Properties

Label 441.2.i.c.227.6
Level $441$
Weight $2$
Character 441.227
Analytic conductor $3.521$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(68,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.68"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 7x^{10} + 37x^{8} - 78x^{6} + 123x^{4} - 36x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 227.6
Root \(1.29589 + 0.748185i\) of defining polynomial
Character \(\chi\) \(=\) 441.227
Dual form 441.2.i.c.68.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.27639i q^{2} +(1.12441 + 1.31746i) q^{3} -3.18194 q^{4} +(-0.717144 + 1.24213i) q^{5} +(-2.99905 + 2.55959i) q^{6} -2.69056i q^{8} +(-0.471410 + 2.96273i) q^{9} +(-2.82757 - 1.63250i) q^{10} +(-2.80150 + 1.61745i) q^{11} +(-3.57780 - 4.19209i) q^{12} +(4.43334 - 2.55959i) q^{13} +(-2.44282 + 0.451852i) q^{15} -0.239123 q^{16} +(-0.545658 + 0.945107i) q^{17} +(-6.74433 - 1.07311i) q^{18} +(3.88768 - 2.24456i) q^{19} +(2.28191 - 3.95238i) q^{20} +(-3.68194 - 6.37731i) q^{22} +(-3.47141 - 2.00422i) q^{23} +(3.54471 - 3.02529i) q^{24} +(1.47141 + 2.54856i) q^{25} +(5.82662 + 10.0920i) q^{26} +(-4.43334 + 2.71026i) q^{27} +(1.02859 + 0.593857i) q^{29} +(-1.02859 - 5.56081i) q^{30} -3.74440i q^{31} -5.92546i q^{32} +(-5.28096 - 1.87220i) q^{33} +(-2.15143 - 1.24213i) q^{34} +(1.50000 - 9.42724i) q^{36} +(0.119562 + 0.207087i) q^{37} +(5.10948 + 8.84988i) q^{38} +(8.35705 + 2.96273i) q^{39} +(3.34203 + 1.92952i) q^{40} +(3.71620 + 6.43664i) q^{41} +(-3.82326 + 6.62208i) q^{43} +(8.91423 - 5.14663i) q^{44} +(-3.34203 - 2.71026i) q^{45} +(4.56238 - 7.90228i) q^{46} +4.22085 q^{47} +(-0.268872 - 0.315036i) q^{48} +(-5.80150 + 3.34950i) q^{50} +(-1.85868 + 0.343803i) q^{51} +(-14.1066 + 8.14447i) q^{52} +(6.07442 + 3.50707i) q^{53} +(-6.16959 - 10.0920i) q^{54} -4.63977i q^{55} +(7.32846 + 2.59808i) q^{57} +(-1.35185 + 2.34147i) q^{58} +9.47061 q^{59} +(7.77292 - 1.43777i) q^{60} +3.26499i q^{61} +8.52371 q^{62} +13.0104 q^{64} +7.34238i q^{65} +(4.26186 - 12.0215i) q^{66} +0.660190 q^{67} +(1.73625 - 3.00728i) q^{68} +(-1.26280 - 6.82701i) q^{69} -3.82347i q^{71} +(7.97141 + 1.26836i) q^{72} +(-6.33127 - 3.65536i) q^{73} +(-0.471410 + 0.272169i) q^{74} +(-1.70316 + 4.80415i) q^{75} +(-12.3704 + 7.14205i) q^{76} +(-6.74433 + 19.0239i) q^{78} +3.66019 q^{79} +(0.171486 - 0.297022i) q^{80} +(-8.55555 - 2.79332i) q^{81} +(-14.6523 + 8.45951i) q^{82} +(-5.45245 + 9.44392i) q^{83} +(-0.782630 - 1.35556i) q^{85} +(-15.0744 - 8.70322i) q^{86} +(0.374172 + 2.02287i) q^{87} +(4.35185 + 7.53762i) q^{88} +(-6.84573 - 11.8572i) q^{89} +(6.16959 - 7.60775i) q^{90} +(11.0458 + 6.37731i) q^{92} +(4.93310 - 4.21024i) q^{93} +9.60829i q^{94} +6.43867i q^{95} +(7.80657 - 6.66264i) q^{96} +(2.69709 + 1.55716i) q^{97} +(-3.47141 - 9.06259i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{4} + 12 q^{9} + 6 q^{15} - 4 q^{16} - 12 q^{18} - 10 q^{22} - 24 q^{23} + 30 q^{29} - 30 q^{30} + 18 q^{36} + 2 q^{37} + 12 q^{39} - 10 q^{43} + 54 q^{44} + 20 q^{46} - 36 q^{50} - 24 q^{51}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.27639i 1.60965i 0.593512 + 0.804825i \(0.297741\pi\)
−0.593512 + 0.804825i \(0.702259\pi\)
\(3\) 1.12441 + 1.31746i 0.649178 + 0.760637i
\(4\) −3.18194 −1.59097
\(5\) −0.717144 + 1.24213i −0.320716 + 0.555497i −0.980636 0.195839i \(-0.937257\pi\)
0.659920 + 0.751336i \(0.270590\pi\)
\(6\) −2.99905 + 2.55959i −1.22436 + 1.04495i
\(7\) 0 0
\(8\) 2.69056i 0.951257i
\(9\) −0.471410 + 2.96273i −0.157137 + 0.987577i
\(10\) −2.82757 1.63250i −0.894156 0.516241i
\(11\) −2.80150 + 1.61745i −0.844686 + 0.487679i −0.858854 0.512220i \(-0.828823\pi\)
0.0141686 + 0.999900i \(0.495490\pi\)
\(12\) −3.57780 4.19209i −1.03282 1.21015i
\(13\) 4.43334 2.55959i 1.22959 0.709903i 0.262644 0.964893i \(-0.415406\pi\)
0.966944 + 0.254990i \(0.0820722\pi\)
\(14\) 0 0
\(15\) −2.44282 + 0.451852i −0.630733 + 0.116668i
\(16\) −0.239123 −0.0597808
\(17\) −0.545658 + 0.945107i −0.132341 + 0.229222i −0.924579 0.380991i \(-0.875583\pi\)
0.792237 + 0.610213i \(0.208916\pi\)
\(18\) −6.74433 1.07311i −1.58965 0.252935i
\(19\) 3.88768 2.24456i 0.891896 0.514936i 0.0173336 0.999850i \(-0.494482\pi\)
0.874562 + 0.484914i \(0.161149\pi\)
\(20\) 2.28191 3.95238i 0.510251 0.883780i
\(21\) 0 0
\(22\) −3.68194 6.37731i −0.784993 1.35965i
\(23\) −3.47141 2.00422i −0.723839 0.417909i 0.0923250 0.995729i \(-0.470570\pi\)
−0.816164 + 0.577820i \(0.803903\pi\)
\(24\) 3.54471 3.02529i 0.723561 0.617535i
\(25\) 1.47141 + 2.54856i 0.294282 + 0.509711i
\(26\) 5.82662 + 10.0920i 1.14269 + 1.97921i
\(27\) −4.43334 + 2.71026i −0.853197 + 0.521589i
\(28\) 0 0
\(29\) 1.02859 + 0.593857i 0.191004 + 0.110276i 0.592453 0.805605i \(-0.298160\pi\)
−0.401448 + 0.915882i \(0.631493\pi\)
\(30\) −1.02859 5.56081i −0.187794 1.01526i
\(31\) 3.74440i 0.672514i −0.941770 0.336257i \(-0.890839\pi\)
0.941770 0.336257i \(-0.109161\pi\)
\(32\) 5.92546i 1.04748i
\(33\) −5.28096 1.87220i −0.919298 0.325908i
\(34\) −2.15143 1.24213i −0.368967 0.213023i
\(35\) 0 0
\(36\) 1.50000 9.42724i 0.250000 1.57121i
\(37\) 0.119562 + 0.207087i 0.0196558 + 0.0340449i 0.875686 0.482881i \(-0.160410\pi\)
−0.856030 + 0.516926i \(0.827076\pi\)
\(38\) 5.10948 + 8.84988i 0.828867 + 1.43564i
\(39\) 8.35705 + 2.96273i 1.33820 + 0.474417i
\(40\) 3.34203 + 1.92952i 0.528421 + 0.305084i
\(41\) 3.71620 + 6.43664i 0.580373 + 1.00523i 0.995435 + 0.0954418i \(0.0304264\pi\)
−0.415062 + 0.909793i \(0.636240\pi\)
\(42\) 0 0
\(43\) −3.82326 + 6.62208i −0.583041 + 1.00986i 0.412075 + 0.911150i \(0.364804\pi\)
−0.995116 + 0.0987075i \(0.968529\pi\)
\(44\) 8.91423 5.14663i 1.34387 0.775884i
\(45\) −3.34203 2.71026i −0.498200 0.404021i
\(46\) 4.56238 7.90228i 0.672686 1.16513i
\(47\) 4.22085 0.615674 0.307837 0.951439i \(-0.400395\pi\)
0.307837 + 0.951439i \(0.400395\pi\)
\(48\) −0.268872 0.315036i −0.0388084 0.0454715i
\(49\) 0 0
\(50\) −5.80150 + 3.34950i −0.820457 + 0.473691i
\(51\) −1.85868 + 0.343803i −0.260268 + 0.0481421i
\(52\) −14.1066 + 8.14447i −1.95624 + 1.12944i
\(53\) 6.07442 + 3.50707i 0.834386 + 0.481733i 0.855352 0.518047i \(-0.173341\pi\)
−0.0209662 + 0.999780i \(0.506674\pi\)
\(54\) −6.16959 10.0920i −0.839575 1.37335i
\(55\) 4.63977i 0.625627i
\(56\) 0 0
\(57\) 7.32846 + 2.59808i 0.970678 + 0.344124i
\(58\) −1.35185 + 2.34147i −0.177506 + 0.307450i
\(59\) 9.47061 1.23297 0.616484 0.787367i \(-0.288556\pi\)
0.616484 + 0.787367i \(0.288556\pi\)
\(60\) 7.77292 1.43777i 1.00348 0.185615i
\(61\) 3.26499i 0.418040i 0.977911 + 0.209020i \(0.0670273\pi\)
−0.977911 + 0.209020i \(0.932973\pi\)
\(62\) 8.52371 1.08251
\(63\) 0 0
\(64\) 13.0104 1.62630
\(65\) 7.34238i 0.910710i
\(66\) 4.26186 12.0215i 0.524598 1.47975i
\(67\) 0.660190 0.0806550 0.0403275 0.999187i \(-0.487160\pi\)
0.0403275 + 0.999187i \(0.487160\pi\)
\(68\) 1.73625 3.00728i 0.210552 0.364686i
\(69\) −1.26280 6.82701i −0.152023 0.821876i
\(70\) 0 0
\(71\) 3.82347i 0.453762i −0.973922 0.226881i \(-0.927147\pi\)
0.973922 0.226881i \(-0.0728529\pi\)
