Properties

Label 441.2.i.c.227.5
Level $441$
Weight $2$
Character 441.227
Analytic conductor $3.521$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(68,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.68"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 7x^{10} + 37x^{8} - 78x^{6} + 123x^{4} - 36x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 227.5
Root \(-1.29589 - 0.748185i\) of defining polynomial
Character \(\chi\) \(=\) 441.227
Dual form 441.2.i.c.68.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.27639i q^{2} +(-1.12441 - 1.31746i) q^{3} -3.18194 q^{4} +(0.717144 - 1.24213i) q^{5} +(2.99905 - 2.55959i) q^{6} -2.69056i q^{8} +(-0.471410 + 2.96273i) q^{9} +(2.82757 + 1.63250i) q^{10} +(-2.80150 + 1.61745i) q^{11} +(3.57780 + 4.19209i) q^{12} +(-4.43334 + 2.55959i) q^{13} +(-2.44282 + 0.451852i) q^{15} -0.239123 q^{16} +(0.545658 - 0.945107i) q^{17} +(-6.74433 - 1.07311i) q^{18} +(-3.88768 + 2.24456i) q^{19} +(-2.28191 + 3.95238i) q^{20} +(-3.68194 - 6.37731i) q^{22} +(-3.47141 - 2.00422i) q^{23} +(-3.54471 + 3.02529i) q^{24} +(1.47141 + 2.54856i) q^{25} +(-5.82662 - 10.0920i) q^{26} +(4.43334 - 2.71026i) q^{27} +(1.02859 + 0.593857i) q^{29} +(-1.02859 - 5.56081i) q^{30} +3.74440i q^{31} -5.92546i q^{32} +(5.28096 + 1.87220i) q^{33} +(2.15143 + 1.24213i) q^{34} +(1.50000 - 9.42724i) q^{36} +(0.119562 + 0.207087i) q^{37} +(-5.10948 - 8.84988i) q^{38} +(8.35705 + 2.96273i) q^{39} +(-3.34203 - 1.92952i) q^{40} +(-3.71620 - 6.43664i) q^{41} +(-3.82326 + 6.62208i) q^{43} +(8.91423 - 5.14663i) q^{44} +(3.34203 + 2.71026i) q^{45} +(4.56238 - 7.90228i) q^{46} -4.22085 q^{47} +(0.268872 + 0.315036i) q^{48} +(-5.80150 + 3.34950i) q^{50} +(-1.85868 + 0.343803i) q^{51} +(14.1066 - 8.14447i) q^{52} +(6.07442 + 3.50707i) q^{53} +(6.16959 + 10.0920i) q^{54} +4.63977i q^{55} +(7.32846 + 2.59808i) q^{57} +(-1.35185 + 2.34147i) q^{58} -9.47061 q^{59} +(7.77292 - 1.43777i) q^{60} -3.26499i q^{61} -8.52371 q^{62} +13.0104 q^{64} +7.34238i q^{65} +(-4.26186 + 12.0215i) q^{66} +0.660190 q^{67} +(-1.73625 + 3.00728i) q^{68} +(1.26280 + 6.82701i) q^{69} -3.82347i q^{71} +(7.97141 + 1.26836i) q^{72} +(6.33127 + 3.65536i) q^{73} +(-0.471410 + 0.272169i) q^{74} +(1.70316 - 4.80415i) q^{75} +(12.3704 - 7.14205i) q^{76} +(-6.74433 + 19.0239i) q^{78} +3.66019 q^{79} +(-0.171486 + 0.297022i) q^{80} +(-8.55555 - 2.79332i) q^{81} +(14.6523 - 8.45951i) q^{82} +(5.45245 - 