Properties

Label 441.2.w.a.188.1
Level $441$
Weight $2$
Character 441.188
Analytic conductor $3.521$
Analytic rank $0$
Dimension $120$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(62,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([7, 11])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.62"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.w (of order \(14\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(20\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 188.1
Character \(\chi\) \(=\) 441.188
Dual form 441.2.w.a.251.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.13317 + 1.70115i) q^{2} +(1.21148 - 5.30783i) q^{4} +(-1.31998 + 0.635668i) q^{5} +(-0.795783 + 2.52324i) q^{7} +(4.07748 + 8.46697i) q^{8} +(1.73438 - 3.60147i) q^{10} +(2.75661 - 2.19832i) q^{11} +(4.51813 - 3.60309i) q^{13} +(-2.59486 - 6.73625i) q^{14} +(-13.2912 - 6.40071i) q^{16} +(0.0162072 + 0.0710083i) q^{17} +4.52011i q^{19} +(1.77490 + 7.77633i) q^{20} +(-2.14065 + 9.37881i) q^{22} +(1.76402 + 0.402626i) q^{23} +(-1.77918 + 2.23102i) q^{25} +(-3.50857 + 15.3720i) q^{26} +(12.4289 + 7.28073i) q^{28} +(-2.61910 + 0.597792i) q^{29} +7.13274i q^{31} +(20.9170 - 4.77416i) q^{32} +(-0.155368 - 0.123902i) q^{34} +(-0.553525 - 3.83647i) q^{35} +(1.33034 + 5.82860i) q^{37} +(-7.68938 - 9.64217i) q^{38} +(-10.7644 - 8.58430i) q^{40} +(-11.3454 + 5.46367i) q^{41} +(-1.31339 - 0.632493i) q^{43} +(-8.32876 - 17.2949i) q^{44} +(-4.44789 + 2.14199i) q^{46} +(5.84471 + 7.32903i) q^{47} +(-5.73346 - 4.01590i) q^{49} -7.78580i q^{50} +(-13.6510 - 28.3466i) q^{52} +(9.10665 + 2.07853i) q^{53} +(-2.24126 + 4.65403i) q^{55} +(-24.6090 + 3.55058i) q^{56} +(4.57005 - 5.73067i) q^{58} +(0.107203 + 0.0516262i) q^{59} +(3.20130 - 0.730676i) q^{61} +(-12.1339 - 15.2154i) q^{62} +(-18.1023 + 22.6996i) q^{64} +(-3.67347 + 7.62804i) q^{65} +5.78127 q^{67} +0.396535 q^{68} +(7.70718 + 7.24224i) q^{70} +(-0.0872291 - 0.0199095i) q^{71} +(3.43319 + 2.73788i) q^{73} +(-12.7532 - 10.1703i) q^{74} +(23.9920 + 5.47601i) q^{76} +(3.35323 + 8.70497i) q^{77} -2.89253 q^{79} +21.6128 q^{80} +(14.9073 - 30.9552i) q^{82} +(-0.251403 + 0.315250i) q^{83} +(-0.0665309 - 0.0834271i) q^{85} +(3.87765 - 0.885047i) q^{86} +(29.8532 + 14.3765i) q^{88} +(6.88377 - 8.63197i) q^{89} +(5.49600 + 14.2676i) q^{91} +(4.27415 - 8.87536i) q^{92} +(-24.9355 - 5.69137i) q^{94} +(-2.87329 - 5.96645i) q^{95} +14.7498i q^{97} +(19.0621 - 1.18685i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 24 q^{4} - 32 q^{16} - 44 q^{22} - 4 q^{25} - 56 q^{28} + 112 q^{34} - 76 q^{37} + 28 q^{40} + 8 q^{43} - 40 q^{46} - 84 q^{49} - 140 q^{52} + 12 q^{58} - 84 q^{61} + 24 q^{64} + 16 q^{67} + 112 q^{70}+ \cdots - 112 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{5}{14}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.13317 + 1.70115i −1.50838 + 1.20289i −0.589871 + 0.807498i \(0.700821\pi\)
−0.918511 + 0.395396i \(0.870607\pi\)
\(3\) 0 0
\(4\) 1.21148 5.30783i 0.605739 2.65392i
\(5\) −1.31998 + 0.635668i −0.590313 + 0.284280i −0.705097 0.709111i \(-0.749097\pi\)
0.114784 + 0.993390i \(0.463382\pi\)
\(6\) 0 0
\(7\) −0.795783 + 2.52324i −0.300778 + 0.953694i
\(8\) 4.07748 + 8.46697i 1.44161 + 2.99353i
\(9\) 0 0
\(10\) 1.73438 3.60147i 0.548458 1.13889i
\(11\) 2.75661 2.19832i 0.831149 0.662819i −0.112542 0.993647i \(-0.535899\pi\)
0.943691 + 0.330828i \(0.107328\pi\)
\(12\) 0 0
\(13\) 4.51813 3.60309i 1.25310 0.999317i 0.253617 0.967305i \(-0.418380\pi\)
0.999487 0.0320125i \(-0.0101916\pi\)
\(14\) −2.59486 6.73625i −0.693505 1.80034i
\(15\) 0 0
\(16\) −13.2912 6.40071i −3.32280 1.60018i
\(17\) 0.0162072 + 0.0710083i 0.00393082 + 0.0172220i 0.976855 0.213901i \(-0.0686171\pi\)
−0.972924 + 0.231123i \(0.925760\pi\)
\(18\) 0 0
\(19\) 4.52011i 1.03698i 0.855083 + 0.518492i \(0.173506\pi\)
−0.855083 + 0.518492i \(0.826494\pi\)
\(20\) 1.77490 + 7.77633i 0.396879 + 1.73884i
\(21\) 0 0
\(22\) −2.14065 + 9.37881i −0.456388 + 1.99957i
\(23\) 1.76402 + 0.402626i 0.367824 + 0.0839533i 0.402438 0.915447i \(-0.368163\pi\)
−0.0346140 + 0.999401i \(0.511020\pi\)
\(24\) 0 0
\(25\) −1.77918 + 2.23102i −0.355836 + 0.446204i
\(26\) −3.50857 + 15.3720i −0.688086 + 3.01470i
\(27\) 0 0
\(28\) 12.4289 + 7.28073i 2.34883 + 1.37593i
\(29\) −2.61910 + 0.597792i −0.486354 + 0.111007i −0.458665 0.888609i \(-0.651672\pi\)
−0.0276894 + 0.999617i \(0.508815\pi\)
\(30\) 0 0
\(31\) 7.13274i 1.28108i 0.767926 + 0.640539i \(0.221289\pi\)
−0.767926 + 0.640539i \(0.778711\pi\)
\(32\) 20.9170 4.77416i 3.69763 0.843960i
\(33\) 0 0
\(34\) −0.155368 0.123902i −0.0266455 0.0212491i
\(35\) −0.553525 3.83647i −0.0935629 0.648483i
\(36\) 0 0
\(37\) 1.33034 + 5.82860i 0.218706 + 0.958216i 0.958435 + 0.285310i \(0.0920967\pi\)
−0.739729 + 0.672905i \(0.765046\pi\)
\(38\) −7.68938 9.64217i −1.24738 1.56417i
\(39\) 0 0
\(40\) −10.7644 8.58430i −1.70200 1.35730i
\(41\) −11.3454 + 5.46367i −1.77186 + 0.853282i −0.806984 + 0.590573i \(0.798902\pi\)
−0.964875 + 0.262709i \(0.915384\pi\)
\(42\) 0 0
\(43\) −1.31339 0.632493i −0.200289 0.0964543i 0.331050 0.943613i \(-0.392597\pi\)
−0.531340 + 0.847159i \(0.678311\pi\)
\(44\) −8.32876 17.2949i −1.25561 2.60730i
\(45\) 0 0
\(46\) −4.44789 + 2.14199i −0.655805 + 0.315819i
\(47\) 5.84471 + 7.32903i 0.852538 + 1.06905i 0.996834 + 0.0795141i \(0.0253369\pi\)
−0.144296 + 0.989535i \(0.546092\pi\)
\(48\) 0 0
\(49\) −5.73346 4.01590i −0.819065 0.573700i
\(50\) 7.78580i 1.10108i
\(51\) 0 0
\(52\) −13.6510 28.3466i −1.89305 3.93096i
\(53\) 9.10665 + 2.07853i 1.25089 + 0.285508i 0.796142 0.605110i \(-0.206871\pi\)
0.454752 + 0.890618i \(0.349728\pi\)
\(54\) 0 0
\(55\) −2.24126 + 4.65403i −0.302212 + 0.627549i
\(56\) −24.6090 + 3.55058i −3.28851 + 0.474466i
\(57\) 0 0
\(58\) 4.57005 5.73067i 0.600078 0.752474i
\(59\) 0.107203 + 0.0516262i 0.0139566 + 0.00672116i 0.440849 0.897581i \(-0.354677\pi\)
−0.426892 + 0.904302i \(0.640392\pi\)
\(60\) 0 0
\(61\) 3.20130 0.730676i 0.409885 0.0935535i −0.0126066 0.999921i \(-0.504013\pi\)
0.422491 + 0.906367i \(0.361156\pi\)
\(62\) −12.1339 15.2154i −1.54100 1.93235i
\(63\) 0 0
\(64\) −18.1023 + 22.6996i −2.26279 + 2.83745i
