Properties

Label 441.2.p.b.215.3
Level $441$
Weight $2$
Character 441.215
Analytic conductor $3.521$
Analytic rank $0$
Dimension $8$
CM discriminant -7
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,2,Mod(80,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.80");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.12745506816.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 8x^{6} + 55x^{4} - 72x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 215.3
Root \(1.00781 + 0.581861i\) of defining polynomial
Character \(\chi\) \(=\) 441.215
Dual form 441.2.p.b.80.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00781 + 0.581861i) q^{2} +(-0.322876 - 0.559237i) q^{4} -3.07892i q^{8} +O(q^{10})\) \(q+(1.00781 + 0.581861i) q^{2} +(-0.322876 - 0.559237i) q^{4} -3.07892i q^{8} +(5.68986 - 3.28504i) q^{11} +(1.14575 - 1.98450i) q^{16} +7.64575 q^{22} +(1.65861 + 0.957598i) q^{23} +(2.50000 + 4.33013i) q^{25} -8.89753i q^{29} +(-3.02344 + 1.74558i) q^{32} +(-5.29150 + 9.16515i) q^{37} -5.29150 q^{43} +(-3.67423 - 2.12132i) q^{44} +(1.11438 + 1.93016i) q^{46} +5.81861i q^{50} +(-0.357016 + 0.206123i) q^{53} +(5.17712 - 8.96704i) q^{58} -8.64575 q^{64} +(2.00000 + 3.46410i) q^{67} +15.0554i q^{71} +(-10.6657 + 6.15784i) q^{74} +(-4.00000 + 6.92820i) q^{79} +(-5.33284 - 3.07892i) q^{86} +(-10.1144 - 17.5186i) q^{88} -1.23674i q^{92} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 8 q^{4} - 12 q^{16} + 40 q^{22} + 20 q^{25} - 44 q^{46} + 52 q^{58} - 48 q^{64} + 16 q^{67} - 32 q^{79} - 28 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00781 + 0.581861i 0.712631 + 0.411438i 0.812035 0.583609i \(-0.198360\pi\)
−0.0994033 + 0.995047i \(0.531693\pi\)
\(3\) 0 0
\(4\) −0.322876 0.559237i −0.161438 0.279619i
\(5\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 3.07892i 1.08856i
\(9\) 0 0
\(10\) 0 0
\(11\) 5.68986 3.28504i 1.71556 0.990478i 0.788941 0.614468i \(-0.210630\pi\)
0.926616 0.376009i \(-0.122704\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.14575 1.98450i 0.286438 0.496125i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 7.64575 1.63008
\(23\) 1.65861 + 0.957598i 0.345844 + 0.199673i 0.662853 0.748749i \(-0.269345\pi\)
−0.317009 + 0.948422i \(0.602679\pi\)
\(24\) 0 0
\(25\) 2.50000 + 4.33013i 0.500000 + 0.866025i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.89753i 1.65223i −0.563502 0.826115i \(-0.690546\pi\)
0.563502 0.826115i \(-0.309454\pi\)
\(30\) 0 0
\(31\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(32\) −3.02344 + 1.74558i −0.534473 + 0.308578i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.29150 + 9.16515i −0.869918 + 1.50674i −0.00783774 + 0.999969i \(0.502495\pi\)
−0.862080 + 0.506772i \(0.830838\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −5.29150 −0.806947 −0.403473 0.914991i \(-0.632197\pi\)
−0.403473 + 0.914991i \(0.632197\pi\)
\(44\) −3.67423 2.12132i −0.553912 0.319801i
\(45\) 0 0
\(46\) 1.11438 + 1.93016i 0.164306 + 0.284587i
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 5.81861i 0.822876i
\(51\) 0 0
\(52\) 0 0
\(53\) −0.357016 + 0.206123i −0.0490400 + 0.0283132i −0.524320 0.851522i \(-0.675680\pi\)
0.475280 + 0.879835i \(0.342347\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 5.17712 8.96704i 0.679790 1.17743i
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 0 0
\(61\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.64575 −1.08072
\(65\) 0 0
\(66\) 0 0
\(67\) 2.00000 + 3.46410i 0.244339 + 0.423207i 0.961946 0.273241i \(-0.0880957\pi\)
−0.717607 + 0.696449i \(0.754762\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 15.0554i 1.78674i 0.449319 + 0.893372i \(0.351667\pi\)
−0.449319 + 0.893372i \(0.648333\pi\)
\(72\) 0 0
\(73\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(74\) −10.6657 + 6.15784i −1.23986 + 0.715834i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −4.00000 + 6.92820i −0.450035 + 0.779484i −0.998388 0.0567635i \(-0.981922\pi\)