\(72\) 7.97141 + 1.26836i 0.939440 + 0.149477i
\(73\) −6.33127 3.65536i −0.741020 0.427828i 0.0814203 0.996680i \(-0.474054\pi\)
−0.822440 + 0.568852i \(0.807388\pi\)
\(74\) −0.471410 + 0.272169i −0.0548003 + 0.0316390i
\(75\) −1.70316 + 4.80415i −0.196664 + 0.554735i
\(76\) −12.3704 + 7.14205i −1.41898 + 0.819249i
\(77\) 0 0
\(78\) −6.74433 + 19.0239i −0.763644 + 2.15403i
\(79\) 3.66019 0.411804 0.205902 0.978573i \(-0.433987\pi\)
0.205902 + 0.978573i \(0.433987\pi\)
\(80\) 0.171486 0.297022i 0.0191727 0.0332081i
\(81\) −8.55555 2.79332i −0.950616 0.310369i
\(82\) −14.6523 + 8.45951i −1.61808 + 0.934196i
\(83\) −5.45245 + 9.44392i −0.598484 + 1.03660i 0.394561 + 0.918870i \(0.370897\pi\)
−0.993045 + 0.117735i \(0.962437\pi\)
\(84\) 0 0
\(85\) −0.782630 1.35556i −0.0848882 0.147031i
\(86\) −15.0744 8.70322i −1.62552 0.938492i
\(87\) 0.374172 + 2.02287i 0.0401155 + 0.216874i
\(88\) 4.35185 + 7.53762i 0.463909 + 0.803513i
\(89\) −6.84573 11.8572i −0.725646 1.25686i −0.958708 0.284394i \(-0.908208\pi\)
0.233061 0.972462i \(-0.425126\pi\)
\(90\) 6.16959 7.60775i 0.650332 0.801927i
\(91\) 0 0
\(92\) 11.0458 + 6.37731i 1.15161 + 0.664881i
\(93\) 4.93310 4.21024i 0.511539 0.436581i
\(94\) 9.60829i 0.991020i
\(95\) 6.43867i 0.660594i
\(96\) 7.80657 6.66264i 0.796754 0.680003i
\(97\) 2.69709 + 1.55716i 0.273848 + 0.158106i 0.630635 0.776080i \(-0.282795\pi\)
−0.356787 + 0.934186i \(0.616128\pi\)
\(98\) 0 0
\(99\) −3.47141 9.06259i −0.348890 0.910824i
\(100\) −4.68194 8.10936i −0.468194 0.810936i
\(101\) 3.54471 + 6.13962i 0.352712 + 0.610915i 0.986724 0.162408i \(-0.0519262\pi\)
−0.634012 + 0.773324i \(0.718593\pi\)
\(102\) −0.782630 4.23109i −0.0774919 0.418940i
\(103\) −1.47529 0.851761i −0.145365 0.0839265i 0.425553 0.904933i \(-0.360079\pi\)
−0.570918 + 0.821007i \(0.693413\pi\)
\(104\) −6.88674 11.9282i −0.675300 1.16965i
\(105\) 0 0
\(106\) −7.98345 + 13.8277i −0.775421 + 1.34307i
\(107\) 4.27455 2.46791i 0.413236 0.238582i −0.278943 0.960308i \(-0.589984\pi\)
0.692179 + 0.721726i \(0.256651\pi\)
\(108\) 14.1066 8.62388i 1.35741 0.829833i
\(109\) −4.06922 + 7.04809i −0.389760 + 0.675085i −0.992417 0.122916i \(-0.960776\pi\)
0.602657 + 0.798001i \(0.294109\pi\)
\(110\) 10.5619 1.00704
\(111\) −0.138393 + 0.390368i −0.0131357 + 0.0370521i
\(112\) 0 0
\(113\) −3.39699 + 1.96125i −0.319562 + 0.184499i −0.651197 0.758908i \(-0.725733\pi\)
0.331635 + 0.943408i \(0.392400\pi\)
\(114\) −5.91423 + 16.6824i −0.553918 + 1.56245i
\(115\) 4.97900 2.87463i 0.464294 0.268060i
\(116\) −3.27292 1.88962i −0.303883 0.175447i
\(117\) 5.49346 + 14.3414i 0.507870 + 1.32586i
\(118\) 21.5588i 1.98465i
\(119\) 0 0
\(120\) 1.21574 + 6.57256i 0.110981 + 0.599990i
\(121\) −0.267713 + 0.463693i −0.0243376 + 0.0421539i
\(122\) −7.43240 −0.672897
\(123\) −4.30150 + 12.1334i −0.387854 + 1.09403i
\(124\) 11.9145i 1.06995i
\(125\) −11.3923 −1.01896
\(126\) 0 0
\(127\) 6.16827 0.547345 0.273673 0.961823i \(-0.411761\pi\)
0.273673 + 0.961823i \(0.411761\pi\)
\(128\) 17.7658i 1.57029i
\(129\) −13.0232 + 2.40893i −1.14663 + 0.212094i
\(130\) −16.7141 −1.46592
\(131\) 4.13138 7.15575i 0.360960 0.625201i −0.627159 0.778891i \(-0.715782\pi\)
0.988119 + 0.153690i \(0.0491158\pi\)
\(132\) 16.8037 + 5.95724i 1.46258 + 0.518511i
\(133\) 0 0
\(134\) 1.50285i 0.129826i
\(135\) −0.187145 7.45043i −0.0161069 0.641231i
\(136\) 2.54287 + 1.46813i 0.218049 + 0.125891i
\(137\) 8.96169 5.17404i 0.765649 0.442048i −0.0656711 0.997841i \(-0.520919\pi\)
0.831320 + 0.555794i \(0.187585\pi\)
\(138\) 15.5409 2.87463i 1.32293 0.244704i
\(139\) 15.4589 8.92521i 1.31121 0.757026i 0.328912 0.944361i \(-0.393318\pi\)
0.982296 + 0.187334i \(0.0599848\pi\)
\(140\) 0 0
\(141\) 4.74596 + 5.56081i 0.399682 + 0.468304i
\(142\) 8.70370 0.730398
\(143\) −8.28002 + 14.3414i −0.692410 + 1.19929i
\(144\) 0.112725 0.708458i 0.00939376 0.0590382i
\(145\) −1.47529 + 0.851761i −0.122516 + 0.0707349i
\(146\) 8.32102 14.4124i 0.688653 1.19278i
\(147\) 0 0
\(148\) −0.380438 0.658939i −0.0312718 0.0541644i
\(149\) 15.1758 + 8.76175i 1.24325 + 0.717790i 0.969754 0.244083i \(-0.0784869\pi\)
0.273495 + 0.961873i \(0.411820\pi\)
\(150\) −10.9361 3.87705i −0.892929 0.316560i
\(151\) −0.550343 0.953223i −0.0447863 0.0775722i 0.842763 0.538284i \(-0.180927\pi\)
−0.887550 + 0.460712i \(0.847594\pi\)
\(152\) −6.03911 10.4601i −0.489837 0.848422i
\(153\) −2.54287 2.06217i −0.205579 0.166717i
\(154\) 0 0
\(155\) 4.65103 + 2.68527i 0.373580 + 0.215686i
\(156\) −26.5917 9.42724i −2.12904 0.754783i
\(157\) 9.75896i 0.778850i −0.921058 0.389425i \(-0.872674\pi\)
0.921058 0.389425i \(-0.127326\pi\)
\(158\) 8.33201i 0.662859i
\(159\) 2.20970 + 11.9462i 0.175241 + 0.947395i
\(160\) 7.36019 + 4.24941i 0.581874 + 0.335945i
\(161\) 0 0
\(162\) 6.35868 19.4757i 0.499585 1.53016i
\(163\) 3.61273 + 6.25742i 0.282970 + 0.490119i 0.972115 0.234505i \(-0.0753468\pi\)
−0.689145 + 0.724624i \(0.742013\pi\)
\(164\) −11.8247 20.4810i −0.923356 1.59930i
\(165\) 6.11273 5.21700i 0.475875 0.406143i
\(166\) −21.4980 12.4119i −1.66857 0.963350i
\(167\) −8.65419 14.9895i −0.669681 1.15992i −0.977993 0.208637i \(-0.933097\pi\)
0.308312 0.951285i \(-0.400236\pi\)
\(168\) 0 0
\(169\) 6.60301 11.4367i 0.507924 0.879750i
\(170\) 3.08577 1.78157i 0.236668 0.136640i
\(171\) 4.81732 + 12.5763i 0.368390 + 0.961731i
\(172\) 12.1654 21.0711i 0.927602 1.60665i
\(173\) −1.95621 −0.148728 −0.0743638 0.997231i \(-0.523693\pi\)
−0.0743638 + 0.997231i \(0.523693\pi\)
\(174\) −4.60483 + 0.851761i −0.349091 + 0.0645718i
\(175\) 0 0
\(176\) 0.669905 0.386770i 0.0504960 0.0291539i
\(177\) 10.6488 + 12.4772i 0.800416 + 0.937841i
\(178\) 26.9915 15.5835i 2.02310 1.16804i
\(179\) −20.0933 11.6009i −1.50184 0.867090i −0.999998 0.00213247i \(-0.999321\pi\)
−0.501846 0.864957i \(-0.667345\pi\)
\(180\) 10.6341 + 8.62388i 0.792622 + 0.642786i
\(181\) 10.2744i 0.763689i −0.924226 0.381845i \(-0.875289\pi\)
0.924226 0.381845i \(-0.124711\pi\)
\(182\) 0 0
\(183\) −4.30150 + 3.67119i −0.317976 + 0.271382i
\(184\) −5.39248 + 9.34004i −0.397539 + 0.688557i
\(185\) −0.342971 −0.0252158
\(186\) 9.58414 + 11.2297i 0.702743 + 0.823399i
\(187\) 3.53030i 0.258161i
\(188\) −13.4305 −0.979520
\(189\) 0 0
\(190\) −14.6569 −1.06332
\(191\) 22.7197i 1.64394i −0.569533 0.821968i \(-0.692876\pi\)
0.569533 0.821968i \(-0.307124\pi\)
\(192\) 14.6290 + 17.1407i 1.05576 + 1.23702i
\(193\) 16.8720 1.21447 0.607235 0.794522i \(-0.292278\pi\)
0.607235 + 0.794522i \(0.292278\pi\)
\(194\) −3.54471 + 6.13962i −0.254495 + 0.440799i
\(195\) −9.67330 + 8.25583i −0.692719 + 0.591212i
\(196\) 0 0
\(197\) 8.94426i 0.637252i −0.947880 0.318626i \(-0.896779\pi\)
0.947880 0.318626i \(-0.103221\pi\)
\(198\) 20.6300 7.90228i 1.46611 0.561590i
\(199\) 5.01020 + 2.89264i 0.355164 + 0.205054i 0.666957 0.745096i \(-0.267596\pi\)
−0.311794 + 0.950150i \(0.600930\pi\)
\(200\) 6.85705 3.95892i 0.484867 0.279938i
\(201\) 0.742323 + 0.869775i 0.0523594 + 0.0613492i
\(202\) −13.9762 + 8.06914i −0.983359 + 0.567743i
\(203\) 0 0
\(204\) 5.91423 1.09396i 0.414079 0.0765927i