\(65\) −3.67347 + 7.62804i −0.455638 + 0.946141i
\(66\) 0 0
\(67\) 5.78127 0.706294 0.353147 0.935568i \(-0.385112\pi\)
0.353147 + 0.935568i \(0.385112\pi\)
\(68\) 0.396535 0.0480869
\(69\) 0 0
\(70\) 7.70718 + 7.24224i 0.921184 + 0.865613i
\(71\) −0.0872291 0.0199095i −0.0103522 0.00236282i 0.217342 0.976096i \(-0.430261\pi\)
−0.227694 + 0.973733i \(0.573119\pi\)
\(72\) 0 0
\(73\) 3.43319 + 2.73788i 0.401824 + 0.320444i 0.803464 0.595354i \(-0.202988\pi\)
−0.401640 + 0.915798i \(0.631560\pi\)
\(74\) −12.7532 10.1703i −1.48252 1.18227i
\(75\) 0 0
\(76\) 23.9920 + 5.47601i 2.75207 + 0.628142i
\(77\) 3.35323 + 8.70497i 0.382136 + 0.992024i
\(78\) 0 0
\(79\) −2.89253 −0.325435 −0.162718 0.986673i \(-0.552026\pi\)
−0.162718 + 0.986673i \(0.552026\pi\)
\(80\) 21.6128 2.41639
\(81\) 0 0
\(82\) 14.9073 30.9552i 1.64623 3.41843i
\(83\) −0.251403 + 0.315250i −0.0275951 + 0.0346032i −0.795438 0.606036i \(-0.792759\pi\)
0.767842 + 0.640639i \(0.221330\pi\)
\(84\) 0 0
\(85\) −0.0665309 0.0834271i −0.00721629 0.00904894i
\(86\) 3.87765 0.885047i 0.418137 0.0954371i
\(87\) 0 0
\(88\) 29.8532 + 14.3765i 3.18236 + 1.53254i
\(89\) 6.88377 8.63197i 0.729678 0.914987i −0.269164 0.963094i \(-0.586747\pi\)
0.998842 + 0.0481072i \(0.0153189\pi\)
\(90\) 0 0
\(91\) 5.49600 + 14.2676i 0.576137 + 1.49565i
\(92\) 4.27415 8.87536i 0.445611 0.925320i
\(93\) 0 0
\(94\) −24.9355 5.69137i −2.57190 0.587020i
\(95\) −2.87329 5.96645i −0.294793 0.612144i
\(96\) 0 0
\(97\) 14.7498i 1.49761i 0.662790 + 0.748805i \(0.269372\pi\)
−0.662790 + 0.748805i \(0.730628\pi\)
\(98\) 19.0621 1.18685i 1.92556 0.119890i
\(99\) 0 0
\(100\) 9.68645 + 12.1464i 0.968645 + 1.21464i
\(101\) −7.65207 + 3.68504i −0.761409 + 0.366675i −0.773951 0.633246i \(-0.781722\pi\)
0.0125414 + 0.999921i \(0.496008\pi\)
\(102\) 0 0
\(103\) −1.92234 3.99179i −0.189414 0.393322i 0.784537 0.620083i \(-0.212901\pi\)
−0.973951 + 0.226760i \(0.927187\pi\)
\(104\) 48.9299 + 23.5634i 4.79797 + 2.31058i
\(105\) 0 0
\(106\) −22.9619 + 11.0579i −2.23026 + 1.07404i
\(107\) −2.62877 2.09637i −0.254132 0.202664i 0.488134 0.872769i \(-0.337678\pi\)
−0.742267 + 0.670105i \(0.766249\pi\)
\(108\) 0 0
\(109\) −7.57622 9.50028i −0.725670 0.909962i 0.272974 0.962022i \(-0.411993\pi\)
−0.998644 + 0.0520596i \(0.983421\pi\)
\(110\) −3.13620 13.7406i −0.299025 1.31011i
\(111\) 0 0
\(112\) 26.7274 28.4433i 2.52550 2.68764i
\(113\) 11.1377 + 8.88203i 1.04775 + 0.835551i 0.986695 0.162584i \(-0.0519828\pi\)
0.0610528 + 0.998135i \(0.480554\pi\)
\(114\) 0 0
\(115\) −2.58441 + 0.589874i −0.240997 + 0.0550060i
\(116\) 14.6259i 1.35799i
\(117\) 0 0
\(118\) −0.316506 + 0.0722405i −0.0291368 + 0.00665028i
\(119\) −0.192068 0.0156126i −0.0176069 0.00143121i
\(120\) 0 0
\(121\) 0.318544 1.39563i 0.0289585 0.126876i
\(122\) −5.58594 + 7.00455i −0.505727 + 0.634162i
\(123\) 0 0
\(124\) 37.8594 + 8.64116i 3.39988 + 0.775999i
\(125\) 2.56033 11.2175i 0.229003 1.00333i
\(126\) 0 0
\(127\) −4.26155 18.6711i −0.378151 1.65679i −0.703125 0.711066i \(-0.748213\pi\)
0.324974 0.945723i \(-0.394644\pi\)
\(128\) 36.3073i 3.20914i
\(129\) 0 0
\(130\) −5.14028 22.5210i −0.450832 1.97523i
\(131\) 11.8431 + 5.70335i 1.03474 + 0.498304i 0.872585 0.488462i \(-0.162442\pi\)
0.162153 + 0.986766i \(0.448156\pi\)
\(132\) 0 0
\(133\) −11.4053 3.59703i −0.988965 0.311902i
\(134\) −12.3324 + 9.83479i −1.06536 + 0.849597i
\(135\) 0 0
\(136\) −0.535141 + 0.426761i −0.0458880 + 0.0365944i
\(137\) −1.52964 + 3.17632i −0.130686 + 0.271371i −0.956036 0.293249i \(-0.905263\pi\)
0.825350 + 0.564621i \(0.190978\pi\)
\(138\) 0 0
\(139\) 4.97429 + 10.3292i 0.421914 + 0.876114i 0.998263 + 0.0589101i \(0.0187625\pi\)
−0.576349 + 0.817204i \(0.695523\pi\)
\(140\) −21.0340 1.70979i −1.77769 0.144503i
\(141\) 0 0
\(142\) 0.219944 0.105919i 0.0184573 0.00888855i
\(143\) 4.53397 19.8646i 0.379150 1.66116i
\(144\) 0 0
\(145\) 3.07716 2.45395i 0.255544 0.203789i
\(146\) −11.9811 −0.991564
\(147\) 0 0
\(148\) 32.5489 2.67550
\(149\) 9.76826 7.78993i 0.800247 0.638176i −0.135528 0.990774i \(-0.543273\pi\)
0.935775 + 0.352598i \(0.114702\pi\)
\(150\) 0 0
\(151\) 4.64786 20.3636i 0.378237 1.65717i −0.324627 0.945842i \(-0.605239\pi\)
0.702864 0.711324i \(-0.251904\pi\)
\(152\) −38.2716 + 18.4306i −3.10424 + 1.49492i
\(153\) 0 0
\(154\) −21.9615 12.8649i −1.76971 1.03668i
\(155\) −4.53406 9.41507i −0.364184 0.756236i
\(156\) 0 0
\(157\) −5.01362 + 10.4109i −0.400131 + 0.830880i 0.599406 + 0.800445i \(0.295403\pi\)
−0.999537 + 0.0304347i \(0.990311\pi\)
\(158\) 6.17027 4.92062i 0.490880 0.391464i
\(159\) 0 0
\(160\) −24.5752 + 19.5980i −1.94284 + 1.54936i
\(161\) −2.41970 + 4.13064i −0.190699 + 0.325540i
\(162\) 0 0
\(163\) 8.26562 + 3.98051i 0.647413 + 0.311778i 0.728619 0.684920i \(-0.240163\pi\)
−0.0812055 + 0.996697i \(0.525877\pi\)
\(164\) 15.2555 + 66.8388i 1.19126 + 5.21923i
\(165\) 0 0
\(166\) 1.10016i 0.0853888i
\(167\) 4.71322 + 20.6500i 0.364720 + 1.59794i 0.741045 + 0.671456i \(0.234331\pi\)
−0.376324 + 0.926488i \(0.622812\pi\)
\(168\) 0 0
\(169\) 4.53849 19.8844i 0.349114 1.52957i
\(170\) 0.283844 + 0.0647855i 0.0217698 + 0.00496882i
\(171\) 0 0
\(172\) −4.94831 + 6.20498i −0.377305 + 0.473126i
\(173\) −1.40176 + 6.14152i −0.106574 + 0.466931i 0.893274 + 0.449512i \(0.148402\pi\)
−0.999848 + 0.0174192i \(0.994455\pi\)
\(174\) 0 0
\(175\) −4.21355 6.26470i −0.318515 0.473567i
\(176\) −50.7095 + 11.5741i −3.82237 + 0.872431i
\(177\) 0 0
\(178\) 30.1238i 2.25787i
\(179\) 10.2984 2.35054i 0.769737 0.175687i 0.180420 0.983590i \(-0.442254\pi\)
0.589316 + 0.807902i \(0.299397\pi\)
\(180\) 0 0
\(181\) −11.4269 9.11265i −0.849355 0.677338i 0.0988136 0.995106i \(-0.468495\pi\)
−0.948168 + 0.317768i \(0.897067\pi\)
\(182\) −35.9952 21.0857i −2.66814 1.56298i
\(183\) 0 0
\(184\) 3.78373 + 16.5776i 0.278940 + 1.22212i
\(185\) −5.46107 6.84797i −0.401506 0.503473i
\(186\) 0 0
\(187\) 0.200776 + 0.160114i 0.0146822 + 0.0117087i
\(188\) 45.9820 22.1438i 3.35358 1.61500i
\(189\) 0 0
\(190\) 16.2790 + 7.83957i 1.18101 + 0.568742i
\(191\) 1.47744 + 3.06794i 0.106904 + 0.221988i 0.947558 0.319585i \(-0.103543\pi\)
−0.840654 + 0.541573i \(0.817829\pi\)
\(192\) 0 0