0.548352 + 0.836247i \(0.315255\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −5.33284 3.07892i −0.575055 0.332008i
\(87\) 0 0
\(88\) −10.1144 17.5186i −1.07820 1.86749i
\(89\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 1.23674i 0.128939i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1.61438 2.79619i 0.161438 0.279619i
\(101\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) 0 0
\(103\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −0.479741 −0.0465965
\(107\) 9.00708 + 5.20024i 0.870747 + 0.502726i 0.867596 0.497269i \(-0.165664\pi\)
0.00315068 + 0.999995i \(0.498997\pi\)
\(108\) 0 0
\(109\) −5.29150 9.16515i −0.506834 0.877862i −0.999969 0.00790932i \(-0.997482\pi\)
0.493135 0.869953i \(-0.335851\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 13.5524i 1.27490i 0.770490 + 0.637452i \(0.220012\pi\)
−0.770490 + 0.637452i \(0.779988\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −4.97583 + 2.87280i −0.461994 + 0.266732i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 16.0830 27.8566i 1.46209 2.53242i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) −2.66642 1.53946i −0.235681 0.136070i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 4.65489i 0.402121i
\(135\) 0 0
\(136\) 0 0
\(137\) 19.0852 11.0188i 1.63056 0.941404i 0.646639 0.762796i \(-0.276174\pi\)
0.983920 0.178607i \(-0.0571592\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −8.76013 + 15.1730i −0.735134 + 1.27329i
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 6.83399 0.561750
\(149\) −6.99145 4.03652i −0.572762 0.330684i 0.185490 0.982646i \(-0.440613\pi\)
−0.758252 + 0.651962i \(0.773946\pi\)
\(150\) 0 0
\(151\) 2.64575 + 4.58258i 0.215308 + 0.372925i 0.953368 0.301811i \(-0.0975911\pi\)
−0.738060 + 0.674735i \(0.764258\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(158\) −8.06250 + 4.65489i −0.641418 + 0.370323i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −10.0000 + 17.3205i −0.783260 + 1.35665i 0.146772 + 0.989170i \(0.453112\pi\)
−0.930033 + 0.367477i \(0.880222\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 1.70850 + 2.95920i 0.130272 + 0.225637i
\(173\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 15.0554i 1.13484i
\(177\) 0 0
\(178\) 0 0
\(179\) −13.7524 + 7.93993i −1.02790 + 0.593458i −0.916382 0.400304i \(-0.868904\pi\)
−0.111518 + 0.993762i \(0.535571\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 2.94837 5.10672i 0.217357 0.376473i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 21.1008 + 12.1826i 1.52680 + 0.881500i 0.999493 + 0.0318264i \(0.0101324\pi\)
0.527309 + 0.849674i \(0.323201\pi\)
\(192\) 0 0
\(193\) 10.5830 + 18.3303i 0.761781 + 1.31944i 0.941932 + 0.335805i \(0.109008\pi\)
−0.180150 + 0.983639i \(0.557658\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 25.8681i 1.84303i −0.388348 0.921513i \(-0.626954\pi\)
0.388348 0.921513i \(-0.373046\pi\)
\(198\) 0 0
\(199\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(200\) 13.3321 7.69730i 0.942722 0.544281i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 26.4575 1.82141 0.910705 0.413057i \(-0.135539\pi\)
0.910705 + 0.413057i \(0.135539\pi\)
\(212\) 0.230544 + 0.133105i 0.0158338 + 0.00914166i
\(213\) 0 0
\(214\) 6.05163 + 10.4817i 0.413681 + 0.716517i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 12.3157i 0.834123i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −7.88562 + 13.6583i −0.524544 + 0.908536i
\(227\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(228\) 0 0
\(229\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −27.3948 −1.79855
\(233\) −26.4337 15.2615i −1.73173 0.999813i −0.875522 0.483178i \(-0.839482\pi\)
−0.856205 0.516636i \(-0.827184\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 7.39458i 0.478316i −0.970981 0.239158i \(-0.923129\pi\)
0.970981 0.239158i \(-0.0768713\pi\)
\(240\) 0 0
\(241\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(242\) 32.4173 18.7161i 2.08386 1.20312i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 12.5830 0.791087