9.44392i) q^{83} +(-0.782630 - 1.35556i) q^{85} +(-15.0744 - 8.70322i) q^{86} +(-0.374172 - 2.02287i) q^{87} +(4.35185 + 7.53762i) q^{88} +(6.84573 + 11.8572i) q^{89} +(-6.16959 + 7.60775i) q^{90} +(11.0458 + 6.37731i) q^{92} +(4.93310 - 4.21024i) q^{93} -9.60829i q^{94} +6.43867i q^{95} +(-7.80657 + 6.66264i) q^{96} +(-2.69709 - 1.55716i) q^{97} +(-3.47141 - 9.06259i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{4} + 12 q^{9} + 6 q^{15} - 4 q^{16} - 12 q^{18} - 10 q^{22} - 24 q^{23} + 30 q^{29} - 30 q^{30} + 18 q^{36} + 2 q^{37} + 12 q^{39} - 10 q^{43} + 54 q^{44} + 20 q^{46} - 36 q^{50} - 24 q^{51}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.27639i 1.60965i 0.593512 + 0.804825i \(0.297741\pi\)
−0.593512 + 0.804825i \(0.702259\pi\)
\(3\) −1.12441 1.31746i −0.649178 0.760637i
\(4\) −3.18194 −1.59097
\(5\) 0.717144 1.24213i 0.320716 0.555497i −0.659920 0.751336i \(-0.729410\pi\)
0.980636 + 0.195839i \(0.0627430\pi\)
\(6\) 2.99905 2.55959i 1.22436 1.04495i
\(7\) 0 0
\(8\) 2.69056i 0.951257i
\(9\) −0.471410 + 2.96273i −0.157137 + 0.987577i
\(10\) 2.82757 + 1.63250i 0.894156 + 0.516241i
\(11\) −2.80150 + 1.61745i −0.844686 + 0.487679i −0.858854 0.512220i \(-0.828823\pi\)
0.0141686 + 0.999900i \(0.495490\pi\)
\(12\) 3.57780 + 4.19209i 1.03282 + 1.21015i
\(13\) −4.43334 + 2.55959i −1.22959 + 0.709903i −0.966944 0.254990i \(-0.917928\pi\)
−0.262644 + 0.964893i \(0.584594\pi\)
\(14\) 0 0
\(15\) −2.44282 + 0.451852i −0.630733 + 0.116668i
\(16\) −0.239123 −0.0597808
\(17\) 0.545658 0.945107i 0.132341 0.229222i −0.792237 0.610213i \(-0.791084\pi\)
0.924579 + 0.380991i \(0.124417\pi\)
\(18\) −6.74433 1.07311i −1.58965 0.252935i
\(19\) −3.88768 + 2.24456i −0.891896 + 0.514936i −0.874562 0.484914i \(-0.838851\pi\)
−0.0173336 + 0.999850i \(0.505518\pi\)
\(20\) −2.28191 + 3.95238i −0.510251 + 0.883780i
\(21\) 0 0
\(22\) −3.68194 6.37731i −0.784993 1.35965i
\(23\) −3.47141 2.00422i −0.723839 0.417909i 0.0923250 0.995729i \(-0.470570\pi\)
−0.816164 + 0.577820i \(0.803903\pi\)
\(24\) −3.54471 + 3.02529i −0.723561 + 0.617535i
\(25\) 1.47141 + 2.54856i 0.294282 + 0.509711i
\(26\) −5.82662 10.0920i −1.14269 1.97921i
\(27\) 4.43334 2.71026i 0.853197 0.521589i
\(28\) 0 0
\(29\) 1.02859 + 0.593857i 0.191004 + 0.110276i 0.592453 0.805605i \(-0.298160\pi\)
−0.401448 + 0.915882i \(0.631493\pi\)
\(30\) −1.02859 5.56081i −0.187794 1.01526i
\(31\) 3.74440i 0.672514i 0.941770 + 0.336257i \(0.109161\pi\)