\(193\) −24.4304 + 11.7651i −1.75854 + 0.846867i −0.784617 + 0.619981i \(0.787140\pi\)
−0.973921 + 0.226886i \(0.927146\pi\)
\(194\) −25.0915 31.4638i −1.80147 2.25897i
\(195\) 0 0
\(196\) −28.2617 + 25.5671i −2.01869 + 1.82622i
\(197\) 10.1592i 0.723813i −0.932214 0.361906i \(-0.882126\pi\)
0.932214 0.361906i \(-0.117874\pi\)
\(198\) 0 0
\(199\) −0.770780 1.60054i −0.0546391 0.113459i 0.871862 0.489752i \(-0.162913\pi\)
−0.926501 + 0.376293i \(0.877199\pi\)
\(200\) −26.1446 5.96732i −1.84870 0.421954i
\(201\) 0 0
\(202\) 10.0544 20.8781i 0.707424 1.46898i
\(203\) 0.575863 7.08432i 0.0404176 0.497222i
\(204\) 0 0
\(205\) 11.5026 14.4239i 0.803380 1.00741i
\(206\) 10.8913 + 5.24498i 0.758834 + 0.365435i
\(207\) 0 0
\(208\) −83.1137 + 18.9702i −5.76290 + 1.31534i
\(209\) 9.93666 + 12.4602i 0.687333 + 0.861888i
\(210\) 0 0
\(211\) 1.59686 2.00239i 0.109932 0.137851i −0.723821 0.689987i \(-0.757616\pi\)
0.833753 + 0.552137i \(0.186187\pi\)
\(212\) 22.0650 45.8185i 1.51543 3.14683i
\(213\) 0 0
\(214\) 9.17385 0.627112
\(215\) 2.13570 0.145653
\(216\) 0 0
\(217\) −17.9976 5.67612i −1.22176 0.385320i
\(218\) 32.3228 + 7.37747i 2.18918 + 0.499665i
\(219\) 0 0
\(220\) 21.9876 + 17.5345i 1.48240 + 1.18218i
\(221\) 0.329076 + 0.262429i 0.0221360 + 0.0176529i
\(222\) 0 0
\(223\) 9.80139 + 2.23710i 0.656350 + 0.149808i 0.537710 0.843130i \(-0.319290\pi\)
0.118640 + 0.992937i \(0.462147\pi\)
\(224\) −4.59903 + 56.5777i −0.307285 + 3.78025i
\(225\) 0 0
\(226\) −38.8683 −2.58548
\(227\) 8.61559 0.571837 0.285918 0.958254i \(-0.407701\pi\)
0.285918 + 0.958254i \(0.407701\pi\)
\(228\) 0 0
\(229\) −0.485330 + 1.00780i −0.0320715 + 0.0665971i −0.916389 0.400289i \(-0.868910\pi\)
0.884318 + 0.466886i \(0.154624\pi\)
\(230\) 4.50952 5.65476i 0.297349 0.372864i
\(231\) 0 0
\(232\) −15.7408 19.7383i −1.03343 1.29589i
\(233\) −22.2452 + 5.07733i −1.45733 + 0.332627i −0.876503 0.481397i \(-0.840130\pi\)
−0.580831 + 0.814024i \(0.697272\pi\)
\(234\) 0 0
\(235\) −12.3737 5.95887i −0.807172 0.388714i
\(236\) 0.403898 0.506472i 0.0262915 0.0329685i
\(237\) 0 0
\(238\) 0.436274 0.293432i 0.0282795 0.0190204i
\(239\) 6.59530 13.6953i 0.426614 0.885874i −0.571264 0.820766i \(-0.693547\pi\)
0.997878 0.0651074i \(-0.0207390\pi\)
\(240\) 0 0
\(241\) 4.66449 + 1.06464i 0.300466 + 0.0685795i 0.370096 0.928993i \(-0.379325\pi\)
−0.0696299 + 0.997573i \(0.522182\pi\)
\(242\) 1.69467 + 3.51902i 0.108937 + 0.226211i
\(243\) 0 0
\(244\) 17.8772i 1.14447i
\(245\) 10.1208 + 1.65633i 0.646596 + 0.105819i
\(246\) 0 0
\(247\) 16.2864 + 20.4224i 1.03628 + 1.29945i
\(248\) −60.3927 + 29.0836i −3.83494 + 1.84681i
\(249\) 0 0
\(250\) 13.6211 + 28.2844i 0.861472 + 1.78887i
\(251\) −8.64206 4.16179i −0.545482 0.262690i 0.140785 0.990040i \(-0.455037\pi\)
−0.686267 + 0.727350i \(0.740752\pi\)
\(252\) 0 0
\(253\) 5.74782 2.76800i 0.361362 0.174023i
\(254\) 40.8529 + 32.5791i 2.56334 + 2.04419i
\(255\) 0 0
\(256\) 25.5594 + 32.0504i 1.59746 + 2.00315i
\(257\) 1.20901 + 5.29704i 0.0754162 + 0.330420i 0.998536 0.0540927i \(-0.0172266\pi\)
−0.923120 + 0.384513i \(0.874369\pi\)
\(258\) 0 0
\(259\) −15.7656 1.28154i −0.979627 0.0796309i
\(260\) 36.0380 + 28.7394i 2.23498 + 1.78234i
\(261\) 0 0
\(262\) −34.9657 + 7.98068i −2.16019 + 0.493048i
\(263\) 15.2273i 0.938953i −0.882945 0.469476i \(-0.844443\pi\)
0.882945 0.469476i \(-0.155557\pi\)
\(264\) 0 0
\(265\) −13.3418 + 3.04519i −0.819582 + 0.187064i
\(266\) 30.4486 11.7290i 1.86692 0.719154i
\(267\) 0 0
\(268\) 7.00388 30.6860i 0.427830 1.87445i
\(269\) −2.44899 + 3.07094i −0.149318 + 0.187238i −0.850865 0.525385i \(-0.823921\pi\)
0.701547 + 0.712623i \(0.252493\pi\)
\(270\) 0 0
\(271\) 23.2419 + 5.30480i 1.41184 + 0.322244i 0.859398 0.511307i \(-0.170838\pi\)
0.552444 + 0.833550i \(0.313695\pi\)
\(272\) 0.239090 1.04752i 0.0144970 0.0635154i
\(273\) 0 0
\(274\) −2.14042 9.37778i −0.129307 0.566533i
\(275\) 10.0613i 0.606717i
\(276\) 0 0
\(277\) −0.283943 1.24404i −0.0170605 0.0747470i 0.965681 0.259731i \(-0.0836339\pi\)
−0.982742 + 0.184984i \(0.940777\pi\)
\(278\) −28.1826 13.5720i −1.69028 0.813996i
\(279\) 0 0
\(280\) 30.2263 20.3298i 1.80637 1.21494i
\(281\) −3.91830 + 3.12474i −0.233746 + 0.186406i −0.733357 0.679844i \(-0.762048\pi\)
0.499611 + 0.866250i \(0.333476\pi\)
\(282\) 0 0
\(283\) 12.6385 10.0788i 0.751279 0.599125i −0.171171 0.985241i \(-0.554755\pi\)
0.922450 + 0.386116i \(0.126184\pi\)
\(284\) −0.211352 + 0.438878i −0.0125415 + 0.0260426i
\(285\) 0 0
\(286\) 24.1209 + 50.0877i 1.42630 + 2.96174i
\(287\) −4.75764 32.9751i −0.280835 1.94646i
\(288\) 0 0
\(289\) 15.3117 7.37372i 0.900688 0.433748i
\(290\) −2.38957 + 10.4694i −0.140321 + 0.614784i
\(291\) 0 0
\(292\) 18.6914 14.9059i 1.09383 0.872303i
\(293\) −20.4628 −1.19545 −0.597726 0.801701i \(-0.703929\pi\)
−0.597726 + 0.801701i \(0.703929\pi\)
\(294\) 0 0
\(295\) −0.174323 −0.0101495
\(296\) −43.9262 + 35.0299i −2.55316 + 2.03607i
\(297\) 0 0
\(298\) −7.58556 + 33.2345i −0.439420 + 1.92522i
\(299\) 9.42077 4.53681i 0.544817 0.262370i
\(300\) 0 0
\(301\) 2.64110 2.81066i 0.152231 0.162004i
\(302\) 24.7268 + 51.3458i 1.42287 + 2.95462i
\(303\) 0 0
\(304\) 28.9319 60.0777i 1.65936 3.44569i
\(305\) −3.76118 + 2.99944i −0.215365 + 0.171748i
\(306\) 0 0
\(307\) −2.25444 + 1.79785i −0.128667 + 0.102609i −0.685709 0.727876i \(-0.740508\pi\)
0.557042 + 0.830485i \(0.311936\pi\)
\(308\) 50.2669 7.25249i 2.86422 0.413249i
\(309\) 0 0
\(310\) 25.6884 + 12.3709i 1.45900 + 0.702618i
\(311\) −6.09451 26.7018i −0.345588 1.51412i −0.787078 0.616854i \(-0.788407\pi\)
0.441490 0.897266i \(-0.354450\pi\)
\(312\) 0 0
\(313\) 24.6969i 1.39595i −0.716121 0.697976i \(-0.754084\pi\)
0.716121 0.697976i \(-0.245916\pi\)
\(314\) −7.01556 30.7372i −0.395911 1.73460i
\(315\) 0 0
\(316\) −3.50424 + 15.3531i −0.197129 + 0.863678i
\(317\) −14.6984 3.35481i −0.825544 0.188425i −0.211180 0.977447i \(-0.567731\pi\)
−0.614365 + 0.789022i \(0.710588\pi\)
\(318\) 0 0
\(319\) −5.90569 + 7.40550i −0.330655 + 0.414628i
\(320\) 9.46528 41.4701i 0.529125 2.31825i
\(321\) 0 0
\(322\) −1.86520 12.9276i −0.103943 0.720429i
\(323\) −0.320965 + 0.0732582i −0.0178590 + 0.00407620i
\(324\) 0 0
\(325\) 16.4906i 0.914733i