\(254\) −16.1250 9.30978i −1.01177 0.584147i
\(255\) 0 0
\(256\) 6.85425 + 11.8719i 0.428391 + 0.741994i
\(257\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −16.3555 + 9.44288i −1.00853 + 0.582273i −0.910760 0.412936i \(-0.864503\pi\)
−0.0977664 + 0.995209i \(0.531170\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 1.29150 2.23695i 0.0788911 0.136643i
\(269\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(270\) 0 0
\(271\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 25.6458 1.54932
\(275\) 28.4493 + 16.4252i 1.71556 + 0.990478i
\(276\) 0 0
\(277\) 5.00000 + 8.66025i 0.300421 + 0.520344i 0.976231 0.216731i \(-0.0695395\pi\)
−0.675810 + 0.737075i \(0.736206\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3.41815i 0.203910i −0.994789 0.101955i \(-0.967490\pi\)
0.994789 0.101955i \(-0.0325097\pi\)
\(282\) 0 0
\(283\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(284\) 8.41952 4.86101i 0.499606 0.288448i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 28.2188 + 16.2921i 1.64018 + 0.946959i
\(297\) 0 0
\(298\) −4.69738 8.13611i −0.272112 0.471312i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 6.15784i 0.354344i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(312\) 0 0
\(313\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 5.16601 0.290611
\(317\) −14.3399 8.27916i −0.805410 0.465004i 0.0399492 0.999202i \(-0.487280\pi\)
−0.845359 + 0.534198i \(0.820614\pi\)
\(318\) 0 0
\(319\) −29.2288 50.6257i −1.63650 2.83449i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) −20.1563 + 11.6372i −1.11635 + 0.644526i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.64575 4.58258i 0.145424 0.251881i −0.784107 0.620625i \(-0.786879\pi\)
0.929531 + 0.368744i \(0.120212\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −21.1660 −1.15299 −0.576493 0.817102i \(-0.695579\pi\)
−0.576493 + 0.817102i \(0.695579\pi\)
\(338\) 13.1016 + 7.56419i 0.712631 + 0.411438i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 16.2921i 0.878412i
\(345\) 0 0
\(346\) 0 0
\(347\) 25.1321 14.5100i 1.34916 0.778938i 0.361030 0.932554i \(-0.382425\pi\)
0.988131 + 0.153616i \(0.0490918\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −11.4686 + 19.8642i −0.611280 + 1.05877i
\(353\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −18.4797 −0.976685
\(359\) −17.7836 10.2674i −0.938583 0.541891i −0.0490673 0.998795i \(-0.515625\pi\)
−0.889516 + 0.456904i \(0.848958\pi\)
\(360\) 0 0
\(361\) −9.50000 16.4545i −0.500000 0.866025i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(368\) 3.80071 2.19434i 0.198126 0.114388i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 11.0000 19.0526i 0.569558 0.986504i −0.427051 0.904227i \(-0.640448\pi\)
0.996610 0.0822766i \(-0.0262191\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −37.0405 −1.90264 −0.951322 0.308199i \(-0.900274\pi\)
−0.951322 + 0.308199i \(0.900274\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 14.1771 + 24.5555i 0.725365 + 1.25637i
\(383\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 24.6314i 1.25370i
\(387\) 0 0
\(388\) 0 0
\(389\) −29.7509 + 17.1767i −1.50843 + 0.870893i −0.508478 + 0.861075i \(0.669792\pi\)
−0.999952 + 0.00981780i \(0.996875\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 15.0516 26.0702i 0.758290 1.31340i
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 11.4575 0.572876
\(401\) −33.7821 19.5041i −1.68700 0.973990i −0.956796 0.290760i \(-0.906092\pi\)
−0.730204 0.683229i \(-0.760575\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 69.5312i 3.44654i
\(408\) 0 0
\(409\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 26.0000 1.26716 0.633581 0.773676i \(-0.281584\pi\)
0.633581 + 0.773676i \(0.281584\pi\)
\(422\) 26.6642 + 15.3946i 1.29799 + 0.749397i
\(423\) 0 0
\(424\) 0.634637 + 1.09922i 0.0308207 + 0.0533831i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 6.71612i 0.324636i