−0.941770 + 0.336257i \(0.890839\pi\)
\(32\) 5.92546i 1.04748i
\(33\) 5.28096 + 1.87220i 0.919298 + 0.325908i
\(34\) 2.15143 + 1.24213i 0.368967 + 0.213023i
\(35\) 0 0
\(36\) 1.50000 9.42724i 0.250000 1.57121i
\(37\) 0.119562 + 0.207087i 0.0196558 + 0.0340449i 0.875686 0.482881i \(-0.160410\pi\)
−0.856030 + 0.516926i \(0.827076\pi\)
\(38\) −5.10948 8.84988i −0.828867 1.43564i
\(39\) 8.35705 + 2.96273i 1.33820 + 0.474417i
\(40\) −3.34203 1.92952i −0.528421 0.305084i
\(41\) −3.71620 6.43664i −0.580373 1.00523i −0.995435 0.0954418i \(-0.969574\pi\)
0.415062 0.909793i \(-0.363760\pi\)
\(42\) 0 0
\(43\) −3.82326 + 6.62208i −0.583041 + 1.00986i 0.412075 + 0.911150i \(0.364804\pi\)
−0.995116 + 0.0987075i \(0.968529\pi\)
\(44\) 8.91423 5.14663i 1.34387 0.775884i
\(45\) 3.34203 + 2.71026i 0.498200 + 0.404021i
\(46\) 4.56238 7.90228i 0.672686 1.16513i
\(47\) −4.22085 −0.615674 −0.307837 0.951439i \(-0.599605\pi\)
−0.307837 + 0.951439i \(0.599605\pi\)
\(48\) 0.268872 + 0.315036i 0.0388084 + 0.0454715i
\(49\) 0 0
\(50\) −5.80150 + 3.34950i −0.820457 + 0.473691i
\(51\) −1.85868 + 0.343803i −0.260268 + 0.0481421i
\(52\) 14.1066 8.14447i 1.95624 1.12944i
\(53\) 6.07442 + 3.50707i 0.834386 + 0.481733i 0.855352 0.518047i \(-0.173341\pi\)
−0.0209662 + 0.999780i \(0.506674\pi\)
\(54\) 6.16959 + 10.0920i 0.839575 + 1.37335i
\(55\) 4.63977i 0.625627i
\(56\) 0 0
\(57\) 7.32846 + 2.59808i 0.970678 + 0.344124i
\(58\) −1.35185 + 2.34147i −0.177506 + 0.307450i
\(59\) −9.47061 −1.23297 −0.616484 0.787367i \(-0.711444\pi\)
−0.616484 + 0.787367i \(0.711444\pi\)
\(60\) 7.77292 1.43777i 1.00348 0.185615i
\(61\) 3.26499i 0.418040i −0.977911 0.209020i \(-0.932973\pi\)
0.977911 0.209020i \(-0.0670273\pi\)
\(62\) −8.52371 −1.08251
\(63\) 0 0
\(64\) 13.0104 1.62630
\(65\) 7.34238i 0.910710i
\(66\) −4.26186 + 12.0215i −0.524598 + 1.47975i
\(67\) 0.660190 0.0806550 0.0403275 0.999187i \(-0.487160\pi\)
0.0403275 + 0.999187i \(0.487160\pi\)
\(68\) −1.73625 + 3.00728i −0.210552 + 0.364686i
\(69\) 1.26280 + 6.82701i 0.152023 + 0.821876i
\(70\) 0 0
\(71\) 3.82347i 0.453762i −0.973922 0.226881i \(-0.927147\pi\)
0.973922 0.226881i \(-0.0728529\pi\)
\(72\) 7.97141 + 1.26836i 0.939440 + 0.149477i
\(73\) 6.33127 + 3.65536i 0.741020 + 0.427828i 0.822440 0.568852i \(-0.192612\pi\)
−0.0814203 + 0.996680i \(0.525946\pi\)
\(74\) −0.471410 + 0.272169i −0.0548003 + 0.0316390i
\(75\) 1.70316 4.80415i 0.196664 0.554735i