\(326\) −24.4034 + 5.56993i −1.35158 + 0.308490i
\(327\) 0 0
\(328\) −92.5216 73.7835i −5.10865 4.07401i
\(329\) −23.1440 + 8.91526i −1.27597 + 0.491514i
\(330\) 0 0
\(331\) −3.13342 13.7284i −0.172228 0.754582i −0.985078 0.172108i \(-0.944942\pi\)
0.812850 0.582474i \(-0.197915\pi\)
\(332\) 1.36872 + 1.71633i 0.0751185 + 0.0941956i
\(333\) 0 0
\(334\) −45.1828 36.0321i −2.47229 1.97159i
\(335\) −7.63115 + 3.67497i −0.416934 + 0.200785i
\(336\) 0 0
\(337\) −1.80007 0.866866i −0.0980558 0.0472212i 0.384213 0.923245i \(-0.374473\pi\)
−0.482269 + 0.876023i \(0.660187\pi\)
\(338\) 24.1450 + 50.1375i 1.31331 + 2.72712i
\(339\) 0 0
\(340\) −0.523418 + 0.252065i −0.0283863 + 0.0136701i
\(341\) 15.6801 + 19.6622i 0.849123 + 1.06477i
\(342\) 0 0
\(343\) 14.6957 11.2711i 0.793491 0.608582i
\(344\) 13.6994i 0.738621i
\(345\) 0 0
\(346\) −7.45744 15.4855i −0.400915 0.832508i
\(347\) 20.7078 + 4.72642i 1.11165 + 0.253728i 0.738641 0.674099i \(-0.235468\pi\)
0.373012 + 0.927826i \(0.378325\pi\)
\(348\) 0 0
\(349\) −6.81637 + 14.1543i −0.364872 + 0.757664i −0.999890 0.0148331i \(-0.995278\pi\)
0.635018 + 0.772497i \(0.280993\pi\)
\(350\) 19.6454 + 6.19581i 1.05009 + 0.331180i
\(351\) 0 0
\(352\) 47.1648 59.1427i 2.51389 3.15232i
\(353\) −13.6112 6.55479i −0.724449 0.348876i 0.0350491 0.999386i \(-0.488841\pi\)
−0.759498 + 0.650509i \(0.774556\pi\)
\(354\) 0 0
\(355\) 0.127796 0.0291687i 0.00678273 0.00154811i
\(356\) −37.4775 46.9953i −1.98631 2.49075i
\(357\) 0 0
\(358\) −17.9696 + 22.5332i −0.949723 + 1.19091i
\(359\) −0.547033 + 1.13592i −0.0288713 + 0.0599518i −0.914906 0.403668i \(-0.867735\pi\)
0.886034 + 0.463619i \(0.153450\pi\)
\(360\) 0 0
\(361\) −1.43137 −0.0753354
\(362\) 39.8775 2.09592
\(363\) 0 0
\(364\) 82.3883 11.8870i 4.31832 0.623046i
\(365\) −6.27211 1.43157i −0.328297 0.0749318i
\(366\) 0 0
\(367\) 6.88746 + 5.49257i 0.359523 + 0.286710i 0.786547 0.617530i \(-0.211867\pi\)
−0.427024 + 0.904240i \(0.640438\pi\)
\(368\) −20.8689 16.6424i −1.08786 0.867543i
\(369\) 0 0
\(370\) 23.2988 + 5.31781i 1.21125 + 0.276460i
\(371\) −12.4915 + 21.3242i −0.648529 + 1.10710i
\(372\) 0 0
\(373\) 22.5978 1.17007 0.585036 0.811008i \(-0.301081\pi\)
0.585036 + 0.811008i \(0.301081\pi\)
\(374\) −0.700667 −0.0362306
\(375\) 0 0
\(376\) −38.2230 + 79.3709i −1.97120 + 4.09324i
\(377\) −9.67953 + 12.1377i −0.498521 + 0.625126i
\(378\) 0 0
\(379\) 0.280801 + 0.352114i 0.0144238 + 0.0180869i 0.788991 0.614405i \(-0.210604\pi\)
−0.774567 + 0.632492i \(0.782032\pi\)
\(380\) −35.1498 + 8.02272i −1.80315 + 0.411557i
\(381\) 0 0
\(382\) −8.37066 4.03110i −0.428280 0.206249i
\(383\) −11.2565 + 14.1152i −0.575180 + 0.721253i −0.981282 0.192575i \(-0.938316\pi\)
0.406102 + 0.913828i \(0.366888\pi\)
\(384\) 0 0
\(385\) −9.95966 9.35884i −0.507592 0.476971i
\(386\) 32.1001 66.6566i 1.63385 3.39273i
\(387\) 0 0
\(388\) 78.2893 + 17.8690i 3.97453 + 0.907162i
\(389\) 0.724287 + 1.50400i 0.0367228 + 0.0762557i 0.918523 0.395367i \(-0.129383\pi\)
−0.881800 + 0.471623i \(0.843668\pi\)
\(390\) 0 0
\(391\) 0.131786i 0.00666468i
\(392\) 10.6245 64.9198i 0.536617 3.27894i
\(393\) 0 0
\(394\) 17.2823 + 21.6713i 0.870670 + 1.09179i
\(395\) 3.81808 1.83869i 0.192108 0.0925145i
\(396\) 0 0
\(397\) −3.34201 6.93975i −0.167731 0.348296i 0.800113 0.599849i \(-0.204773\pi\)
−0.967843 + 0.251553i \(0.919059\pi\)
\(398\) 4.36697 + 2.10302i 0.218896 + 0.105415i
\(399\) 0 0
\(400\) 37.9275 18.2649i 1.89638 0.913247i
\(401\) −0.0933946 0.0744797i −0.00466390 0.00371934i 0.621155 0.783688i \(-0.286664\pi\)
−0.625819 + 0.779968i \(0.715235\pi\)
\(402\) 0 0
\(403\) 25.6999 + 32.2267i 1.28020 + 1.60532i
\(404\) 10.2893 + 45.0803i 0.511911 + 2.24283i
\(405\) 0 0
\(406\) 10.8231 + 16.0917i 0.537140 + 0.798618i
\(407\) 16.4804 + 13.1427i 0.816901 + 0.651457i
\(408\) 0 0
\(409\) −8.45967 + 1.93086i −0.418304 + 0.0954751i −0.426492 0.904491i \(-0.640251\pi\)
0.00818811 + 0.999966i \(0.497394\pi\)
\(410\) 50.3363i 2.48593i
\(411\) 0 0
\(412\) −23.5166 + 5.36752i −1.15858 + 0.264438i
\(413\) −0.215576 + 0.229415i −0.0106078 + 0.0112888i
\(414\) 0 0
\(415\) 0.131453 0.575932i 0.00645276 0.0282714i
\(416\) 77.3038 96.9360i 3.79013 4.75268i
\(417\) 0 0
\(418\) −42.3932 9.67598i −2.07352 0.473267i
\(419\) −4.97988 + 21.8183i −0.243283 + 1.06589i 0.694724 + 0.719276i \(0.255527\pi\)
−0.938007 + 0.346616i \(0.887331\pi\)
\(420\) 0 0
\(421\) −3.38186 14.8169i −0.164822 0.722131i −0.988013 0.154368i \(-0.950666\pi\)
0.823192 0.567764i \(-0.192191\pi\)
\(422\) 6.98795i 0.340168i
\(423\) 0 0
\(424\) 19.5333 + 85.5809i 0.948620 + 4.15618i
\(425\) −0.187256 0.0901780i −0.00908327 0.00437427i
\(426\) 0 0
\(427\) −0.703872 + 8.65910i −0.0340628 + 0.419043i
\(428\) −14.3119 + 11.4134i −0.691791 + 0.551685i
\(429\) 0 0
\(430\) −4.55581 + 3.63314i −0.219701 + 0.175206i
\(431\) 10.0936 20.9597i 0.486193 1.00959i −0.503178 0.864183i \(-0.667836\pi\)
0.989372 0.145408i \(-0.0464496\pi\)
\(432\) 0 0
\(433\) 4.12640 + 8.56856i 0.198302 + 0.411779i 0.976280 0.216513i \(-0.0694685\pi\)
−0.777977 + 0.628292i \(0.783754\pi\)
\(434\) 48.0479 18.5085i 2.30637 0.888435i
\(435\) 0 0
\(436\) −59.6044 + 28.7039i −2.85453 + 1.37467i
\(437\) −1.81991 + 7.97356i −0.0870583 + 0.381427i
\(438\) 0 0
\(439\) 1.45640 1.16144i 0.0695101 0.0554325i −0.588118 0.808775i \(-0.700131\pi\)
0.657629 + 0.753342i \(0.271560\pi\)
\(440\) −48.5443 −2.31426
\(441\) 0 0
\(442\) −1.14841 −0.0546241
\(443\) −21.6172 + 17.2392i −1.02707 + 0.819057i −0.983667 0.180000i \(-0.942390\pi\)
−0.0433990 + 0.999058i \(0.513819\pi\)
\(444\) 0 0
\(445\) −3.59936 + 15.7698i −0.170626 + 0.747561i
\(446\) −24.7137 + 11.9015i −1.17023 + 0.563552i
\(447\) 0 0
\(448\) −42.8710 63.7405i −2.02546 3.01146i
\(449\) −1.12501 2.33611i −0.0530926 0.110248i 0.872735 0.488195i \(-0.162344\pi\)
−0.925827 + 0.377947i \(0.876630\pi\)
\(450\) 0 0
\(451\) −19.2640 + 40.0021i −0.907107 + 1.88363i
\(452\) 60.6374 48.3567i 2.85214 2.27451i
\(453\) 0 0
\(454\) −18.3785 + 14.6564i −0.862548 + 0.687859i
\(455\) −16.3241 15.3393i −0.765284 0.719117i
\(456\) 0 0
\(457\) −17.3537 8.35711i −0.811773 0.390929i −0.0185252 0.999828i \(-0.505897\pi\)
−0.793248 + 0.608899i \(0.791611\pi\)
