.1448i −1.98200 0.954483i
\(695\) −13.1319 + 10.4724i −0.498122 + 0.397239i
\(696\) 0 0
\(697\) −0.571844 + 0.717069i −0.0216601 + 0.0271609i
\(698\) −9.53813 + 41.7893i −0.361024 + 1.58175i
\(699\) 0 0
\(700\) −38.3566 14.7753i −1.44974 0.558454i
\(701\) −38.2616 + 30.5126i −1.44512 + 1.15244i −0.484427 + 0.874831i \(0.660972\pi\)
−0.960693 + 0.277614i \(0.910457\pi\)
\(702\) 0 0
\(703\) −26.3459 6.01328i −0.993654 0.226795i
\(704\) 102.369i 3.85817i
\(705\) 0 0
\(706\) 40.1857 + 9.17211i 1.51241 + 0.345197i
\(707\) −3.20885 + 22.2405i −0.120681 + 0.836439i
\(708\) 0 0
\(709\) −4.52772 19.8372i −0.170042 0.745003i −0.985980 0.166864i \(-0.946636\pi\)
0.815938 0.578140i \(-0.196221\pi\)
\(710\) −0.222991 0.279622i −0.00836872 0.0104940i
\(711\) 0 0
\(712\) 101.155 23.0880i 3.79095 0.865259i
\(713\) −2.87183 12.5823i −0.107551 0.471211i
\(714\) 0 0
\(715\) 6.64257 29.1030i 0.248418 1.08839i
\(716\) 57.5097i 2.14924i
\(717\) 0 0
\(718\) −0.765462 + 3.35371i −0.0285668 + 0.125159i
\(719\) 17.1150 8.24217i 0.638283 0.307381i −0.0866100 0.996242i \(-0.527603\pi\)
0.724893 + 0.688861i \(0.241889\pi\)
\(720\) 0 0
\(721\) 11.6020 + 1.67393i 0.432081 + 0.0623405i
\(722\) 3.05336 + 2.43498i 0.113634 + 0.0906205i
\(723\) 0 0
\(724\) −62.2119 49.6123i −2.31209 1.84383i
\(725\) 3.32616 + 6.90684i 0.123530 + 0.256513i
\(726\) 0 0
\(727\) −3.14524 + 6.53117i −0.116651 + 0.242228i −0.951117 0.308832i \(-0.900062\pi\)
0.834466 + 0.551059i \(0.185776\pi\)
\(728\) −98.3936 104.710i −3.64671 3.88082i
\(729\) 0 0
\(730\) 15.8148 + 7.61602i 0.585333 + 0.281881i
\(731\) 0.0236260 + 0.103512i 0.000873839 + 0.00382854i
\(732\) 0 0
\(733\) 11.1482 + 8.89042i 0.411770 + 0.328375i 0.807368 0.590048i \(-0.200891\pi\)
−0.395598 + 0.918424i \(0.629463\pi\)
\(734\) −24.0358 −0.887179
\(735\) 0 0
\(736\) 38.8201 1.43093
\(737\) 15.9367 + 12.7091i 0.587036 + 0.468145i
\(738\) 0 0
\(739\) −11.0300 48.3255i −0.405744 1.77768i −0.603430 0.797416i \(-0.706200\pi\)
0.197686 0.980265i \(-0.436657\pi\)
\(740\) −42.9639 20.6903i −1.57938 0.760591i
\(741\) 0 0
\(742\) −9.62895 + 66.7381i −0.353490 + 2.45003i
\(743\) −11.8289 + 24.5630i −0.433962 + 0.901131i 0.563234 + 0.826297i \(0.309557\pi\)
−0.997196 + 0.0748335i \(0.976157\pi\)
\(744\) 0 0
\(745\) −7.94209 16.4919i −0.290976 0.604217i
\(746\) −48.2051 38.4423i −1.76491 1.40747i
\(747\) 0 0
\(748\) 1.09309 + 0.871712i 0.0399674 + 0.0318730i
\(749\) 7.38157 + 4.96475i 0.269717 + 0.181408i
\(750\) 0 0
\(751\) 20.0306 9.64622i 0.730926 0.351996i −0.0311220 0.999516i \(-0.509908\pi\)
0.762048 + 0.647520i \(0.224194\pi\)
\(752\) −30.7722 + 134.822i −1.12215 + 4.91645i
\(753\) 0 0
\(754\) 42.3582i 1.54260i
\(755\) 6.80942 29.8340i 0.247820 1.08577i
\(756\) 0 0
\(757\) 8.60933 + 37.7200i 0.312912 + 1.37096i 0.849713 + 0.527246i \(0.176775\pi\)
−0.536801 + 0.843709i \(0.680367\pi\)
\(758\) −1.19800 + 0.273435i −0.0435132 + 0.00993159i
\(759\) 0 0
\(760\) 38.8020 + 48.6561i 1.40750 + 1.76494i
\(761\) 0.614011 + 2.69016i 0.0222579 + 0.0975181i 0.984837 0.173483i \(-0.0555023\pi\)
−0.962579 + 0.271002i \(0.912645\pi\)
\(762\) 0 0
\(763\) 30.0005 + 11.5564i 1.08609 + 0.418371i
\(764\) 18.0740 + 4.12527i 0.653894 + 0.149247i
\(765\) 0 0
\(766\) 49.2591i 1.77980i
\(767\) 0.670371 + 0.153008i 0.0242057 + 0.00552479i
\(768\) 0 0
\(769\) −7.05593 + 5.62692i −0.254443 + 0.202912i −0.742402 0.669955i \(-0.766313\pi\)
0.487958 + 0.872867i \(0.337742\pi\)
\(770\) 37.1665 3.02115i 1.33939 0.108875i
\(771\) 0 0
\(772\) 32.8501 143.926i 1.18230 5.18000i
\(773\) 30.1925 37.8602i 1.08595 1.36174i 0.158683 0.987330i \(-0.449275\pi\)
0.927265 0.374406i \(-0.122153\pi\)
\(774\) 0 0
\(775\) −15.9133 + 12.6904i −0.571622 + 0.455853i
\(776\) −124.886 60.1418i −4.48314 2.15897i
\(777\) 0 0
\(778\) −4.10355 + 1.97617i −0.147119 + 0.0708490i
\(779\) −24.6964 + 51.2826i −0.884840 + 1.83739i
\(780\) 0 0
\(781\) −0.284224 0.136875i −0.0101703 0.00489777i
\(782\) −0.224187 + 0.281121i −0.00801690 + 0.0100529i
\(783\) 0 0
\(784\) 50.4999 90.0743i 1.80357