\(205\) −10.6602 −0.744540
\(206\) 1.93894 3.35834i 0.135092 0.233987i
\(207\) 7.57442 9.34004i 0.526459 0.649178i
\(208\) −1.06012 + 0.612058i −0.0735058 + 0.0424386i
\(209\) −7.26091 + 12.5763i −0.502248 + 0.869918i
\(210\) 0 0
\(211\) −12.9451 22.4216i −0.891180 1.54357i −0.838462 0.544960i \(-0.816545\pi\)
−0.0527186 0.998609i \(-0.516789\pi\)
\(212\) −19.3285 11.1593i −1.32748 0.766423i
\(213\) 5.03727 4.29914i 0.345148 0.294572i
\(214\) 5.61793 + 9.73053i 0.384034 + 0.665166i
\(215\) −5.48365 9.49796i −0.373982 0.647756i
\(216\) 7.29211 + 11.9282i 0.496165 + 0.811610i
\(217\) 0 0
\(218\) −16.0442 9.26312i −1.08665 0.627378i
\(219\) −2.30314 12.4513i −0.155632 0.841383i
\(220\) 14.7635i 0.995355i
\(221\) 5.58664i 0.375798i
\(222\) −0.888629 0.315036i −0.0596409 0.0211438i
\(223\) 15.4827 + 8.93892i 1.03680 + 0.598594i 0.918924 0.394435i \(-0.129060\pi\)
0.117871 + 0.993029i \(0.462393\pi\)
\(224\) 0 0
\(225\) −8.24433 + 3.15798i −0.549622 + 0.210532i
\(226\) −4.46457 7.73287i −0.296979 0.514383i
\(227\) −5.48365 9.49796i −0.363963 0.630402i 0.624646 0.780908i \(-0.285243\pi\)
−0.988609 + 0.150506i \(0.951910\pi\)
\(228\) −23.3187 8.26693i −1.54432 0.547491i
\(229\) 16.8349 + 9.71965i 1.11248 + 0.642293i 0.939471 0.342627i \(-0.111317\pi\)
0.173012 + 0.984920i \(0.444650\pi\)
\(230\) 6.54377 + 11.3341i 0.431483 + 0.747351i
\(231\) 0 0
\(232\) 1.59781 2.76748i 0.104901 0.181694i
\(233\) 2.54639 1.47016i 0.166819 0.0963131i −0.414266 0.910156i \(-0.635962\pi\)
0.581085 + 0.813843i \(0.302628\pi\)
\(234\) −32.6466 + 12.5052i −2.13418 + 0.817493i
\(235\) −3.02696 + 5.24284i −0.197457 + 0.342005i
\(236\) −30.1350 −1.96162
\(237\) 4.11555 + 4.82216i 0.267334 + 0.313233i
\(238\) 0 0
\(239\) −10.7255 + 6.19234i −0.693772 + 0.400549i −0.805023 0.593243i \(-0.797847\pi\)
0.111252 + 0.993792i \(0.464514\pi\)
\(240\) 0.584135 0.108048i 0.0377058 0.00697449i
\(241\) −11.6943 + 6.75168i −0.753293 + 0.434914i −0.826882 0.562375i \(-0.809888\pi\)
0.0735896 + 0.997289i \(0.476555\pi\)
\(242\) −1.05555 0.609419i −0.0678530 0.0391750i
\(243\) −5.93984 14.4124i −0.381041 0.924558i
\(244\) 10.3890i 0.665089i
\(245\) 0 0
\(246\) −27.6202 9.79190i −1.76100 0.624308i
\(247\) 11.4903 19.9018i 0.731109 1.26632i
\(248\) −10.0745 −0.639734
\(249\) −18.5728 + 3.43543i −1.17700 + 0.217712i
\(250\) 25.9333i 1.64016i
\(251\) 7.51441 0.474305 0.237153 0.971472i \(-0.423786\pi\)
0.237153 + 0.971472i \(0.423786\pi\)
\(252\) 0 0
\(253\) 12.9669 0.815222
\(254\) 14.0414i 0.881034i
\(255\) 0.905896 2.55528i 0.0567294 0.160018i
\(256\) −14.4211 −0.901317
\(257\) 3.87788 6.71668i 0.241895 0.418975i −0.719359 0.694639i \(-0.755564\pi\)
0.961254 + 0.275664i \(0.0888976\pi\)
\(258\) −5.48365 29.6459i −0.341397 1.84568i
\(259\) 0 0
\(260\) 23.3630i 1.44891i
\(261\) −2.24433 + 2.76748i −0.138920 + 0.171303i
\(262\) 16.2893 + 9.40462i 1.00635 + 0.581019i
\(263\) 12.1127 6.99329i 0.746903 0.431224i −0.0776710 0.996979i \(-0.524748\pi\)
0.824574 + 0.565755i \(0.191415\pi\)
\(264\) −5.03727 + 14.2088i −0.310023 + 0.874489i
\(265\) −8.71246 + 5.03014i −0.535202 + 0.308999i
\(266\) 0 0
\(267\) 7.92395 22.3513i 0.484938 1.36788i
\(268\) −2.10069 −0.128320
\(269\) 12.9160 22.3712i 0.787505 1.36400i −0.139986 0.990154i \(-0.544706\pi\)
0.927491 0.373846i \(-0.121961\pi\)
\(270\) 16.9601 0.426015i 1.03216 0.0259264i
\(271\) 14.4225 8.32686i 0.876107 0.505821i 0.00673411 0.999977i \(-0.497856\pi\)
0.869373 + 0.494157i \(0.164523\pi\)
\(272\) 0.130480 0.225997i 0.00791148 0.0137031i
\(273\) 0 0
\(274\) 11.7781 + 20.4003i 0.711542 + 1.23243i
\(275\) −8.24433 4.75986i −0.497152 0.287031i
\(276\) 4.01816 + 21.7232i 0.241865 + 1.30758i
\(277\) −15.7044 27.2008i −0.943585 1.63434i −0.758560 0.651603i \(-0.774097\pi\)
−0.185025 0.982734i \(-0.559237\pi\)
\(278\) 20.3172 + 35.1905i 1.21855 + 2.11059i
\(279\) 11.0937 + 1.76515i 0.664160 + 0.105677i
\(280\) 0 0
\(281\) 8.10464 + 4.67922i 0.483483 + 0.279139i 0.721867 0.692032i \(-0.243284\pi\)
−0.238384 + 0.971171i \(0.576618\pi\)
\(282\) −12.6586 + 10.8036i −0.753806 + 0.643348i
\(283\) 15.7735i 0.937638i −0.883294 0.468819i \(-0.844680\pi\)
0.883294 0.468819i \(-0.155320\pi\)
\(284\) 12.1661i 0.721923i
\(285\) −8.48270 + 7.23970i −0.502472 + 0.428843i
\(286\) −32.6466 18.8485i −1.93044 1.11454i
\(287\) 0 0
\(288\) 17.5555 + 2.79332i 1.03447 + 0.164598i
\(289\) 7.90451 + 13.6910i 0.464971 + 0.805354i
\(290\) −1.93894 3.35834i −0.113858 0.197209i
\(291\) 0.981125 + 5.30420i 0.0575146 + 0.310938i
\(292\) 20.1458 + 11.6312i 1.17894 + 0.680662i
\(293\) 12.4287 + 21.5271i 0.726090 + 1.25762i 0.958524 + 0.285013i \(0.0919978\pi\)
−0.232434 + 0.972612i \(0.574669\pi\)
\(294\) 0 0
\(295\) −6.79179 + 11.7637i −0.395433 + 0.684911i
\(296\) 0.557180 0.321688i 0.0323854 0.0186977i
\(297\) 8.03633 14.7635i 0.466315 0.856665i
\(298\) −19.9451 + 34.5460i −1.15539 + 2.00120i
\(299\) −20.5199 −1.18670
\(300\) 5.41936 15.2865i 0.312887 0.882568i
\(301\) 0 0
\(302\) 2.16991 1.25280i 0.124864 0.0720903i
\(303\) −4.10301 + 11.5735i −0.235712 + 0.664878i
\(304\) −0.929636 + 0.536725i −0.0533183 + 0.0307833i
\(305\) −4.05555 2.34147i −0.232220 0.134072i
\(306\) 4.69430 5.78856i 0.268355 0.330910i
\(307\) 18.8878i 1.07799i −0.842310 0.538993i \(-0.818805\pi\)
0.842310 0.538993i \(-0.181195\pi\)
\(308\) 0 0
\(309\) −0.536670 2.90137i −0.0305301 0.165053i
\(310\) −6.11273 + 10.5876i −0.347179 + 0.601332i
\(311\) −7.95431 −0.451048 −0.225524 0.974238i \(-0.572409\pi\)
−0.225524 + 0.974238i \(0.572409\pi\)
\(312\) 7.97141 22.4852i 0.451292 1.27297i
\(313\) 11.1337i 0.629316i −0.949205 0.314658i \(-0.898110\pi\)
0.949205 0.314658i \(-0.101890\pi\)
\(314\) 22.2152 1.25367
\(315\) 0 0
\(316\) −11.6465 −0.655168
\(317\) 23.2534i 1.30604i 0.757340 + 0.653021i \(0.226499\pi\)
−0.757340 + 0.653021i \(0.773501\pi\)
\(318\) −27.1942 + 5.03014i −1.52497 + 0.282076i
\(319\) −3.84213 −0.215118
\(320\) −9.33033 + 16.1606i −0.521581 + 0.903405i
\(321\) 8.05772 + 2.85661i 0.449738 + 0.159441i
\(322\) 0 0
\(323\) 4.89904i 0.272590i
\(324\) 27.2233 + 8.88819i 1.51240 + 0.493788i
\(325\) 13.0465 + 7.53242i 0.723691 + 0.417823i
\(326\) −14.2443 + 8.22396i −0.788920 + 0.455483i
\(327\) −13.8611 + 2.56390i −0.766518 + 0.141784i
\(328\) 17.3182 9.99866i 0.956237 0.552084i
\(329\) 0 0
\(330\) 11.8759 + 13.9149i 0.653748 + 0.765992i
\(331\) −19.1592 −1.05309 −0.526544 0.850148i \(-0.676512\pi\)
−0.526544 + 0.850148i \(0.676512\pi\)
\(332\) 17.3494 30.0500i 0.952171 1.64921i
\(333\) −0.669905 + 0.256606i −0.0367106 + 0.0140619i
\(334\) 34.1219 19.7003i 1.86707 1.07795i
\(335\) −0.473451 + 0.820041i −0.0258674 + 0.0448036i
\(336\) 0 0
\(337\) 14.2781 + 24.7304i 0.777779 + 1.34715i 0.933219 + 0.359307i \(0.116987\pi\)
−0.155441 + 0.987845i \(0.549680\pi\)
\(338\) 26.0345 + 15.0310i 1.41609 + 0.817579i
\(339\) −6.40348 2.27015i −0.347789 0.123298i
\(340\) 2.49028 + 4.31330i 0.135055 + 0.233922i
\(341\) 6.05638 + 10.4900i 0.327971 + 0.568063i
\(342\) −28.6285 + 10.9661i −1.54805 + 0.592978i
\(343\) 0 0