\(458\) −0.679121 2.97542i −0.0317333 0.139032i
\(459\) 0 0
\(460\) 14.4322i 0.672906i
\(461\) −2.93845 12.8742i −0.136857 0.599610i −0.996115 0.0880666i \(-0.971931\pi\)
0.859258 0.511543i \(-0.170926\pi\)
\(462\) 0 0
\(463\) 5.06271 22.1812i 0.235284 1.03085i −0.709898 0.704304i \(-0.751259\pi\)
0.945182 0.326543i \(-0.105884\pi\)
\(464\) 38.6372 + 8.81870i 1.79369 + 0.409398i
\(465\) 0 0
\(466\) 38.8157 48.6733i 1.79810 2.25475i
\(467\) 2.10430 9.21953i 0.0973753 0.426629i −0.902617 0.430444i \(-0.858357\pi\)
0.999993 + 0.00381464i \(0.00121424\pi\)
\(468\) 0 0
\(469\) −4.60063 + 14.5875i −0.212438 + 0.673589i
\(470\) 36.5322 8.33824i 1.68511 0.384614i
\(471\) 0 0
\(472\) 1.11819i 0.0514689i
\(473\) −5.01092 + 1.14371i −0.230402 + 0.0525878i
\(474\) 0 0
\(475\) −10.0844 8.04208i −0.462706 0.368996i
\(476\) −0.315556 + 1.00055i −0.0144635 + 0.0458602i
\(477\) 0 0
\(478\) 9.22879 + 40.4340i 0.422115 + 1.84941i
\(479\) −17.2516 21.6328i −0.788246 0.988429i −0.999938 0.0110924i \(-0.996469\pi\)
0.211693 0.977336i \(-0.432102\pi\)
\(480\) 0 0
\(481\) 27.0116 + 21.5410i 1.23162 + 0.982187i
\(482\) −11.7613 + 5.66393i −0.535712 + 0.257985i
\(483\) 0 0
\(484\) −7.02187 3.38156i −0.319176 0.153707i
\(485\) −9.37595 19.4694i −0.425740 0.884058i
\(486\) 0 0
\(487\) 35.6076 17.1477i 1.61353 0.777037i 0.613614 0.789606i \(-0.289715\pi\)
0.999921 + 0.0125691i \(0.00400099\pi\)
\(488\) 19.2399 + 24.1260i 0.870947 + 1.09213i
\(489\) 0 0
\(490\) −24.4071 + 13.6838i −1.10260 + 0.618171i
\(491\) 8.27699i 0.373535i −0.982404 0.186768i \(-0.940199\pi\)
0.982404 0.186768i \(-0.0598012\pi\)
\(492\) 0 0
\(493\) −0.0848964 0.176289i −0.00382354 0.00793966i
\(494\) −69.4832 15.8591i −3.12620 0.713534i
\(495\) 0 0
\(496\) 45.6546 94.8027i 2.04995 4.25677i
\(497\) 0.119652 0.204256i 0.00536711 0.00916214i
\(498\) 0 0
\(499\) −3.45628 + 4.33403i −0.154724 + 0.194018i −0.853152 0.521663i \(-0.825312\pi\)
0.698428 + 0.715681i \(0.253883\pi\)
\(500\) −56.4390 27.1796i −2.52403 1.21551i
\(501\) 0 0
\(502\) 25.5148 5.82359i 1.13878 0.259920i
\(503\) −14.2223 17.8342i −0.634141 0.795187i 0.356116 0.934442i \(-0.384101\pi\)
−0.990257 + 0.139255i \(0.955529\pi\)
\(504\) 0 0
\(505\) 7.75810 9.72835i 0.345231 0.432906i
\(506\) −7.55231 + 15.6825i −0.335741 + 0.697173i
\(507\) 0 0
\(508\) −104.266 −4.62604
\(509\) −10.5120 −0.465936 −0.232968 0.972484i \(-0.574844\pi\)
−0.232968 + 0.972484i \(0.574844\pi\)
\(510\) 0 0
\(511\) −9.64038 + 6.48399i −0.426465 + 0.286835i
\(512\) −38.2512 8.73059i −1.69048 0.385841i
\(513\) 0 0
\(514\) −11.5901 9.24278i −0.511217 0.407682i
\(515\) 5.07490 + 4.04710i 0.223627 + 0.178337i
\(516\) 0 0
\(517\) 32.2231 + 7.35472i 1.41717 + 0.323460i
\(518\) 35.8108 24.0859i 1.57344 1.05827i
\(519\) 0 0
\(520\) −79.5649 −3.48915
\(521\) 10.3652 0.454108 0.227054 0.973882i \(-0.427091\pi\)
0.227054 + 0.973882i \(0.427091\pi\)
\(522\) 0 0
\(523\) −15.5673 + 32.3258i −0.680710 + 1.41351i 0.218432 + 0.975852i \(0.429906\pi\)
−0.899142 + 0.437657i \(0.855808\pi\)
\(524\) 44.6201 55.9518i 1.94924 2.44427i
\(525\) 0 0
\(526\) 25.9038 + 32.4824i 1.12946 + 1.41630i
\(527\) −0.506484 + 0.115602i −0.0220628 + 0.00503569i
\(528\) 0 0
\(529\) −17.7726 8.55884i −0.772723 0.372124i
\(530\) 23.2801 29.1924i 1.01122 1.26804i
\(531\) 0 0
\(532\) −32.9097 + 56.1798i −1.42682 + 2.43570i
\(533\) −31.5741 + 65.5642i −1.36762 + 2.83990i
\(534\) 0 0
\(535\) 4.80251 + 1.09614i 0.207631 + 0.0473904i
\(536\) 23.5730 + 48.9498i 1.01820 + 2.11431i
\(537\) 0 0
\(538\) 10.7169i 0.462040i
\(539\) −24.6332 + 1.53372i −1.06103 + 0.0660621i
\(540\) 0 0
\(541\) 3.39539 + 4.25769i 0.145979 + 0.183052i 0.849445 0.527677i \(-0.176937\pi\)
−0.703466 + 0.710729i \(0.748365\pi\)
\(542\) −58.6032 + 28.2218i −2.51722 + 1.21223i
\(543\) 0 0
\(544\) 0.678010 + 1.40790i 0.0290694 + 0.0603633i
\(545\) 16.0395 + 7.72421i 0.687056 + 0.330869i
\(546\) 0 0
\(547\) −6.43439 + 3.09864i −0.275115 + 0.132488i −0.566354 0.824162i \(-0.691647\pi\)
0.291240 + 0.956650i \(0.405932\pi\)
\(548\) 15.0063 + 11.9671i 0.641036 + 0.511209i
\(549\) 0 0
\(550\) −17.1157 21.4624i −0.729816 0.915160i
\(551\) −2.70208 11.8386i −0.115113 0.504341i
\(552\) 0 0
\(553\) 2.30183 7.29854i 0.0978836 0.310366i
\(554\) 2.72199 + 2.17072i 0.115646 + 0.0922250i
\(555\) 0 0
\(556\) 60.8521 13.8891i 2.58070 0.589029i
\(557\) 38.5139i 1.63189i −0.578131 0.815944i \(-0.696218\pi\)
0.578131 0.815944i \(-0.303782\pi\)
\(558\) 0 0
\(559\) −8.21298 + 1.87456i −0.347372 + 0.0792854i
\(560\) −17.1991 + 54.5343i −0.726796 + 2.30450i
\(561\) 0 0
\(562\) 3.04276 13.3312i 0.128351 0.562343i
\(563\) −22.1754 + 27.8071i −0.934582 + 1.17193i 0.0503056 + 0.998734i \(0.483980\pi\)
−0.984888 + 0.173195i \(0.944591\pi\)
\(564\) 0 0
\(565\) −20.3476 4.64420i −0.856028 0.195383i
\(566\) −9.81443 + 42.9998i −0.412531 + 1.80742i
\(567\) 0 0
\(568\) −0.187102 0.819747i −0.00785062 0.0343958i
\(569\) 17.9670i 0.753215i −0.926373 0.376607i \(-0.877091\pi\)
0.926373 0.376607i \(-0.122909\pi\)
\(570\) 0 0
\(571\) −1.78530 7.82192i −0.0747125 0.327337i 0.923735 0.383031i \(-0.125120\pi\)
−0.998448 + 0.0556944i \(0.982263\pi\)
\(572\) −99.9453 48.1311i −4.17892 2.01246i
\(573\) 0 0
\(574\) 66.2445 + 62.2482i 2.76499 + 2.59819i
\(575\) −4.03677 + 3.21922i −0.168345 + 0.134251i
\(576\) 0 0
\(577\) 24.0467 19.1766i 1.00108 0.798334i 0.0215767 0.999767i \(-0.493131\pi\)
0.979502 + 0.201433i \(0.0645599\pi\)
\(578\) −20.1187 + 41.7769i −0.836827 + 1.73769i
\(579\) 0 0
\(580\) −9.29725 19.3059i −0.386047 0.801636i
\(581\) −0.595388 0.885221i −0.0247008 0.0367252i
\(582\) 0 0
\(583\) 29.6728 14.2896i 1.22892 0.591817i
\(584\) −9.18277 + 40.2323i −0.379986 + 1.66483i
\(585\) 0 0
\(586\) 43.6508 34.8103i 1.80320 1.43800i
\(587\) 40.1365 1.65661 0.828305 0.560277i \(-0.189306\pi\)
0.828305 + 0.560277i \(0.189306\pi\)
\(588\) 0 0
\(589\) −32.2408 −1.32846
\(590\) 0.371861 0.296549i 0.0153093 0.0122087i
\(591\) 0 0
\(592\) 19.6253 85.9842i 0.806596 3.53393i
\(593\) 5.84985 2.81714i 0.240224 0.115686i −0.309899 0.950770i \(-0.600295\pi\)
0.550123 + 0.835084i \(0.314581\pi\)
\(594\) 0 0
\(595\) 0.263451 0.101483i 0.0108004 0.00416041i