\(76\) 12.3704 7.14205i 1.41898 0.819249i
\(77\) 0 0
\(78\) −6.74433 + 19.0239i −0.763644 + 2.15403i
\(79\) 3.66019 0.411804 0.205902 0.978573i \(-0.433987\pi\)
0.205902 + 0.978573i \(0.433987\pi\)
\(80\) −0.171486 + 0.297022i −0.0191727 + 0.0332081i
\(81\) −8.55555 2.79332i −0.950616 0.310369i
\(82\) 14.6523 8.45951i 1.61808 0.934196i
\(83\) 5.45245 9.44392i 0.598484 1.03660i −0.394561 0.918870i \(-0.629103\pi\)
0.993045 0.117735i \(-0.0375634\pi\)
\(84\) 0 0
\(85\) −0.782630 1.35556i −0.0848882 0.147031i
\(86\) −15.0744 8.70322i −1.62552 0.938492i
\(87\) −0.374172 2.02287i −0.0401155 0.216874i
\(88\) 4.35185 + 7.53762i 0.463909 + 0.803513i
\(89\) 6.84573 + 11.8572i 0.725646 + 1.25686i 0.958708 + 0.284394i \(0.0917923\pi\)
−0.233061 + 0.972462i \(0.574874\pi\)
\(90\) −6.16959 + 7.60775i −0.650332 + 0.801927i
\(91\) 0 0
\(92\) 11.0458 + 6.37731i 1.15161 + 0.664881i
\(93\) 4.93310 4.21024i 0.511539 0.436581i
\(94\) 9.60829i 0.991020i
\(95\) 6.43867i 0.660594i
\(96\) −7.80657 + 6.66264i −0.796754 + 0.680003i
\(97\) −2.69709 1.55716i −0.273848 0.158106i 0.356787 0.934186i \(-0.383872\pi\)
−0.630635 + 0.776080i \(0.717205\pi\)
\(98\) 0 0
\(99\) −3.47141 9.06259i −0.348890 0.910824i
\(100\) −4.68194 8.10936i −0.468194 0.810936i
\(101\) −3.54471 6.13962i −0.352712 0.610915i 0.634012 0.773324i \(-0.281407\pi\)
−0.986724 + 0.162408i \(0.948074\pi\)
\(102\) −0.782630 4.23109i −0.0774919 0.418940i
\(103\) 1.47529 + 0.851761i 0.145365 + 0.0839265i 0.570918 0.821007i \(-0.306587\pi\)
−0.425553 + 0.904933i \(0.639921\pi\)
\(104\) 6.88674 + 11.9282i 0.675300 + 1.16965i
\(105\) 0 0
\(106\) −7.98345 + 13.8277i −0.775421 + 1.34307i
\(107\) 4.27455 2.46791i 0.413236 0.238582i −0.278943 0.960308i \(-0.589984\pi\)
0.692179 + 0.721726i \(0.256651\pi\)
\(108\) −14.1066 + 8.62388i −1.35741 + 0.829833i
\(109\) −4.06922 + 7.04809i −0.389760 + 0.675085i −0.992417 0.122916i \(-0.960776\pi\)
0.602657 + 0.798001i \(0.294109\pi\)
\(110\) −10.5619 −1.00704
\(111\) 0.138393 0.390368i 0.0131357 0.0370521i
\(112\) 0 0
\(113\) −3.39699 + 1.96125i −0.319562 + 0.184499i −0.651197 0.758908i \(-0.725733\pi\)
0.331635 + 0.943408i \(0.392400\pi\)
\(114\) −5.91423 + 16.6824i −0.553918 + 1.56245i
\(115\) −4.97900 + 2.87463i −0.464294 + 0.268060i
\(116\) −3.27292 1.88962i −0.303883 0.175447i
\(117\) −5.49346 14.3414i −0.507870 1.32586i
\(118\) 21.5588i 1.98465i
\(119\) 0 0
\(120\) 1.21574 + 6.57256i 0.110981 + 0.599990i