\(344\) 17.8171 + 10.2867i 0.960634 + 0.554622i
\(345\) 9.38564 + 3.32738i 0.505306 + 0.179140i
\(346\) 4.45308i 0.239399i
\(347\) 2.96400i 0.159116i 0.996830 + 0.0795578i \(0.0253508\pi\)
−0.996830 + 0.0795578i \(0.974649\pi\)
\(348\) −1.19059 6.43664i −0.0638226 0.345040i
\(349\) −23.3885 13.5034i −1.25196 0.722818i −0.280460 0.959866i \(-0.590487\pi\)
−0.971498 + 0.237048i \(0.923820\pi\)
\(350\) 0 0
\(351\) −12.7174 + 23.3630i −0.678803 + 1.24703i
\(352\) 9.58414 + 16.6002i 0.510836 + 0.884794i
\(353\) 14.8238 + 25.6755i 0.788990 + 1.36657i 0.926586 + 0.376083i \(0.122729\pi\)
−0.137596 + 0.990488i \(0.543937\pi\)
\(354\) −28.4029 + 24.2409i −1.50960 + 1.28839i
\(355\) 4.74924 + 2.74198i 0.252064 + 0.145529i
\(356\) 21.7827 + 37.7288i 1.15448 + 1.99962i
\(357\) 0 0
\(358\) 26.4081 45.7401i 1.39571 2.41744i
\(359\) −21.3268 + 12.3130i −1.12559 + 0.649858i −0.942821 0.333299i \(-0.891838\pi\)
−0.182766 + 0.983157i \(0.558505\pi\)
\(360\) −7.29211 + 8.99193i −0.384328 + 0.473916i
\(361\) 0.576055 0.997756i 0.0303187 0.0525135i
\(362\) 23.3885 1.22927
\(363\) −0.911917 + 0.168678i −0.0478632 + 0.00885332i
\(364\) 0 0
\(365\) 9.08087 5.24284i 0.475314 0.274423i
\(366\) −8.35705 9.79190i −0.436830 0.511831i
\(367\) 4.85598 2.80360i 0.253480 0.146347i −0.367877 0.929875i \(-0.619915\pi\)
0.621357 + 0.783528i \(0.286582\pi\)
\(368\) 0.830095 + 0.479256i 0.0432717 + 0.0249829i
\(369\) −20.8219 + 7.97579i −1.08394 + 0.415203i
\(370\) 0.780736i 0.0405885i
\(371\) 0 0
\(372\) −15.6969 + 13.3967i −0.813844 + 0.694588i
\(373\) 1.86677 3.23333i 0.0966574 0.167416i −0.813642 0.581367i \(-0.802518\pi\)
0.910299 + 0.413951i \(0.135852\pi\)
\(374\) 8.03633 0.415549
\(375\) −12.8096 15.0089i −0.661484 0.775056i
\(376\) 11.3565i 0.585665i
\(377\) 6.08012 0.313142
\(378\) 0 0
\(379\) −30.4419 −1.56369 −0.781847 0.623470i \(-0.785722\pi\)
−0.781847 + 0.623470i \(0.785722\pi\)
\(380\) 20.4875i 1.05099i
\(381\) 6.93566 + 8.12646i 0.355324 + 0.416331i
\(382\) 51.7187 2.64616
\(383\) −8.49251 + 14.7095i −0.433947 + 0.751618i −0.997209 0.0746601i \(-0.976213\pi\)
0.563262 + 0.826278i \(0.309546\pi\)
\(384\) −23.4058 + 19.9760i −1.19442 + 1.01940i
\(385\) 0 0
\(386\) 38.4071i 1.95487i
\(387\) −17.8171 14.4490i −0.905695 0.734484i
\(388\) −8.58198 4.95481i −0.435684 0.251542i
\(389\) −9.43310 + 5.44621i −0.478277 + 0.276134i −0.719698 0.694287i \(-0.755720\pi\)
0.241421 + 0.970420i \(0.422387\pi\)
\(390\) −18.7935 22.0202i −0.951645 1.11504i
\(391\) 3.78840 2.18724i 0.191588 0.110613i
\(392\) 0 0
\(393\) 14.0728 2.60306i 0.709878 0.131307i
\(394\) 20.3606 1.02575
\(395\) −2.62488 + 4.54643i −0.132072 + 0.228756i
\(396\) 11.0458 + 28.8366i 0.555074 + 1.44910i
\(397\) 19.3154 11.1518i 0.969412 0.559690i 0.0703551 0.997522i \(-0.477587\pi\)
0.899057 + 0.437832i \(0.144253\pi\)
\(398\) −6.58477 + 11.4052i −0.330065 + 0.571689i
\(399\) 0 0
\(400\) −0.351848 0.609419i −0.0175924 0.0304710i
\(401\) −20.8554 12.0409i −1.04147 0.601293i −0.121221 0.992626i \(-0.538681\pi\)
−0.920249 + 0.391333i \(0.872014\pi\)
\(402\) −1.97995 + 1.68982i −0.0987507 + 0.0842804i
\(403\) −9.58414 16.6002i −0.477420 0.826915i
\(404\) −11.2791 19.5359i −0.561155 0.971949i
\(405\) 9.60522 8.62388i 0.477287 0.428524i
\(406\) 0 0
\(407\) −0.669905 0.386770i −0.0332060 0.0191715i
\(408\) 0.925025 + 5.00091i 0.0457955 + 0.247582i
\(409\) 26.3492i 1.30289i 0.758698 + 0.651443i \(0.225836\pi\)
−0.758698 + 0.651443i \(0.774164\pi\)
\(410\) 24.2667i 1.19845i
\(411\) 16.8932 + 5.98896i 0.833280 + 0.295413i
\(412\) 4.69430 + 2.71026i 0.231272 + 0.133525i
\(413\) 0 0
\(414\) 21.2616 + 17.2423i 1.04495 + 0.847414i
\(415\) −7.82038 13.5453i −0.383887 0.664912i
\(416\) −15.1668 26.2696i −0.743611 1.28797i
\(417\) 29.1408 + 10.3309i 1.42703 + 0.505909i
\(418\) −28.6285 16.5286i −1.40026 0.808443i
\(419\) −16.1761 28.0178i −0.790252 1.36876i −0.925811 0.377988i \(-0.876616\pi\)
0.135558 0.990769i \(-0.456717\pi\)
\(420\) 0 0
\(421\) −5.54746 + 9.60849i −0.270367 + 0.468289i −0.968956 0.247234i \(-0.920478\pi\)
0.698589 + 0.715523i \(0.253812\pi\)
\(422\) 51.0404 29.4682i 2.48461 1.43449i
\(423\) −1.98975 + 12.5052i −0.0967450 + 0.608026i
\(424\) 9.43598 16.3436i 0.458252 0.793716i
\(425\) −3.21155 −0.155783
\(426\) 9.78651 + 11.4668i 0.474158 + 0.555568i
\(427\) 0 0
\(428\) −13.6014 + 7.85276i −0.657447 + 0.379577i
\(429\) −28.2044 + 5.21700i −1.36172 + 0.251879i
\(430\) 21.6210 12.4829i 1.04266 0.601980i
\(431\) 14.1202 + 8.15233i 0.680149 + 0.392684i 0.799911 0.600119i \(-0.204880\pi\)
−0.119762 + 0.992803i \(0.538213\pi\)
\(432\) 1.06012 0.648085i 0.0510048 0.0311810i
\(433\) 12.5359i 0.602438i 0.953555 + 0.301219i \(0.0973936\pi\)
−0.953555 + 0.301219i \(0.902606\pi\)
\(434\) 0 0
\(435\) −2.78100 0.985915i −0.133339 0.0472710i
\(436\) 12.9480 22.4266i 0.620098 1.07404i
\(437\) −17.9943 −0.860785
\(438\) 28.3441 5.24284i 1.35433 0.250513i
\(439\) 18.6225i 0.888805i 0.895827 + 0.444403i \(0.146584\pi\)
−0.895827 + 0.444403i \(0.853416\pi\)
\(440\) −12.4836 −0.595132
\(441\) 0 0
\(442\) −12.7174 −0.604904
\(443\) 4.75085i 0.225720i −0.993611 0.112860i \(-0.963999\pi\)
0.993611 0.112860i \(-0.0360011\pi\)
\(444\) 0.440358 1.24213i 0.0208985 0.0589488i
\(445\) 19.6375 0.930906
\(446\) −20.3484 + 35.2445i −0.963527 + 1.66888i
\(447\) 5.52053 + 29.8453i 0.261112 + 1.41163i
\(448\) 0 0
\(449\) 16.2393i 0.766379i −0.923670 0.383189i \(-0.874826\pi\)
0.923670 0.383189i \(-0.125174\pi\)
\(450\) −7.18878 18.7673i −0.338882 0.884698i
\(451\) −20.8219 12.0215i −0.980465 0.566072i
\(452\) 10.8090 6.24060i 0.508414 0.293533i
\(453\) 0.637023 1.79687i 0.0299300 0.0844242i
\(454\) 21.6210 12.4829i 1.01473 0.585852i
\(455\) 0 0
\(456\) 6.99028 19.7177i 0.327350 0.923365i
\(457\) −5.74720 −0.268843 −0.134421 0.990924i \(-0.542918\pi\)
−0.134421 + 0.990924i \(0.542918\pi\)
\(458\) −22.1257 + 38.3228i −1.03387 + 1.79071i
\(459\) −0.142394 5.66886i −0.00664640 0.264599i
\(460\) −15.8429 + 9.14690i −0.738679 + 0.426476i
\(461\) 18.1346 31.4101i 0.844613 1.46291i −0.0413440 0.999145i \(-0.513164\pi\)
0.885957 0.463768i \(-0.153503\pi\)
\(462\) 0 0
\(463\) 14.6202 + 25.3230i 0.679461 + 1.17686i 0.975144 + 0.221574i \(0.0711195\pi\)
−0.295683 + 0.955286i \(0.595547\pi\)
\(464\) −0.245960 0.142005i −0.0114184 0.00659241i
\(465\) 1.69191 + 9.14690i 0.0784606 + 0.424177i
\(466\) 3.34665 + 5.79656i 0.155030 + 0.268521i
\(467\) −1.32107 2.28817i −0.0611320 0.105884i 0.833840 0.552007i \(-0.186138\pi\)
−0.894972 + 0.446123i \(0.852804\pi\)
\(468\) −17.4799 45.6336i −0.808007 2.10941i
\(469\) 0 0
\(470\) −11.9347 6.89053i −0.550508 0.317836i
\(471\) 12.8571 10.9731i 0.592422 0.505612i
\(472\) 25.4813i 1.17287i
\(473\) 24.7357i 1.13735i
\(474\) −10.9771 + 9.36859i −0.504195 + 0.430314i
\(475\) 11.4408 + 6.60532i 0.524938 + 0.303073i
\(476\) 0 0
\(477\) −13.2540 + 16.3436i −0.606861 + 0.748322i
\(478\) −14.0962 24.4153i −0.644744 1.11673i
\(479\) −15.5409 26.9177i −0.710083 1.22990i −0.964826 0.262891i \(-0.915324\pi\)
0.254742 0.967009i \(-0.418009\pi\)