\(596\) −29.5136 61.2856i −1.20892 2.51036i
\(597\) 0 0
\(598\) −12.3784 + 25.7039i −0.506189 + 1.05111i
\(599\) 17.3733 13.8548i 0.709855 0.566090i −0.200613 0.979671i \(-0.564293\pi\)
0.910468 + 0.413580i \(0.135722\pi\)
\(600\) 0 0
\(601\) 1.77391 1.41465i 0.0723593 0.0577046i −0.586642 0.809846i \(-0.699551\pi\)
0.659001 + 0.752142i \(0.270979\pi\)
\(602\) −0.852580 + 10.4885i −0.0347486 + 0.427480i
\(603\) 0 0
\(604\) −102.456 49.3401i −4.16887 2.00762i
\(605\) 0.466688 + 2.04469i 0.0189736 + 0.0831286i
\(606\) 0 0
\(607\) 11.1437i 0.452309i −0.974091 0.226155i \(-0.927385\pi\)
0.974091 0.226155i \(-0.0726154\pi\)
\(608\) 21.5797 + 94.5469i 0.875173 + 3.83438i
\(609\) 0 0
\(610\) 2.92075 12.7967i 0.118258 0.518122i
\(611\) 52.8143 + 12.0545i 2.13664 + 0.487674i
\(612\) 0 0
\(613\) 13.0330 16.3429i 0.526399 0.660084i −0.445555 0.895255i \(-0.646994\pi\)
0.971954 + 0.235171i \(0.0755650\pi\)
\(614\) 1.75069 7.67026i 0.0706520 0.309547i
\(615\) 0 0
\(616\) −60.0320 + 63.8860i −2.41876 + 2.57404i
\(617\) −38.9482 + 8.88967i −1.56799 + 0.357884i −0.916267 0.400569i \(-0.868813\pi\)
−0.651728 + 0.758453i \(0.725955\pi\)
\(618\) 0 0
\(619\) 30.9056i 1.24220i −0.783730 0.621101i \(-0.786685\pi\)
0.783730 0.621101i \(-0.213315\pi\)
\(620\) −55.4665 + 12.6599i −2.22759 + 0.508433i
\(621\) 0 0
\(622\) 58.4244 + 46.5919i 2.34260 + 1.86816i
\(623\) 16.3025 + 24.2386i 0.653147 + 0.971097i
\(624\) 0 0
\(625\) 0.576143 + 2.52425i 0.0230457 + 0.100970i
\(626\) 42.0131 + 52.6828i 1.67918 + 2.10563i
\(627\) 0 0
\(628\) 49.1854 + 39.2241i 1.96271 + 1.56521i
\(629\) −0.392318 + 0.188930i −0.0156427 + 0.00753314i
\(630\) 0 0
\(631\) 37.0455 + 17.8402i 1.47476 + 0.710207i 0.986692 0.162599i \(-0.0519877\pi\)
0.488068 + 0.872806i \(0.337702\pi\)
\(632\) −11.7942 24.4910i −0.469149 0.974199i
\(633\) 0 0
\(634\) 37.0613 17.8478i 1.47189 0.708825i
\(635\) 17.4938 + 21.9365i 0.694219 + 0.870523i
\(636\) 0 0
\(637\) −40.3742 + 2.51380i −1.59968 + 0.0996002i
\(638\) 25.8437i 1.02316i
\(639\) 0 0
\(640\) 23.0794 + 47.9248i 0.912293 + 1.89440i
\(641\) 9.56366 + 2.18284i 0.377742 + 0.0862171i 0.407176 0.913350i \(-0.366513\pi\)
−0.0294344 + 0.999567i \(0.509371\pi\)
\(642\) 0 0
\(643\) 5.92252 12.2982i 0.233561 0.484995i −0.750940 0.660370i \(-0.770399\pi\)
0.984502 + 0.175375i \(0.0561138\pi\)
\(644\) 18.9933 + 17.8475i 0.748442 + 0.703292i
\(645\) 0 0
\(646\) 0.560051 0.702282i 0.0220349 0.0276309i
\(647\) −11.6891 5.62917i −0.459546 0.221306i 0.189764 0.981830i \(-0.439228\pi\)
−0.649310 + 0.760524i \(0.724942\pi\)
\(648\) 0 0
\(649\) 0.409008 0.0933534i 0.0160550 0.00366444i
\(650\) −28.0529 35.1773i −1.10033 1.37977i
\(651\) 0 0
\(652\) 31.1415 39.0502i 1.21960 1.52932i
\(653\) 1.93538 4.01886i 0.0757374 0.157270i −0.859662 0.510863i \(-0.829326\pi\)
0.935399 + 0.353593i \(0.115040\pi\)
\(654\) 0 0
\(655\) −19.2581 −0.752476
\(656\) 185.766 7.25294
\(657\) 0 0
\(658\) 34.2040 58.3892i 1.33341 2.27625i
\(659\) 30.2786 + 6.91089i 1.17949 + 0.269210i 0.766935 0.641724i \(-0.221781\pi\)
0.412551 + 0.910934i \(0.364638\pi\)
\(660\) 0 0
\(661\) 12.1178 + 9.66364i 0.471329 + 0.375872i 0.830155 0.557532i \(-0.188252\pi\)
−0.358827 + 0.933404i \(0.616823\pi\)
\(662\) 30.0382 + 23.9547i 1.16747 + 0.931025i
\(663\) 0 0
\(664\) −3.69431 0.843201i −0.143367 0.0327225i
\(665\) 17.3413 2.50199i 0.672466 0.0970232i
\(666\) 0 0
\(667\) −4.86083 −0.188212
\(668\) 115.317 4.46174
\(669\) 0 0
\(670\) 10.0269 20.8211i 0.387373 0.804388i
\(671\) 7.21848 9.05168i 0.278666 0.349436i
\(672\) 0 0
\(673\) 4.35420 + 5.46000i 0.167842 + 0.210467i 0.858638 0.512582i \(-0.171311\pi\)
−0.690796 + 0.723050i \(0.742740\pi\)
\(674\) 5.31452 1.21300i 0.204708 0.0467232i
\(675\) 0 0
\(676\) −100.045 48.1791i −3.84788 1.85304i
\(677\) −16.8312 + 21.1057i −0.646877 + 0.811158i −0.991844 0.127457i \(-0.959319\pi\)
0.344967 + 0.938615i \(0.387890\pi\)
\(678\) 0 0
\(679\) −37.2171 11.7376i −1.42826 0.450448i
\(680\) 0.435097 0.903487i 0.0166852 0.0346472i
\(681\) 0 0
\(682\) −66.8966 15.2687i −2.56160 0.584669i
\(683\) 1.44083 + 2.99191i 0.0551318 + 0.114482i 0.926715 0.375766i \(-0.122620\pi\)
−0.871583 + 0.490248i \(0.836906\pi\)
\(684\) 0 0
\(685\) 5.16502i 0.197345i
\(686\) −12.1746 + 49.0427i −0.464828 + 1.87246i
\(687\) 0 0
\(688\) 13.4081 + 16.8132i 0.511178 + 0.640997i
\(689\) 48.6342 23.4210i 1.85281 0.892268i
\(690\) 0 0
\(691\) 13.0674 + 27.1348i 0.497109 + 1.03226i 0.987037 + 0.160495i \(0.0513090\pi\)
−0.489928 + 0.871763i \(0.662977\pi\)
\(692\) 30.9000 + 14.8806i 1.17464 + 0.565677i
\(693\) 0 0
\(694\) −52.2137 + 25.1448i −1.98200 + 0.954483i
\(695\) −13.1319 10.4724i −0.498122 0.397239i
\(696\) 0 0
\(697\) −0.571844 0.717069i −0.0216601 0.0271609i
\(698\) −9.53813 41.7893i −0.361024 1.58175i
\(699\) 0 0
\(700\) −38.3566 + 14.7753i −1.44974 + 0.558454i
\(701\) −38.2616 30.5126i −1.44512 1.15244i −0.960693 0.277614i \(-0.910457\pi\)
−0.484427 0.874831i \(-0.660972\pi\)
\(702\) 0 0
\(703\) −26.3459 + 6.01328i −0.993654 + 0.226795i
\(704\) 102.369i 3.85817i
\(705\) 0 0
\(706\) 40.1857 9.17211i 1.51241 0.345197i
\(707\) −3.20885 22.2405i −0.120681 0.836439i
\(708\) 0 0
\(709\) −4.52772 + 19.8372i −0.170042 + 0.745003i 0.815938 + 0.578140i \(0.196221\pi\)
−0.985980 + 0.166864i \(0.946636\pi\)
\(710\) −0.222991 + 0.279622i −0.00836872 + 0.0104940i
\(711\) 0 0
\(712\) 101.155 + 23.0880i 3.79095 + 0.865259i
\(713\) −2.87183 + 12.5823i −0.107551 + 0.471211i
\(714\) 0 0
\(715\) 6.64257 + 29.1030i 0.248418 + 1.08839i
\(716\) 57.5097i 2.14924i
\(717\) 0 0
\(718\) −0.765462 3.35371i −0.0285668 0.125159i
\(719\) 17.1150 + 8.24217i 0.638283 + 0.307381i 0.724893 0.688861i \(-0.241889\pi\)
−0.0866100 + 0.996242i \(0.527603\pi\)
\(720\) 0 0
\(721\) 11.6020 1.67393i 0.432081 0.0623405i
\(722\) 3.05336 2.43498i 0.113634 0.0906205i
\(723\) 0 0
\(724\) −62.2119 + 49.6123i −2.31209 + 1.84383i
\(725\) 3.32616 6.90684i 0.123530 0.256513i
\(726\) 0 0
\(727\) −3.14524 6.53117i −0.116651 0.242228i 0.834466 0.551059i \(-0.185776\pi\)
−0.951117 + 0.308832i \(0.900062\pi\)
\(728\) −98.3936 + 104.710i −3.64671 + 3.88082i
\(729\) 0 0
\(730\) 15.8148 7.61602i 0.585333 0.281881i
\(731\) 0.0236260 0.103512i 0.000873839 0.00382854i