\(429\) 0 0
\(430\) 0 0
\(431\) −35.7978 + 20.6679i −1.72432 + 0.995535i −0.814964 + 0.579511i \(0.803244\pi\)
−0.909353 + 0.416024i \(0.863423\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −3.41699 + 5.91841i −0.163644 + 0.283440i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −10.4351 6.02473i −0.495789 0.286244i 0.231184 0.972910i \(-0.425740\pi\)
−0.726973 + 0.686666i \(0.759073\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 31.3475i 1.47938i −0.672948 0.739689i \(-0.734972\pi\)
0.672948 0.739689i \(-0.265028\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 7.57901 4.37575i 0.356487 0.205818i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −21.1660 + 36.6606i −0.990104 + 1.71491i −0.373519 + 0.927622i \(0.621849\pi\)
−0.616585 + 0.787288i \(0.711484\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) −40.0000 −1.85896 −0.929479 0.368875i \(-0.879743\pi\)
−0.929479 + 0.368875i \(0.879743\pi\)
\(464\) −17.6571 10.1944i −0.819712 0.473261i
\(465\) 0 0
\(466\) −17.7601 30.7614i −0.822722 1.42500i
\(467\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −30.1079 + 17.3828i −1.38436 + 0.799262i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 4.30262 7.45235i 0.196797 0.340863i
\(479\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −20.7712 −0.944147
\(485\) 0 0
\(486\) 0 0
\(487\) 18.5203 + 32.0780i 0.839233 + 1.45359i 0.890537 + 0.454911i \(0.150329\pi\)
−0.0513038 + 0.998683i \(0.516338\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 27.3710i 1.23524i −0.786478 0.617619i \(-0.788097\pi\)
0.786478 0.617619i \(-0.211903\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −13.2288 + 22.9129i −0.592200 + 1.02572i 0.401735 + 0.915756i \(0.368407\pi\)
−0.993935 + 0.109965i \(0.964926\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 12.6813 + 7.32156i 0.563753 + 0.325483i
\(507\) 0 0
\(508\) 5.16601 + 8.94779i 0.229205 + 0.396994i
\(509\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.1107i 0.977165i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(522\) 0 0
\(523\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −21.9778 −0.958276
\(527\) 0 0
\(528\) 0 0
\(529\) −9.66601 16.7420i −0.420261 0.727914i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 10.6657 6.15784i 0.460688 0.265978i
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 17.0000 29.4449i 0.730887 1.26593i −0.225617 0.974216i \(-0.572440\pi\)
0.956504 0.291718i \(-0.0942267\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 44.0000 1.88130 0.940652 0.339372i \(-0.110215\pi\)
0.940652 + 0.339372i \(0.110215\pi\)
\(548\) −12.3243 7.11544i −0.526468 0.303956i
\(549\) 0 0
\(550\) 19.1144 + 33.1071i 0.815040 + 1.41169i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 11.6372i 0.494418i
\(555\) 0 0
\(556\) 0 0
\(557\) 21.6884 12.5218i 0.918967 0.530566i 0.0356614 0.999364i \(-0.488646\pi\)
0.883305 + 0.468798i \(0.155313\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 1.98889 3.44485i 0.0838961 0.145312i
\(563\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 46.3542 1.94498
\(569\) 12.4508 + 7.18845i 0.521963 + 0.301356i 0.737738 0.675088i \(-0.235894\pi\)
−0.215774 + 0.976443i \(0.569228\pi\)
\(570\) 0 0
\(571\) 2.00000 + 3.46410i 0.0836974 + 0.144968i 0.904835 0.425762i \(-0.139994\pi\)
−0.821138 + 0.570730i \(0.806660\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 9.57598i 0.399346i
\(576\) 0 0
\(577\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(578\) 17.1328 9.89164i 0.712631 0.411438i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.35425 + 2.34563i −0.0560872 + 0.0971460i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 12.1255 + 21.0020i 0.498355 + 0.863176i
\(593\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 5.21317i 0.213540i
\(597\) 0 0
\(598\) 0 0
\(599\) 3.08667 1.78209i 0.126118 0.0728143i −0.435614 0.900134i \(-0.643469\pi\)