\(480\) 2.67743 + 14.4748i 0.122207 + 0.660683i
\(481\) 1.06012 + 0.612058i 0.0483371 + 0.0279074i
\(482\) −15.3694 26.6207i −0.700059 1.21254i
\(483\) 0 0
\(484\) 0.851848 1.47544i 0.0387204 0.0670657i
\(485\) −3.86840 + 2.23342i −0.175655 + 0.101414i
\(486\) 32.8083 13.5214i 1.48821 0.613342i
\(487\) −17.4360 + 30.2000i −0.790100 + 1.36849i 0.135805 + 0.990736i \(0.456638\pi\)
−0.925905 + 0.377757i \(0.876695\pi\)
\(488\) 8.78467 0.397663
\(489\) −4.18174 + 11.7955i −0.189105 + 0.533412i
\(490\) 0 0
\(491\) −22.6758 + 13.0919i −1.02334 + 0.590828i −0.915071 0.403293i \(-0.867866\pi\)
−0.108273 + 0.994121i \(0.534532\pi\)
\(492\) 13.6871 38.6077i 0.617064 1.74057i
\(493\) −1.12252 + 0.648085i −0.0505556 + 0.0291883i
\(494\) 45.3041 + 26.1563i 2.03833 + 1.17683i
\(495\) 13.7464 + 2.18724i 0.617855 + 0.0983090i
\(496\) 0.895374i 0.0402035i
\(497\) 0 0
\(498\) −7.82038 42.2789i −0.350440 1.89456i
\(499\) −6.23912 + 10.8065i −0.279302 + 0.483764i −0.971211 0.238220i \(-0.923436\pi\)
0.691910 + 0.721984i \(0.256770\pi\)
\(500\) 36.2496 1.62113
\(501\) 10.0172 28.2559i 0.447537 1.26238i
\(502\) 17.1057i 0.763465i
\(503\) −37.8479 −1.68756 −0.843778 0.536693i \(-0.819673\pi\)
−0.843778 + 0.536693i \(0.819673\pi\)
\(504\) 0 0
\(505\) −10.1683 −0.452482
\(506\) 29.5177i 1.31222i
\(507\) 22.4920 4.16037i 0.998903 0.184768i
\(508\) −19.6271 −0.870811
\(509\) 17.6924 30.6441i 0.784200 1.35827i −0.145276 0.989391i \(-0.546407\pi\)
0.929476 0.368883i \(-0.120260\pi\)
\(510\) 5.81682 + 2.06217i 0.257573 + 0.0913144i
\(511\) 0 0
\(512\) 2.70367i 0.119486i
\(513\) −11.1521 + 20.4875i −0.492378 + 0.904545i
\(514\) 15.2898 + 8.82756i 0.674403 + 0.389367i
\(515\) 2.11599 1.22167i 0.0932419 0.0538332i
\(516\) 41.4392 7.66507i 1.82426 0.337436i
\(517\) −11.8247 + 6.82701i −0.520051 + 0.300252i
\(518\) 0 0
\(519\) −2.19957 2.57723i −0.0965506 0.113128i
\(520\) 19.7551 0.866319
\(521\) 1.15939 2.00813i 0.0507940 0.0879777i −0.839511 0.543343i \(-0.817158\pi\)
0.890304 + 0.455366i \(0.150491\pi\)
\(522\) −6.29987 5.10896i −0.275738 0.223613i
\(523\) −17.4799 + 10.0920i −0.764341 + 0.441293i −0.830852 0.556493i \(-0.812147\pi\)
0.0665110 + 0.997786i \(0.478813\pi\)
\(524\) −13.1458 + 22.7692i −0.574277 + 0.994677i
\(525\) 0 0
\(526\) 15.9194 + 27.5733i 0.694120 + 1.20225i
\(527\) 3.53886 + 2.04316i 0.154155 + 0.0890015i
\(528\) 1.26280 + 0.447687i 0.0549564 + 0.0194831i
\(529\) −3.46621 6.00365i −0.150705 0.261028i
\(530\) −11.4506 19.8329i −0.497380 0.861488i
\(531\) −4.46454 + 28.0589i −0.193745 + 1.21765i
\(532\) 0 0
\(533\) 32.9503 + 19.0239i 1.42724 + 0.824016i
\(534\) 50.8802 + 18.0380i 2.20180 + 0.780580i
\(535\) 7.07939i 0.306069i
\(536\) 1.77628i 0.0767237i
\(537\) −7.30938 39.5163i −0.315423 1.70525i
\(538\) 50.9256 + 29.4019i 2.19556 + 1.26761i
\(539\) 0 0
\(540\) 0.595485 + 23.7068i 0.0256256 + 1.02018i
\(541\) 11.3856 + 19.7205i 0.489507 + 0.847851i 0.999927 0.0120743i \(-0.00384346\pi\)
−0.510420 + 0.859925i \(0.670510\pi\)
\(542\) 18.9552 + 32.8313i 0.814194 + 1.41023i
\(543\) 13.5361 11.5526i 0.580890 0.495770i
\(544\) 5.60020 + 3.23327i 0.240106 + 0.138626i
\(545\) −5.83643 10.1090i −0.250005 0.433022i
\(546\) 0 0
\(547\) 14.7918 25.6201i 0.632451 1.09544i −0.354598 0.935019i \(-0.615382\pi\)
0.987049 0.160419i \(-0.0512845\pi\)
\(548\) −28.5156 + 16.4635i −1.21813 + 0.703286i
\(549\) −9.67330 1.53915i −0.412846 0.0656894i
\(550\) 10.8353 18.7673i 0.462019 0.800240i
\(551\) 5.33178 0.227141
\(552\) −18.3685 + 3.39765i −0.781815 + 0.144613i
\(553\) 0 0
\(554\) 61.9196 35.7493i 2.63071 1.51884i
\(555\) −0.385640 0.451852i −0.0163695 0.0191800i
\(556\) −49.1894 + 28.3995i −2.08609 + 1.20441i
\(557\) −4.08250 2.35703i −0.172981 0.0998707i 0.411010 0.911631i \(-0.365176\pi\)
−0.583991 + 0.811760i \(0.698510\pi\)
\(558\) −4.01816 + 25.2535i −0.170102 + 1.06906i
\(559\) 39.1439i 1.65561i
\(560\) 0 0
\(561\) 4.65103 3.96950i 0.196367 0.167592i
\(562\) −10.6517 + 18.4493i −0.449316 + 0.778238i
\(563\) −27.3484 −1.15260 −0.576299 0.817239i \(-0.695503\pi\)
−0.576299 + 0.817239i \(0.695503\pi\)
\(564\) −15.1014 17.6942i −0.635883 0.745059i
\(565\) 5.62600i 0.236688i
\(566\) 35.9066 1.50927
\(567\) 0 0
\(568\) −10.2873 −0.431645
\(569\) 23.5580i 0.987601i −0.869575 0.493801i \(-0.835607\pi\)
0.869575 0.493801i \(-0.164393\pi\)
\(570\) −16.4804 19.3099i −0.690287 0.808804i
\(571\) 19.1877 0.802980 0.401490 0.915863i \(-0.368492\pi\)
0.401490 + 0.915863i \(0.368492\pi\)
\(572\) 26.3465 45.6336i 1.10160 1.90804i
\(573\) 29.9323 25.5462i 1.25044 1.06721i
\(574\) 0 0
\(575\) 11.7961i 0.491932i
\(576\) −6.13323 + 38.5463i −0.255551 + 1.60610i
\(577\) 1.93481 + 1.11706i 0.0805472 + 0.0465039i 0.539733 0.841836i \(-0.318525\pi\)
−0.459185 + 0.888340i \(0.651859\pi\)
\(578\) −31.1661 + 17.9937i −1.29634 + 0.748441i
\(579\) 18.9710 + 22.2282i 0.788407 + 0.923771i
\(580\) 4.69430 2.71026i 0.194920 0.112537i
\(581\) 0 0
\(582\) −12.0744 + 2.23342i −0.500501 + 0.0925783i
\(583\) −22.6900 −0.939725
\(584\) −9.83498 + 17.0347i −0.406974 + 0.704900i
\(585\) −21.7535 3.46127i −0.899396 0.143106i
\(586\) −49.0040 + 28.2925i −2.02434 + 1.16875i
\(587\) 12.9883 22.4963i 0.536083 0.928522i −0.463028 0.886344i \(-0.653237\pi\)
0.999110 0.0421784i \(-0.0134298\pi\)
\(588\) 0 0
\(589\) −8.40451 14.5570i −0.346302 0.599813i
\(590\) −26.7788 15.4608i −1.10247 0.636509i
\(591\) 11.7837 10.0570i 0.484718 0.413690i
\(592\) −0.0285900 0.0495193i −0.00117504 0.00203523i
\(593\) 2.85877 + 4.95153i 0.117396 + 0.203335i 0.918735 0.394875i \(-0.129212\pi\)
−0.801339 + 0.598210i \(0.795879\pi\)
\(594\) 33.6075 + 18.2938i 1.37893 + 0.750604i
\(595\) 0 0
\(596\) −48.2885 27.8794i −1.97797 1.14198i
\(597\) 1.82257 + 9.85326i 0.0745928 + 0.403267i
\(598\) 46.7113i 1.91017i
\(599\) 25.2489i 1.03164i 0.856696 + 0.515822i \(0.172513\pi\)
−0.856696 + 0.515822i \(0.827487\pi\)
\(600\) 12.9259 + 4.58246i 0.527696 + 0.187078i
\(601\) −40.2546 23.2410i −1.64202 0.948021i −0.980114 0.198435i \(-0.936414\pi\)
−0.661907 0.749586i \(-0.730252\pi\)
\(602\) 0 0
\(603\) −0.311220 + 1.95596i −0.0126739 + 0.0796530i
\(604\) 1.75116 + 3.03310i 0.0712538 + 0.123415i
\(605\) −0.383978 0.665069i −0.0156109 0.0270389i
\(606\) −26.3457 9.34004i −1.07022 0.379413i
\(607\) −6.09405 3.51840i −0.247350 0.142808i 0.371200 0.928553i \(-0.378946\pi\)
−0.618550 + 0.785745i \(0.712280\pi\)
\(608\) −13.3000 23.0363i −0.539387 0.934246i
\(609\) 0 0
\(610\) 5.33009 9.23200i 0.215809 0.373793i
\(611\) 18.7125 10.8036i 0.757025 0.437069i
\(612\) 8.09127 + 6.56171i 0.327070 + 0.265241i
\(613\) −3.27128 + 5.66602i −0.132126 + 0.228849i −0.924496 0.381192i \(-0.875514\pi\)
0.792370 + 0.610041i \(0.208847\pi\)
\(614\) 42.9961 1.73518
\(615\) −11.9864 14.0444i −0.483339 0.566324i
\(616\) 0 0
\(617\) −30.0043 + 17.3230i −1.20793 + 0.697396i −0.962306 0.271970i \(-0.912325\pi\)
−0.245620 + 0.969366i \(0.578992\pi\)
\(618\) 6.60464 1.22167i 0.265678 0.0491428i
\(619\) 14.7072 8.49123i 0.591134 0.341291i −0.174412 0.984673i \(-0.555802\pi\)