\(732\) 0 0
\(733\) 11.1482 8.89042i 0.411770 0.328375i −0.395598 0.918424i \(-0.629463\pi\)
0.807368 + 0.590048i \(0.200891\pi\)
\(734\) −24.0358 −0.887179
\(735\) 0 0
\(736\) 38.8201 1.43093
\(737\) 15.9367 12.7091i 0.587036 0.468145i
\(738\) 0 0
\(739\) −11.0300 + 48.3255i −0.405744 + 1.77768i 0.197686 + 0.980265i \(0.436657\pi\)
−0.603430 + 0.797416i \(0.706200\pi\)
\(740\) −42.9639 + 20.6903i −1.57938 + 0.760591i
\(741\) 0 0
\(742\) −9.62895 66.7381i −0.353490 2.45003i
\(743\) −11.8289 24.5630i −0.433962 0.901131i −0.997196 0.0748335i \(-0.976157\pi\)
0.563234 0.826297i \(-0.309557\pi\)
\(744\) 0 0
\(745\) −7.94209 + 16.4919i −0.290976 + 0.604217i
\(746\) −48.2051 + 38.4423i −1.76491 + 1.40747i
\(747\) 0 0
\(748\) 1.09309 0.871712i 0.0399674 0.0318730i
\(749\) 7.38157 4.96475i 0.269717 0.181408i
\(750\) 0 0
\(751\) 20.0306 + 9.64622i 0.730926 + 0.351996i 0.762048 0.647520i \(-0.224194\pi\)
−0.0311220 + 0.999516i \(0.509908\pi\)
\(752\) −30.7722 134.822i −1.12215 4.91645i
\(753\) 0 0
\(754\) 42.3582i 1.54260i
\(755\) 6.80942 + 29.8340i 0.247820 + 1.08577i
\(756\) 0 0
\(757\) 8.60933 37.7200i 0.312912 1.37096i −0.536801 0.843709i \(-0.680367\pi\)
0.849713 0.527246i \(-0.176775\pi\)
\(758\) −1.19800 0.273435i −0.0435132 0.00993159i
\(759\) 0 0
\(760\) 38.8020 48.6561i 1.40750 1.76494i
\(761\) 0.614011 2.69016i 0.0222579 0.0975181i −0.962579 0.271002i \(-0.912645\pi\)
0.984837 + 0.173483i \(0.0555023\pi\)
\(762\) 0 0
\(763\) 30.0005 11.5564i 1.08609 0.418371i
\(764\) 18.0740 4.12527i 0.653894 0.149247i
\(765\) 0 0
\(766\) 49.2591i 1.77980i
\(767\) 0.670371 0.153008i 0.0242057 0.00552479i
\(768\) 0 0
\(769\) −7.05593 5.62692i −0.254443 0.202912i 0.487958 0.872867i \(-0.337742\pi\)
−0.742402 + 0.669955i \(0.766313\pi\)
\(770\) 37.1665 + 3.02115i 1.33939 + 0.108875i
\(771\) 0 0
\(772\) 32.8501 + 143.926i 1.18230 + 5.18000i
\(773\) 30.1925 + 37.8602i 1.08595 + 1.36174i 0.927265 + 0.374406i \(0.122153\pi\)
0.158683 + 0.987330i \(0.449275\pi\)
\(774\) 0 0
\(775\) −15.9133 12.6904i −0.571622 0.455853i
\(776\) −124.886 + 60.1418i −4.48314 + 2.15897i
\(777\) 0 0
\(778\) −4.10355 1.97617i −0.147119 0.0708490i
\(779\) −24.6964 51.2826i −0.884840 1.83739i
\(780\) 0 0
\(781\) −0.284224 + 0.136875i −0.0101703 + 0.00489777i
\(782\) −0.224187 0.281121i −0.00801690 0.0100529i
\(783\) 0 0
\(784\) 50.4999 + 90.0743i 1.80357 + 3.21694i
\(785\) 16.9292i 0.604228i
\(786\) 0 0
\(787\) −13.1796 27.3678i −0.469803 0.975555i −0.992409 0.122981i \(-0.960755\pi\)
0.522606 0.852574i \(-0.324960\pi\)
\(788\) −53.9234 12.3077i −1.92094 0.438442i
\(789\) 0 0
\(790\) −5.01674 + 10.4174i −0.178488 + 0.370633i
\(791\) −31.2747 + 21.0349i −1.11200 + 0.747916i
\(792\) 0 0
\(793\) 11.8312 14.8359i 0.420138 0.526837i
\(794\) 18.9346 + 9.11844i 0.671965 + 0.323601i
\(795\) 0 0
\(796\) −9.42919 + 2.15215i −0.334209 + 0.0762810i
\(797\) 24.2001 + 30.3459i 0.857211 + 1.07491i 0.996411 + 0.0846444i \(0.0269754\pi\)
−0.139200 + 0.990264i \(0.544453\pi\)
\(798\) 0 0
\(799\) −0.425696 + 0.533806i −0.0150600 + 0.0188847i
\(800\) −26.5638 + 55.1602i −0.939171 + 1.95021i
\(801\) 0 0
\(802\) 0.325928 0.0115089
\(803\) 15.4827 0.546372
\(804\) 0 0
\(805\) 0.568235 6.99048i 0.0200277 0.246382i
\(806\) −109.645 25.0257i −3.86207 0.881492i
\(807\) 0 0
\(808\) −62.4023 49.7642i −2.19531 1.75070i
\(809\) 3.92906 + 3.13332i 0.138138 + 0.110162i 0.690121 0.723694i \(-0.257557\pi\)
−0.551983 + 0.833855i \(0.686129\pi\)
\(810\) 0 0
\(811\) −17.2672 3.94113i −0.606334 0.138392i −0.0916784 0.995789i \(-0.529223\pi\)
−0.514656 + 0.857397i \(0.672080\pi\)
\(812\) −36.9047 11.6391i −1.29510 0.408452i
\(813\) 0 0
\(814\) −57.5131 −2.01583
\(815\) −13.4407 −0.470808
\(816\) 0 0
\(817\) 2.85894 5.93665i 0.100022 0.207697i
\(818\) 14.7613 18.5100i 0.516115 0.647188i
\(819\) 0 0
\(820\) −62.6243 78.5284i −2.18693 2.74233i
\(821\) 13.2116 3.01546i 0.461088 0.105240i 0.0143343 0.999897i \(-0.495437\pi\)
0.446754 + 0.894657i \(0.352580\pi\)
\(822\) 0 0
\(823\) 21.2656 + 10.2410i 0.741272 + 0.356978i 0.766106 0.642714i \(-0.222192\pi\)
−0.0248343 + 0.999692i \(0.507906\pi\)
\(824\) 25.9600 32.5529i 0.904361 1.13403i
\(825\) 0 0
\(826\) 0.0695905 0.856109i 0.00242136 0.0297878i
\(827\) 9.12986 18.9583i 0.317476 0.659246i −0.679769 0.733427i \(-0.737920\pi\)
0.997245 + 0.0741803i \(0.0236340\pi\)
\(828\) 0 0
\(829\) −11.6767 2.66512i −0.405547 0.0925635i 0.0148811 0.999889i \(-0.495263\pi\)
−0.420428 + 0.907326i \(0.638120\pi\)
\(830\) 0.699335 + 1.45218i 0.0242743 + 0.0504061i
\(831\) 0 0
\(832\) 167.784i 5.81687i
\(833\) 0.192239 0.472210i 0.00666069 0.0163611i
\(834\) 0 0
\(835\) −19.3479 24.2615i −0.669562 0.839604i
\(836\) 78.1746 37.6469i 2.70372 1.30205i
\(837\) 0 0
\(838\) −26.4932 55.0137i −0.915192 1.90042i
\(839\) −29.2161 14.0697i −1.00865 0.485741i −0.144786 0.989463i \(-0.546249\pi\)
−0.863866 + 0.503722i \(0.831964\pi\)
\(840\) 0 0
\(841\) −19.6258 + 9.45128i −0.676751 + 0.325906i
\(842\) 32.4198 + 25.8540i 1.11726 + 0.890986i
\(843\) 0 0
\(844\) −8.69382 10.9017i −0.299254 0.375252i
\(845\) 6.64918 + 29.1320i 0.228739 + 1.00217i
\(846\) 0 0
\(847\) 3.26802 + 1.91438i 0.112290 + 0.0657790i
\(848\) −107.734 85.9151i −3.69961 2.95034i
\(849\) 0 0
\(850\) 0.552857 0.126186i 0.0189628 0.00432814i
\(851\) 10.8174i 0.370815i
\(852\) 0 0
\(853\) −13.7231 + 3.13220i −0.469869 + 0.107245i −0.450898 0.892575i \(-0.648896\pi\)
−0.0189712 + 0.999820i \(0.506039\pi\)
\(854\) −13.2289 19.6688i −0.452685 0.673051i
\(855\) 0 0
\(856\) 7.03118 30.8056i 0.240321 1.05291i
\(857\) 20.2084 25.3405i 0.690305 0.865615i −0.305953 0.952047i \(-0.598975\pi\)
0.996258 + 0.0864314i \(0.0275463\pi\)
\(858\) 0 0
\(859\) −36.9589 8.43563i −1.26102 0.287820i −0.460789 0.887510i \(-0.652434\pi\)
−0.800233 + 0.599689i \(0.795291\pi\)
\(860\) 2.58735 11.3359i 0.0882280 0.386552i
\(861\) 0 0
\(862\) 14.1240 + 61.8814i 0.481066 + 2.10769i
\(863\) 16.3192i 0.555513i −0.960652 0.277756i \(-0.910409\pi\)
0.960652 0.277756i \(-0.0895908\pi\)
\(864\) 0 0
\(865\) −2.05367 8.99774i −0.0698270 0.305932i
\(866\) −23.3787 11.2586i −0.794442 0.382583i
\(867\) 0 0
\(868\) −51.9316 + 88.6518i −1.76267 + 3.00904i