0.561732 + 0.827319i \(0.310135\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 1.70850 2.95920i 0.0695178 0.120408i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −19.0000 32.9090i −0.767403 1.32918i −0.938967 0.344008i \(-0.888215\pi\)
0.171564 0.985173i \(-0.445118\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 48.3180i 1.94521i −0.232462 0.972605i \(-0.574678\pi\)
0.232462 0.972605i \(-0.425322\pi\)
\(618\) 0 0
\(619\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −12.5000 + 21.6506i −0.500000 + 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 21.3314 + 12.3157i 0.848517 + 0.489891i
\(633\) 0 0
\(634\) −9.63464 16.6877i −0.382640 0.662753i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 68.0283i 2.69327i
\(639\) 0 0
\(640\) 0 0
\(641\) 41.1306 23.7468i 1.62456 0.937941i 0.638883 0.769304i \(-0.279397\pi\)
0.985678 0.168637i \(-0.0539367\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 12.9150 0.505791
\(653\) 37.0994 + 21.4193i 1.45181 + 0.838203i 0.998584 0.0531926i \(-0.0169397\pi\)
0.453226 + 0.891396i \(0.350273\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 49.8210i 1.94075i −0.241604 0.970375i \(-0.577673\pi\)
0.241604 0.970375i \(-0.422327\pi\)
\(660\) 0 0
\(661\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(662\) 5.33284 3.07892i 0.207267 0.119666i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 8.52026 14.7575i 0.329906 0.571414i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 42.3320 1.63178 0.815890 0.578208i \(-0.196248\pi\)
0.815890 + 0.578208i \(0.196248\pi\)
\(674\) −21.3314 12.3157i −0.821654 0.474382i
\(675\) 0 0
\(676\) −4.19738 7.27008i −0.161438 0.279619i
\(677\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 35.0837 20.2556i 1.34244 0.775059i 0.355277 0.934761i \(-0.384387\pi\)
0.987165 + 0.159702i \(0.0510533\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −6.06275 + 10.5010i −0.231140 + 0.400346i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 33.7712 1.28194
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 36.0024i 1.35979i 0.733309 + 0.679895i \(0.237975\pi\)
−0.733309 + 0.679895i \(0.762025\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −49.1931 + 28.4017i −1.85404 + 1.07043i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 26.4575 45.8258i 0.993633 1.72102i 0.399244 0.916845i \(-0.369273\pi\)
0.594389 0.804178i \(-0.297394\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 8.88061 + 5.12722i 0.331884 + 0.191613i
\(717\) 0 0
\(718\) −11.9484 20.6952i −0.445909 0.772337i
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 22.1107i 0.822876i
\(723\) 0 0
\(724\) 0 0
\(725\) 38.5274 22.2438i 1.43087 0.826115i
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −6.68627 −0.246459
\(737\) 22.7594 + 13.1402i 0.838355 + 0.484024i
\(738\) 0 0
\(739\) 26.0000 + 45.0333i 0.956425 + 1.65658i 0.731072 + 0.682300i \(0.239020\pi\)
0.225354 + 0.974277i \(0.427646\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 54.4759i 1.99853i 0.0383863 + 0.999263i \(0.487778\pi\)
−0.0383863 + 0.999263i \(0.512222\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 22.1719 12.8009i 0.811770 0.468676i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −13.2288 + 22.9129i −0.482724 + 0.836103i −0.999803 0.0198348i \(-0.993686\pi\)
0.517079 + 0.855938i \(0.327019\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 10.5830 0.384646 0.192323 0.981332i \(-0.438398\pi\)
0.192323 + 0.981332i \(0.438398\pi\)
\(758\) −37.3299 21.5524i −1.35588 0.782820i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 15.7338i 0.569230i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 6.83399 11.8368i 0.245961 0.426016i
\(773\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −39.9778 −1.43327
\(779\) 0 0
\(780\) 0 0
\(781\) 49.4575 + 85.6629i 1.76973 + 3.06526i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(788\) −14.4664 + 8.35218i −0.515344 + 0.297534i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −15.1172 8.72791i −0.534473 0.308578i
\(801\) 0 0