0.765546 + 0.643381i \(0.222469\pi\)
\(620\) −14.7993 8.54439i −0.594355 0.343151i
\(621\) 20.8219 0.523019i 0.835554 0.0209880i
\(622\) 18.1071i 0.726029i
\(623\) 0 0
\(624\) −1.99837 0.708458i −0.0799986 0.0283610i
\(625\) 0.812855 1.40791i 0.0325142 0.0563162i
\(626\) 25.3447 1.01298
\(627\) −24.7330 + 4.57489i −0.987740 + 0.182704i
\(628\) 31.0524i 1.23913i
\(629\) −0.260959 −0.0104051
\(630\) 0 0
\(631\) 26.2438 1.04475 0.522374 0.852716i \(-0.325047\pi\)
0.522374 + 0.852716i \(0.325047\pi\)
\(632\) 9.84797i 0.391731i
\(633\) 14.9840 42.2658i 0.595562 1.67992i
\(634\) −52.9338 −2.10227
\(635\) −4.42354 + 7.66179i −0.175543 + 0.304049i
\(636\) −7.03115 38.0121i −0.278803 1.50728i
\(637\) 0 0
\(638\) 8.74619i 0.346265i
\(639\) 11.3279 + 1.80242i 0.448125 + 0.0713027i
\(640\) −22.0674 12.7406i −0.872292 0.503618i
\(641\) −16.5092 + 9.53157i −0.652073 + 0.376474i −0.789250 0.614072i \(-0.789530\pi\)
0.137177 + 0.990547i \(0.456197\pi\)
\(642\) −6.50276 + 18.3425i −0.256643 + 0.723921i
\(643\) −15.3447 + 8.85928i −0.605136 + 0.349376i −0.771060 0.636763i \(-0.780273\pi\)
0.165923 + 0.986139i \(0.446940\pi\)
\(644\) 0 0
\(645\) 6.34733 17.9041i 0.249926 0.704973i
\(646\) −11.1521 −0.438774
\(647\) −10.8951 + 18.8709i −0.428330 + 0.741890i −0.996725 0.0808661i \(-0.974231\pi\)
0.568395 + 0.822756i \(0.307565\pi\)
\(648\) −7.51561 + 23.0192i −0.295241 + 0.904281i
\(649\) −26.5320 + 15.3182i −1.04147 + 0.601294i
\(650\) −17.1467 + 29.6990i −0.672549 + 1.16489i
\(651\) 0 0
\(652\) −11.4955 19.9108i −0.450198 0.779766i
\(653\) 13.0852 + 7.55475i 0.512064 + 0.295640i 0.733682 0.679493i \(-0.237800\pi\)
−0.221618 + 0.975134i \(0.571134\pi\)
\(654\) −5.83643 31.5531i −0.228222 1.23383i
\(655\) 5.92558 + 10.2634i 0.231532 + 0.401024i
\(656\) −0.888629 1.53915i −0.0346951 0.0600938i
\(657\) 13.8145 17.0347i 0.538954 0.664586i
\(658\) 0 0
\(659\) −27.1850 15.6952i −1.05898 0.611400i −0.133827 0.991005i \(-0.542727\pi\)
−0.925149 + 0.379605i \(0.876060\pi\)
\(660\) −19.4503 + 16.6002i −0.757104 + 0.646162i
\(661\) 43.7116i 1.70019i 0.526633 + 0.850093i \(0.323454\pi\)
−0.526633 + 0.850093i \(0.676546\pi\)
\(662\) 43.6139i 1.69510i
\(663\) −7.36019 + 6.28167i −0.285846 + 0.243960i
\(664\) 25.4095 + 14.6702i 0.986078 + 0.569312i
\(665\) 0 0
\(666\) −0.584135 1.52496i −0.0226348 0.0590912i
\(667\) −2.38044 4.12304i −0.0921709 0.159645i
\(668\) 27.5371 + 47.6957i 1.06544 + 1.84540i
\(669\) 5.63216 + 30.4488i 0.217752 + 1.17722i
\(670\) −1.86673 1.07776i −0.0721181 0.0416374i
\(671\) −5.28096 9.14690i −0.203869 0.353112i
\(672\) 0 0
\(673\) −4.60589 + 7.97763i −0.177544 + 0.307515i −0.941039 0.338299i \(-0.890149\pi\)
0.763495 + 0.645814i \(0.223482\pi\)
\(674\) −56.2960 + 32.5025i −2.16844 + 1.25195i
\(675\) −13.4305 7.31073i −0.516940 0.281390i
\(676\) −21.0104 + 36.3911i −0.808092 + 1.39966i
\(677\) −22.8387 −0.877763 −0.438882 0.898545i \(-0.644625\pi\)
−0.438882 + 0.898545i \(0.644625\pi\)
\(678\) 5.16775 14.5768i 0.198466 0.559819i
\(679\) 0 0
\(680\) −3.64721 + 2.10571i −0.139864 + 0.0807505i
\(681\) 6.34733 17.9041i 0.243230 0.686086i
\(682\) −23.8792 + 13.7867i −0.914383 + 0.527919i
\(683\) −29.6030 17.0913i −1.13273 0.653981i −0.188108 0.982148i \(-0.560236\pi\)
−0.944619 + 0.328168i \(0.893569\pi\)
\(684\) −15.3284 40.0170i −0.586097 1.53009i
\(685\) 14.8421i 0.567088i
\(686\) 0 0
\(687\) 6.12408 + 33.1082i 0.233648 + 1.26316i
\(688\) 0.914230 1.58349i 0.0348547 0.0603701i
\(689\) 35.9066 1.36793
\(690\) −7.57442 + 21.3654i −0.288353 + 0.813365i
\(691\) 0.258747i 0.00984320i −0.999988 0.00492160i \(-0.998433\pi\)
0.999988 0.00492160i \(-0.00156660\pi\)
\(692\) 6.22453 0.236621
\(693\) 0 0
\(694\) −6.74720 −0.256120
\(695\) 25.6026i 0.971163i
\(696\) 5.44264 1.00673i 0.206303 0.0381601i
\(697\) −8.11109 −0.307229
\(698\) 30.7389 53.2413i 1.16348 2.01521i
\(699\) 4.80005 + 1.70171i 0.181555 + 0.0643645i
\(700\) 0 0
\(701\) 5.16189i 0.194962i 0.995237 + 0.0974810i \(0.0310785\pi\)
−0.995237 + 0.0974810i \(0.968921\pi\)
\(702\) −53.1833 28.9497i −2.00728 1.09263i
\(703\) 0.929636 + 0.536725i 0.0350619 + 0.0202430i
\(704\) −36.4487 + 21.0437i −1.37371 + 0.793113i
\(705\) −10.3108 + 1.90720i −0.388326 + 0.0718292i
\(706\) −58.4475 + 33.7447i −2.19970 + 1.27000i
\(707\) 0 0
\(708\) −33.8840 39.7016i −1.27344 1.49208i
\(709\) 23.4944 0.882351 0.441175 0.897421i \(-0.354562\pi\)
0.441175 + 0.897421i \(0.354562\pi\)
\(710\) −6.24180 + 10.8111i −0.234251 + 0.405734i
\(711\) −1.72545 + 10.8442i −0.0647094 + 0.406688i
\(712\) −31.9024 + 18.4189i −1.19559 + 0.690276i
\(713\) −7.50460 + 12.9984i −0.281050 + 0.486792i
\(714\) 0 0
\(715\) −11.8759 20.5697i −0.444134 0.769263i
\(716\) 63.9357 + 36.9133i 2.38939 + 1.37952i
\(717\) −20.2180 7.16765i −0.755054 0.267681i
\(718\) −28.0293 48.5481i −1.04604 1.81180i
\(719\) −5.07828 8.79584i −0.189388 0.328029i 0.755658 0.654966i \(-0.227317\pi\)
−0.945046 + 0.326937i \(0.893984\pi\)
\(720\) 0.799156 + 0.648085i 0.0297828 + 0.0241527i
\(721\) 0 0
\(722\) 2.27128 + 1.31132i 0.0845283 + 0.0488024i
\(723\) −22.0442 7.81508i −0.819832 0.290646i
\(724\) 32.6925i 1.21501i
\(725\) 3.49523i 0.129809i
\(726\) −0.383978 2.07588i −0.0142507 0.0770430i
\(727\) 5.74874 + 3.31904i 0.213209 + 0.123096i 0.602802 0.797891i \(-0.294051\pi\)
−0.389593 + 0.920987i \(0.627384\pi\)
\(728\) 0 0
\(729\) 12.3090 24.0310i 0.455890 0.890036i
\(730\) 11.9347 + 20.6716i 0.441725 + 0.765089i
\(731\) −4.17238 7.22678i −0.154321 0.267292i
\(732\) 13.6871 11.6815i 0.505891 0.431761i
\(733\) 5.20130 + 3.00297i 0.192114 + 0.110917i 0.592972 0.805223i \(-0.297954\pi\)
−0.400858 + 0.916140i \(0.631288\pi\)
\(734\) 6.38209 + 11.0541i 0.235567 + 0.408014i
\(735\) 0 0
\(736\) −11.8759 + 20.5697i −0.437752 + 0.758209i
\(737\) −1.84953 + 1.06782i −0.0681281 + 0.0393338i
\(738\) −18.1560 47.3987i −0.668332 1.74477i
\(739\) 7.81930 13.5434i 0.287638 0.498203i −0.685608 0.727971i \(-0.740463\pi\)
0.973245 + 0.229768i \(0.0737968\pi\)
\(740\) 1.09132 0.0401176
\(741\) 39.1396 7.23970i 1.43783 0.265957i
\(742\) 0 0
\(743\) 27.3807 15.8083i 1.00450 0.579949i 0.0949246 0.995484i \(-0.469739\pi\)
0.909577 + 0.415535i \(0.136406\pi\)
\(744\) −11.3279 13.2728i −0.415301 0.486605i
\(745\) −21.7664 + 12.5669i −0.797461 + 0.460414i
\(746\) 7.36032 + 4.24948i 0.269480 + 0.155585i
\(747\) −25.4095 20.6061i −0.929683 0.753938i
\(748\) 11.2332i 0.410727i
\(749\) 0 0
\(750\) 34.1661 29.1596i 1.24757 1.06476i
\(751\) 7.13680 12.3613i 0.260426 0.451070i −0.705929 0.708282i \(-0.749470\pi\)
0.966355 + 0.257212i \(0.0828038\pi\)
\(752\) −1.00930 −0.0368055
\(753\) 8.44927 + 9.89994i 0.307908 + 0.360774i
\(754\) 13.8407i 0.504049i
\(755\) 1.57870 0.0574548
\(756\) 0 0
\(757\) −10.8227 −0.393358 −0.196679 0.980468i \(-0.563016\pi\)
−0.196679 + 0.980468i \(0.563016\pi\)
\(758\) 69.2975i 2.51700i
\(759\) 14.5801 + 17.0834i 0.529224 + 0.620088i
\(760\) 17.3236 0.628395
\(761\) −2.93098 + 5.07660i −0.106248 + 0.184027i −0.914247 0.405157i \(-0.867217\pi\)
0.808000 + 0.589183i \(0.200550\pi\)