\(869\) −7.97358 + 6.35872i −0.270485 + 0.215705i
\(870\) 0 0
\(871\) 26.1205 20.8304i 0.885060 0.705812i
\(872\) 49.5467 102.885i 1.67786 3.48412i
\(873\) 0 0
\(874\) −9.68202 20.1049i −0.327499 0.680059i
\(875\) 26.2670 + 15.3870i 0.887988 + 0.520177i
\(876\) 0 0
\(877\) 6.46697 3.11433i 0.218374 0.105163i −0.321499 0.946910i \(-0.604187\pi\)
0.539873 + 0.841747i \(0.318472\pi\)
\(878\) −1.13097 + 4.95510i −0.0381684 + 0.167227i
\(879\) 0 0
\(880\) 59.5781 47.5120i 2.00838 1.60163i
\(881\) 38.2817 1.28974 0.644872 0.764291i \(-0.276911\pi\)
0.644872 + 0.764291i \(0.276911\pi\)
\(882\) 0 0
\(883\) −40.4654 −1.36177 −0.680884 0.732391i \(-0.738404\pi\)
−0.680884 + 0.732391i \(0.738404\pi\)
\(884\) 1.79160 1.42875i 0.0602579 0.0480541i
\(885\) 0 0
\(886\) 16.7869 73.5482i 0.563967 2.47090i
\(887\) 17.2248 8.29505i 0.578354 0.278520i −0.121751 0.992561i \(-0.538851\pi\)
0.700105 + 0.714040i \(0.253137\pi\)
\(888\) 0 0
\(889\) 50.5028 + 4.10522i 1.69381 + 0.137685i
\(890\) −19.1487 39.7628i −0.641867 1.33285i
\(891\) 0 0
\(892\) 23.7484 49.3140i 0.795154 1.65115i
\(893\) −33.1280 + 26.4187i −1.10859 + 0.884068i
\(894\) 0 0
\(895\) −12.0995 + 9.64901i −0.404441 + 0.322531i
\(896\) 91.6119 + 28.8927i 3.06054 + 0.965238i
\(897\) 0 0
\(898\) 6.37392 + 3.06952i 0.212700 + 0.102431i
\(899\) −4.26389 18.6813i −0.142209 0.623058i
\(900\) 0 0
\(901\) 0.680335i 0.0226652i
\(902\) −26.9561 118.102i −0.897541 3.93238i
\(903\) 0 0
\(904\) −29.7901 + 130.519i −0.990804 + 4.34100i
\(905\) 20.8759 + 4.76479i 0.693938 + 0.158387i
\(906\) 0 0
\(907\) −14.0043 + 17.5608i −0.465005 + 0.583097i −0.957940 0.286969i \(-0.907352\pi\)
0.492935 + 0.870066i \(0.335924\pi\)
\(908\) 10.4376 45.7301i 0.346384 1.51761i
\(909\) 0 0
\(910\) 60.9165 + 4.95172i 2.01936 + 0.164148i
\(911\) 29.8696 6.81755i 0.989625 0.225876i 0.303082 0.952964i \(-0.401984\pi\)
0.686543 + 0.727089i \(0.259127\pi\)
\(912\) 0 0
\(913\) 1.42169i 0.0470510i
\(914\) 51.2352 11.6941i 1.69471 0.386806i
\(915\) 0 0
\(916\) 4.76126 + 3.79697i 0.157316 + 0.125456i
\(917\) −23.8155 + 25.3444i −0.786455 + 0.836945i
\(918\) 0 0
\(919\) −2.15709 9.45085i −0.0711560 0.311755i 0.926808 0.375536i \(-0.122541\pi\)
−0.997964 + 0.0637809i \(0.979684\pi\)
\(920\) −15.5323 19.4769i −0.512085 0.642134i
\(921\) 0 0
\(922\) 28.1691 + 22.4641i 0.927700 + 0.739816i
\(923\) −0.465848 + 0.224341i −0.0153336 + 0.00738426i
\(924\) 0 0
\(925\) −15.3706 7.40210i −0.505383 0.243380i
\(926\) 26.9339 + 55.9288i 0.885102 + 1.83793i
\(927\) 0 0
\(928\) −51.9296 + 25.0080i −1.70467 + 0.820927i
\(929\) −31.6092 39.6367i −1.03706 1.30044i −0.952671 0.304005i \(-0.901676\pi\)
−0.0843934 0.996433i \(-0.526895\pi\)
\(930\) 0 0
\(931\) 18.1523 25.9158i 0.594918 0.849358i
\(932\) 124.225i 4.06913i
\(933\) 0 0
\(934\) 11.1950 + 23.2466i 0.366310 + 0.760651i
\(935\) −0.366799 0.0837196i −0.0119956 0.00273792i
\(936\) 0 0
\(937\) −19.2346 + 39.9410i −0.628366 + 1.30482i 0.307193 + 0.951647i \(0.400610\pi\)
−0.935559 + 0.353169i \(0.885104\pi\)
\(938\) −15.0016 38.9440i −0.489819 1.27157i
\(939\) 0 0
\(940\) −46.6192 + 58.4586i −1.52055 + 1.90671i
\(941\) 26.4894 + 12.7566i 0.863531 + 0.415855i 0.812582 0.582847i \(-0.198061\pi\)
0.0509489 + 0.998701i \(0.483775\pi\)
\(942\) 0 0
\(943\) −22.2134 + 5.07006i −0.723368 + 0.165104i
\(944\) −1.09441 1.37235i −0.0356201 0.0446662i
\(945\) 0 0
\(946\) 8.74354 10.9640i 0.284277 0.356472i
\(947\) −2.71697 + 5.64184i −0.0882896 + 0.183335i −0.940438 0.339965i \(-0.889585\pi\)
0.852149 + 0.523300i \(0.175299\pi\)
\(948\) 0 0
\(949\) 25.3764 0.823753
\(950\) 35.1927 1.14180
\(951\) 0 0
\(952\) −0.650963 1.68990i −0.0210978 0.0547699i
\(953\) 32.7472 + 7.47433i 1.06078 + 0.242117i 0.717102 0.696968i \(-0.245468\pi\)
0.343683 + 0.939086i \(0.388325\pi\)
\(954\) 0 0
\(955\) −3.90038 3.11045i −0.126213 0.100652i
\(956\) −64.7022 51.5983i −2.09262 1.66881i
\(957\) 0 0
\(958\) 73.6013 + 16.7990i 2.37795 + 0.542751i
\(959\) −6.79736 6.38730i −0.219498 0.206257i
\(960\) 0 0
\(961\) −19.8760 −0.641161
\(962\) −94.2650 −3.03922
\(963\) 0 0
\(964\) 11.3019 23.4686i 0.364009 0.755872i
\(965\) 24.7689 31.0592i 0.797340 0.999833i
\(966\) 0 0
\(967\) 14.9573 + 18.7559i 0.480994 + 0.603148i 0.961825 0.273666i \(-0.0882362\pi\)
−0.480830 + 0.876814i \(0.659665\pi\)
\(968\) 13.1156 2.99356i 0.421552 0.0962166i
\(969\) 0 0
\(970\) 53.1208 + 25.5816i 1.70561 + 0.821377i
\(971\) 11.3142 14.1875i 0.363090 0.455300i −0.566410 0.824124i \(-0.691668\pi\)
0.929499 + 0.368824i \(0.120239\pi\)
\(972\) 0 0
\(973\) −30.0216 + 4.33150i −0.962447 + 0.138862i
\(974\) −46.7864 + 97.1529i −1.49913 + 3.11298i
\(975\) 0 0
\(976\) −47.2260 10.7790i −1.51167 0.345028i
\(977\) 25.0756 + 52.0700i 0.802239 + 1.66587i 0.744583 + 0.667530i \(0.232648\pi\)
0.0576562 + 0.998336i \(0.481637\pi\)
\(978\) 0 0
\(979\) 38.9277i 1.24414i
\(980\) 21.0527 51.7131i 0.672503 1.65191i
\(981\) 0 0
\(982\) 14.0804 + 17.6563i 0.449324 + 0.563434i
\(983\) −8.47856 + 4.08306i −0.270424 + 0.130229i −0.564182 0.825650i \(-0.690808\pi\)
0.293758 + 0.955880i \(0.405094\pi\)
\(984\) 0 0
\(985\) 6.45788 + 13.4099i 0.205765 + 0.427276i
\(986\) 0.480993 + 0.231634i 0.0153179 + 0.00737673i
\(987\) 0 0
\(988\) 128.130 61.7039i 4.07634 1.96306i
\(989\) −2.06218 1.64453i −0.0655735 0.0522932i
\(990\) 0 0
\(991\) −3.54604 4.44660i −0.112644 0.141251i 0.722313 0.691566i \(-0.243079\pi\)
−0.834957 + 0.550315i \(0.814508\pi\)
\(992\) 34.0528 + 149.195i 1.08118 + 4.73695i
\(993\) 0 0
\(994\) 0.0922321 + 0.639259i 0.00292542 + 0.0202761i
\(995\) 2.03483 + 1.62272i 0.0645083 + 0.0514437i
\(996\) 0 0
\(997\) −8.69273 + 1.98406i −0.275302 + 0.0628358i −0.357943 0.933744i \(-0.616522\pi\)
0.0826410 + 0.996579i \(0.473665\pi\)
\(998\) 15.1249i 0.478770i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.w.a.188.1 120
3.2 odd 2 inner 441.2.w.a.188.20 yes 120
49.6 odd 14 inner 441.2.w.a.251.20 yes 120
147.104 even 14 inner 441.2.w.a.251.1 yes 120
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.w.a.188.1 120 1.1 even 1 trivial
441.2.w.a.188.20 yes 120 3.2 odd 2 inner
441.2.w.a.251.1 yes 120 147.104 even 14 inner
441.2.w.a.251.20 yes 120 49.6 odd 14 inner