\(762\) −18.4990 + 15.7882i −0.670147 + 0.571948i
\(763\) 0 0
\(764\) 72.2926i 2.61546i
\(765\) 4.38508 1.67970i 0.158543 0.0607297i
\(766\) −33.4844 19.3323i −1.20984 0.698503i
\(767\) 41.9865 24.2409i 1.51604 0.875288i
\(768\) −16.2152 18.9992i −0.585115 0.685575i
\(769\) −27.5683 + 15.9166i −0.994140 + 0.573967i −0.906509 0.422186i \(-0.861263\pi\)
−0.0876307 + 0.996153i \(0.527930\pi\)
\(770\) 0 0
\(771\) 13.2093 2.44334i 0.475721 0.0879947i
\(772\) −53.6856 −1.93219
\(773\) 9.51908 16.4875i 0.342378 0.593015i −0.642496 0.766289i \(-0.722101\pi\)
0.984874 + 0.173274i \(0.0554345\pi\)
\(774\) 32.8915 40.5587i 1.18226 1.45785i
\(775\) 9.54282 5.50955i 0.342788 0.197909i
\(776\) 4.18965 7.25668i 0.150400 0.260500i
\(777\) 0 0
\(778\) −12.3977 21.4734i −0.444478 0.769859i
\(779\) 28.8948 + 16.6824i 1.03526 + 0.597710i
\(780\) 30.7799 26.2696i 1.10210 0.940602i
\(781\) 6.18427 + 10.7115i 0.221290 + 0.383286i
\(782\) 4.97900 + 8.62388i 0.178049 + 0.308389i
\(783\) −6.16959 + 0.154972i −0.220483 + 0.00553826i
\(784\) 0 0
\(785\) 12.1219 + 6.99857i 0.432649 + 0.249790i
\(786\) 5.92558 + 32.0351i 0.211358 + 1.14265i
\(787\) 18.9513i 0.675540i 0.941229 + 0.337770i \(0.109673\pi\)
−0.941229 + 0.337770i \(0.890327\pi\)
\(788\) 28.4601i 1.01385i
\(789\) 22.8330 + 8.09474i 0.812878 + 0.288180i
\(790\) −10.3494 5.97525i −0.368216 0.212590i
\(791\) 0 0
\(792\) −24.3834 + 9.34004i −0.866428 + 0.331884i
\(793\) 8.35705 + 14.4748i 0.296768 + 0.514016i
\(794\) 25.3857 + 43.9693i 0.900905 + 1.56041i
\(795\) −16.4234 5.82240i −0.582478 0.206499i
\(796\) −15.9422 9.20422i −0.565055 0.326235i
\(797\) 26.7207 + 46.2816i 0.946497 + 1.63938i 0.752727 + 0.658333i \(0.228738\pi\)
0.193770 + 0.981047i \(0.437929\pi\)
\(798\) 0 0
\(799\) −2.30314 + 3.98916i −0.0814792 + 0.141126i
\(800\) 15.1014 8.71878i 0.533914 0.308256i
\(801\) 38.3567 14.6925i 1.35527 0.519133i
\(802\) 27.4097 47.4750i 0.967871 1.67640i
\(803\) 23.6495 0.834571
\(804\) −2.36203 2.76757i −0.0833024 0.0976048i
\(805\) 0 0
\(806\) 37.7885 21.8172i 1.33104 0.768479i
\(807\) 43.9962 8.13803i 1.54874 0.286472i
\(808\) 16.5190 9.53727i 0.581137 0.335520i
\(809\) 2.23517 + 1.29047i 0.0785842 + 0.0453706i 0.538777 0.842448i \(-0.318886\pi\)
−0.460193 + 0.887819i \(0.652220\pi\)
\(810\) 19.6313 + 21.8652i 0.689773 + 0.768265i
\(811\) 6.06938i 0.213125i −0.994306 0.106562i \(-0.966016\pi\)
0.994306 0.106562i \(-0.0339844\pi\)
\(812\) 0 0
\(813\) 27.1871 + 9.63835i 0.953495 + 0.338032i
\(814\) 0.880438 1.52496i 0.0308593 0.0534500i
\(815\) −10.3634 −0.363013
\(816\) 0.444455 0.0822114i 0.0155590 0.00287798i
\(817\) 34.3261i 1.20092i
\(818\) −59.9811 −2.09719
\(819\) 0 0
\(820\) 33.9201 1.18454
\(821\) 9.28308i 0.323982i −0.986792 0.161991i \(-0.948208\pi\)
0.986792 0.161991i \(-0.0517915\pi\)
\(822\) −13.6332 + 38.4555i −0.475512 + 1.34129i
\(823\) 18.0690 0.629844 0.314922 0.949117i \(-0.398022\pi\)
0.314922 + 0.949117i \(0.398022\pi\)
\(824\) −2.29172 + 3.96937i −0.0798357 + 0.138280i
\(825\) −2.99905 16.2136i −0.104414 0.564486i
\(826\) 0 0
\(827\) 48.5440i 1.68804i −0.536310 0.844021i \(-0.680182\pi\)
0.536310 0.844021i \(-0.319818\pi\)
\(828\) −24.1014 + 29.7195i −0.837581 + 1.03282i
\(829\) −4.71804 2.72396i −0.163864 0.0946071i 0.415825 0.909445i \(-0.363493\pi\)
−0.579689 + 0.814837i \(0.696826\pi\)
\(830\) 30.8344 17.8022i 1.07028 0.617924i
\(831\) 18.1779 51.2747i 0.630583 1.77870i
\(832\) 57.6796 33.3013i 1.99968 1.15452i
\(833\) 0 0
\(834\) −23.5172 + 66.3357i −0.814335 + 2.29702i
\(835\) 24.8252 0.859111
\(836\) 23.1038 40.0170i 0.799062 1.38402i
\(837\) 10.1483 + 16.6002i 0.350776 + 0.573787i
\(838\) 63.7793 36.8230i 2.20322 1.27203i
\(839\) 24.2673 42.0322i 0.837801 1.45111i −0.0539281 0.998545i \(-0.517174\pi\)
0.891729 0.452569i \(-0.149492\pi\)
\(840\) 0 0
\(841\) −13.7947 23.8931i −0.475678 0.823899i
\(842\) −21.8727 12.6282i −0.753781 0.435196i
\(843\) 2.94824 + 15.9389i 0.101543 + 0.548965i
\(844\) 41.1907 + 71.3444i 1.41784 + 2.45578i
\(845\) 9.47061 + 16.4036i 0.325799 + 0.564300i
\(846\) −28.4668 4.52945i −0.978708 0.155726i
\(847\) 0 0
\(848\) −1.45254 0.838622i −0.0498803 0.0287984i
\(849\) 20.7810 17.7359i 0.713202 0.608694i
\(850\) 7.31073i 0.250756i
\(851\) 0.958511i 0.0328573i
\(852\) −16.0283 + 13.6796i −0.549121 + 0.468656i
\(853\) 10.7703 + 6.21823i 0.368768 + 0.212908i 0.672920 0.739715i \(-0.265040\pi\)
−0.304152 + 0.952623i \(0.598373\pi\)
\(854\) 0 0
\(855\) −19.0761 3.03526i −0.652387 0.103804i
\(856\) −6.64007 11.5009i −0.226953 0.393094i
\(857\) −5.29077 9.16388i −0.180729 0.313032i 0.761400 0.648283i \(-0.224512\pi\)
−0.942129 + 0.335250i \(0.891179\pi\)
\(858\) −11.8759 64.2041i −0.405437 2.19189i
\(859\) −28.1452 16.2496i −0.960302 0.554431i −0.0640360 0.997948i \(-0.520397\pi\)
−0.896266 + 0.443517i \(0.853731\pi\)
\(860\) 17.4487 + 30.2220i 0.594995 + 1.03056i
\(861\) 0 0
\(862\) −18.5579 + 32.1432i −0.632084 + 1.09480i
\(863\) −21.8414 + 12.6102i −0.743491 + 0.429255i −0.823337 0.567552i \(-0.807890\pi\)
0.0798460 + 0.996807i \(0.474557\pi\)
\(864\) 16.0595 + 26.2696i 0.546356 + 0.893710i
\(865\) 1.40288 2.42986i 0.0476994 0.0826177i
\(866\) −28.5366 −0.969715
\(867\) −9.14949 + 25.8082i −0.310733 + 0.876492i
\(868\) 0 0
\(869\) −10.2540 + 5.92017i −0.347844 + 0.200828i
\(870\) 2.24433 6.33063i 0.0760897 0.214628i
\(871\) 2.92685 1.68982i 0.0991724 0.0572572i
\(872\) 18.9633 + 10.9485i 0.642179 + 0.370762i
\(873\) −5.88489 + 7.25668i −0.199174 + 0.245602i
\(874\) 40.9621i 1.38556i
\(875\) 0 0
\(876\) 7.32846 + 39.6194i 0.247606 + 1.33862i
\(877\) 7.47893 12.9539i 0.252546 0.437422i −0.711680 0.702503i \(-0.752066\pi\)
0.964226 + 0.265082i \(0.0853989\pi\)
\(878\) −42.3921 −1.43067
\(879\) −14.3862 + 40.5795i −0.485234 + 1.36871i
\(880\) 1.10948i 0.0374005i
\(881\) 36.4482 1.22797 0.613985 0.789318i \(-0.289566\pi\)
0.613985 + 0.789318i \(0.289566\pi\)
\(882\) 0 0
\(883\) 15.9831 0.537873 0.268936 0.963158i \(-0.413328\pi\)
0.268936 + 0.963158i \(0.413328\pi\)
\(884\) 17.7764i 0.597884i
\(885\) −23.1350 + 4.27931i −0.777675 + 0.143848i
\(886\) 10.8148 0.363330
\(887\) −24.5208 + 42.4713i −0.823329 + 1.42605i 0.0798613 + 0.996806i \(0.474552\pi\)
−0.903190 + 0.429241i \(0.858781\pi\)
\(888\) 1.05031 + 0.372354i 0.0352461 + 0.0124954i
\(889\) 0 0
\(890\) 44.7026i 1.49843i
\(891\) 28.4865 6.01266i 0.954332 0.201432i
\(892\) −49.2649 28.4431i −1.64951 0.952346i
\(893\) 16.4093 9.47393i 0.549117 0.317033i
\(894\) −67.9395 + 12.5669i −2.27224 + 0.420299i
\(895\) 28.8196 16.6390i 0.963332 0.556180i
\(896\) 0 0
\(897\) −23.0728 27.0342i −0.770378 0.902646i
\(898\) 36.9669 1.23360
\(899\) 2.22364 3.85145i 0.0741625 0.128453i
\(900\) 26.2330 10.0485i 0.874433 0.334950i
\(901\) −6.62911 + 3.82732i −0.220848 + 0.127506i
\(902\) 27.3657 47.3987i 0.911177 1.57820i
\(903\) 0 0
\(904\) 5.27687 + 9.13981i 0.175506 + 0.303986i
\(905\) 12.7621 + 7.36821i 0.424227 + 0.244928i
\(906\) 4.09037 + 1.45011i 0.135893 + 0.0481768i
\(907\) 2.42915 + 4.20741i 0.0806585 + 0.139705i 0.903533 0.428519i \(-0.140964\pi\)
−0.822874 + 0.568223i \(0.807631\pi\)
\(908\) 17.4487 + 30.2220i 0.579054 + 1.00295i
\(909\) −19.8611 + 7.60775i −0.658750 + 0.252333i
\(910\) 0 0
\(911\) 14.4945 + 8.36843i 0.480226 + 0.277258i 0.720510 0.693444i \(-0.243908\pi\)
−0.240285 + 0.970702i \(0.577241\pi\)
\(912\) −1.75241 0.621261i −0.0580279 0.0205720i
\(913\) 35.2763i 1.16747i
\(914\) 13.0829i 0.432743i
\(915\) −1.47529 7.97579i −0.0487717 0.263672i
\(916\) −53.5678 30.9274i −1.76993 1.02187i
\(917\) 0 0
\(918\) 12.9045 0.324145i 0.425912 0.0106984i
\(919\) −15.3200 26.5350i −0.505360 0.875309i −0.999981 0.00620006i \(-0.998026\pi\)
0.494621 0.869109i \(-0.335307\pi\)
\(920\) −7.73436 13.3963i −0.254994 0.441663i
\(921\) 24.8840 21.2377i 0.819956 0.699804i
\(922\) 71.5015 + 41.2814i 2.35478 + 1.35953i
\(923\) −9.78651 16.9507i −0.322127 0.557940i
\(924\) 0 0
\(925\) −0.351848 + 0.609419i −0.0115687 + 0.0200376i
\(926\) −57.6450 + 33.2814i −1.89433 + 1.09369i
\(927\) 3.21901 3.96937i 0.105726 0.130371i
\(928\) 3.51887 6.09487i 0.115513 0.200074i
\(929\) 29.7445 0.975885 0.487943 0.872876i \(-0.337747\pi\)
0.487943 + 0.872876i \(0.337747\pi\)
\(930\) −20.8219 + 3.85145i −0.682777 + 0.126294i
\(931\) 0 0
\(932\) −8.10245 + 4.67795i −0.265405 + 0.153231i
\(933\) −8.94390 10.4795i −0.292810 0.343083i
\(934\) 5.20876 3.00728i 0.170436 0.0984011i
\(935\) 4.38508 + 2.53173i 0.143408 + 0.0827964i
\(936\) 38.5865 14.7805i 1.26124 0.483115i
\(937\) 4.03712i 0.131887i −0.997823 0.0659434i \(-0.978994\pi\)
0.997823 0.0659434i \(-0.0210057\pi\)
\(938\) 0 0
\(939\) 14.6683 12.5189i 0.478681 0.408538i
\(940\) 9.63160 16.6824i 0.314148 0.544121i
\(941\) 14.4053 0.469599 0.234799 0.972044i \(-0.424557\pi\)
0.234799 + 0.972044i \(0.424557\pi\)
\(942\) 24.9789 + 29.2676i 0.813858 + 0.953591i
\(943\) 29.7923i 0.970171i
\(944\) −2.26464 −0.0737079
\(945\) 0 0
\(946\) 56.3081 1.83073
\(947\) 31.2155i 1.01437i −0.861838 0.507183i \(-0.830687\pi\)
0.861838 0.507183i \(-0.169313\pi\)
\(948\) −13.0954 15.3438i −0.425320 0.498345i
\(949\) −37.4249 −1.21486
\(950\) −15.0363 + 26.0436i −0.487841 + 0.844966i
\(951\) −30.6355 + 26.1463i −0.993423 + 0.847853i
\(952\) 0 0
\(953\) 8.55869i 0.277243i 0.990345 + 0.138622i \(0.0442672\pi\)
−0.990345 + 0.138622i \(0.955733\pi\)
\(954\) −37.2044 30.1713i −1.20454 0.976833i
\(955\) 28.2207 + 16.2933i 0.913202 + 0.527237i
\(956\) 34.1278 19.7037i 1.10377 0.637263i
\(957\) −4.32013 5.06186i −0.139650 0.163627i
\(958\) 61.2751 35.3772i 1.97971 1.14298i
\(959\) 0 0
\(960\) −31.7821 + 5.87877i −1.02576 + 0.189737i
\(961\) 16.9795 0.547724
\(962\) −1.39328 + 2.41323i −0.0449212 + 0.0778058i
\(963\) 5.29669 + 13.8277i 0.170684 + 0.445593i
\(964\) 37.2104 21.4835i 1.19847 0.691936i
\(965\) −12.0996 + 20.9572i −0.389501 + 0.674635i
\(966\) 0 0
\(967\) 16.0280 + 27.7614i 0.515427 + 0.892745i 0.999840 + 0.0179059i \(0.00569994\pi\)
−0.484413 + 0.874840i \(0.660967\pi\)
\(968\) 1.24759 + 0.720299i 0.0400992 + 0.0231513i
\(969\) −6.45429 + 5.50852i −0.207342 + 0.176959i
\(970\) −5.08414 8.80598i −0.163242 0.282743i
\(971\) 16.6183 + 28.7838i 0.533307 + 0.923715i 0.999243 + 0.0388964i \(0.0123842\pi\)
−0.465936 + 0.884818i \(0.654282\pi\)
\(972\) 18.9002 + 45.8596i 0.606225 + 1.47095i
\(973\) 0 0
\(974\) −68.7469 39.6911i −2.20279 1.27178i
\(975\) 4.74596 + 25.6578i 0.151992 + 0.821708i
\(976\) 0.780736i 0.0249908i
\(977\) 52.1414i 1.66815i 0.551649 + 0.834076i \(0.313999\pi\)
−0.551649 + 0.834076i \(0.686001\pi\)
\(978\) −26.8512 9.51925i −0.858607 0.304392i
\(979\) 38.3567 + 22.1453i 1.22589 + 0.707765i
\(980\) 0 0
\(981\) −18.9633 15.3785i −0.605453 0.490999i
\(982\) −29.8022 51.6189i −0.951026 1.64723i
\(983\) 12.1192 + 20.9911i 0.386544 + 0.669513i 0.991982 0.126379i \(-0.0403356\pi\)
−0.605438 + 0.795892i \(0.707002\pi\)
\(984\) 32.6456 + 11.5735i 1.04070 + 0.368949i
\(985\) 11.1099 + 6.41432i 0.353992 + 0.204377i
\(986\) −1.47529 2.55528i −0.0469829 0.0813768i
\(987\) 0 0
\(988\) −36.5614 + 63.3263i −1.16317 + 2.01468i
\(989\) 26.5442 15.3253i 0.844056 0.487316i
\(990\) −4.97900 + 31.2921i −0.158243 + 0.994530i
\(991\) 12.0991 20.9562i 0.384339 0.665695i −0.607338 0.794443i \(-0.707763\pi\)
0.991677 + 0.128749i \(0.0410960\pi\)
\(992\) −22.1873 −0.704448
\(993\) −21.5428 25.2416i −0.683641 0.801017i
\(994\) 0 0
\(995\) −7.18607 + 4.14888i −0.227814 + 0.131528i
\(996\) 59.0976 10.9314i 1.87258 0.346373i
\(997\) 8.81920 5.09177i 0.279307 0.161258i −0.353803 0.935320i \(-0.615112\pi\)
0.633110 + 0.774062i \(0.281778\pi\)
\(998\) −24.5997 14.2027i −0.778691 0.449578i
\(999\) −1.09132 0.594044i −0.0345277 0.0187947i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.i.c.227.6 12
3.2 odd 2 1323.2.i.c.521.2 12
7.2 even 3 441.2.s.c.362.5 12
7.3 odd 6 63.2.o.a.20.1 12
7.4 even 3 63.2.o.a.20.2 yes 12
7.5 odd 6 441.2.s.c.362.6 12
7.6 odd 2 inner 441.2.i.c.227.5 12
9.4 even 3 1323.2.s.c.962.2 12
9.5 odd 6 441.2.s.c.374.6 12
21.2 odd 6 1323.2.s.c.656.1 12
21.5 even 6 1323.2.s.c.656.2 12
21.11 odd 6 189.2.o.a.62.6 12
21.17 even 6 189.2.o.a.62.5 12
21.20 even 2 1323.2.i.c.521.1 12
28.3 even 6 1008.2.cc.a.209.5 12
28.11 odd 6 1008.2.cc.a.209.2 12
63.4 even 3 189.2.o.a.125.5 12
63.5 even 6 inner 441.2.i.c.68.2 12
63.11 odd 6 567.2.c.c.566.1 12
63.13 odd 6 1323.2.s.c.962.1 12
63.23 odd 6 inner 441.2.i.c.68.1 12
63.25 even 3 567.2.c.c.566.12 12
63.31 odd 6 189.2.o.a.125.6 12
63.32 odd 6 63.2.o.a.41.1 yes 12
63.38 even 6 567.2.c.c.566.2 12
63.40 odd 6 1323.2.i.c.1097.6 12
63.41 even 6 441.2.s.c.374.5 12
63.52 odd 6 567.2.c.c.566.11 12
63.58 even 3 1323.2.i.c.1097.5 12
63.59 even 6 63.2.o.a.41.2 yes 12
84.11 even 6 3024.2.cc.a.2897.4 12
84.59 odd 6 3024.2.cc.a.2897.3 12
252.31 even 6 3024.2.cc.a.881.4 12
252.59 odd 6 1008.2.cc.a.545.2 12
252.67 odd 6 3024.2.cc.a.881.3 12
252.95 even 6 1008.2.cc.a.545.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.o.a.20.1 12 7.3 odd 6
63.2.o.a.20.2 yes 12 7.4 even 3
63.2.o.a.41.1 yes 12 63.32 odd 6
63.2.o.a.41.2 yes 12 63.59 even 6
189.2.o.a.62.5 12 21.17 even 6
189.2.o.a.62.6 12 21.11 odd 6
189.2.o.a.125.5 12 63.4 even 3
189.2.o.a.125.6 12 63.31 odd 6
441.2.i.c.68.1 12 63.23 odd 6 inner
441.2.i.c.68.2 12 63.5 even 6 inner
441.2.i.c.227.5 12 7.6 odd 2 inner
441.2.i.c.227.6 12 1.1 even 1 trivial
441.2.s.c.362.5 12 7.2 even 3
441.2.s.c.362.6 12 7.5 odd 6
441.2.s.c.374.5 12 63.41 even 6
441.2.s.c.374.6 12 9.5 odd 6
567.2.c.c.566.1 12 63.11 odd 6
567.2.c.c.566.2 12 63.38 even 6
567.2.c.c.566.11 12 63.52 odd 6
567.2.c.c.566.12 12 63.25 even 3
1008.2.cc.a.209.2 12 28.11 odd 6
1008.2.cc.a.209.5 12 28.3 even 6
1008.2.cc.a.545.2 12 252.59 odd 6
1008.2.cc.a.545.5 12 252.95 even 6
1323.2.i.c.521.1 12 21.20 even 2
1323.2.i.c.521.2 12 3.2 odd 2
1323.2.i.c.1097.5 12 63.58 even 3
1323.2.i.c.1097.6 12 63.40 odd 6
1323.2.s.c.656.1 12 21.2 odd 6
1323.2.s.c.656.2 12 21.5 even 6
1323.2.s.c.962.1 12 63.13 odd 6
1323.2.s.c.962.2 12 9.4 even 3
3024.2.cc.a.881.3 12 252.67 odd 6
3024.2.cc.a.881.4 12 252.31 even 6
3024.2.cc.a.2897.3 12 84.59 odd 6
3024.2.cc.a.2897.4 12 84.11 even 6