\(121\) −0.267713 + 0.463693i −0.0243376 + 0.0421539i
\(122\) 7.43240 0.672897
\(123\) −4.30150 + 12.1334i −0.387854 + 1.09403i
\(124\) 11.9145i 1.06995i
\(125\) 11.3923 1.01896
\(126\) 0 0
\(127\) 6.16827 0.547345 0.273673 0.961823i \(-0.411761\pi\)
0.273673 + 0.961823i \(0.411761\pi\)
\(128\) 17.7658i 1.57029i
\(129\) 13.0232 2.40893i 1.14663 0.212094i
\(130\) −16.7141 −1.46592
\(131\) −4.13138 + 7.15575i −0.360960 + 0.625201i −0.988119 0.153690i \(-0.950884\pi\)
0.627159 + 0.778891i \(0.284218\pi\)
\(132\) −16.8037 5.95724i −1.46258 0.518511i
\(133\) 0 0
\(134\) 1.50285i 0.129826i
\(135\) −0.187145 7.45043i −0.0161069 0.641231i
\(136\) −2.54287 1.46813i −0.218049 0.125891i
\(137\) 8.96169 5.17404i 0.765649 0.442048i −0.0656711 0.997841i \(-0.520919\pi\)
0.831320 + 0.555794i \(0.187585\pi\)
\(138\) −15.5409 + 2.87463i −1.32293 + 0.244704i
\(139\) −15.4589 + 8.92521i −1.31121 + 0.757026i −0.982296 0.187334i \(-0.940015\pi\)
−0.328912 + 0.944361i \(0.606682\pi\)
\(140\) 0 0
\(141\) 4.74596 + 5.56081i 0.399682 + 0.468304i
\(142\) 8.70370 0.730398
\(143\) 8.28002 14.3414i 0.692410 1.19929i
\(144\) 0.112725 0.708458i 0.00939376 0.0590382i
\(145\) 1.47529 0.851761i 0.122516 0.0707349i
\(146\) −8.32102 + 14.4124i −0.688653 + 1.19278i
\(147\) 0 0
\(148\) −0.380438 0.658939i −0.0312718 0.0541644i
\(149\) 15.1758 + 8.76175i 1.24325 + 0.717790i 0.969754 0.244083i \(-0.0784869\pi\)
0.273495 + 0.961873i \(0.411820\pi\)
\(150\) 10.9361 + 3.87705i 0.892929 + 0.316560i
\(151\) −0.550343 0.953223i −0.0447863 0.0775722i 0.842763 0.538284i \(-0.180927\pi\)
−0.887550 + 0.460712i \(0.847594\pi\)
\(152\) 6.03911 + 10.4601i 0.489837 + 0.848422i
\(153\) 2.54287 + 2.06217i 0.205579 + 0.166717i
\(154\) 0 0
\(155\) 4.65103 + 2.68527i 0.373580 + 0.215686i
\(156\) −26.5917 9.42724i −2.12904 0.754783i
\(157\) 9.75896i 0.778850i 0.921058 + 0.389425i \(0.127326\pi\)
−0.921058 + 0.389425i \(0.872674\pi\)
\(158\) 8.33201i 0.662859i
\(159\) −2.20970 11.9462i −0.175241 0.947395i
\(160\) −7.36019 4.24941i −0.581874 0.335945i
\(161\) 0 0
\(162\) 6.35868 19.4757i 0.499585 1.53016i
\(163\) 3.61273 + 6.25742i 0.282970 + 0.490119i 0.972115 0.234505i \(-0.0753468\pi\)
−0.689145 + 0.724624i \(0.742013\pi\)
\(164\) 11.8247 + 20.4810i 0.923356 + 1.59930i
\(165\) 6.11273 5.21700i 0.475875 0.406143i
\(166\) 21.4980 + 12.4119i 1.66857 + 0.963350i
\(167\) 8.65419 + 14.9895i 0.669681 + 1.15992i 0.977993 + 0.208637i \(0.0669027\pi\)
−0.308312 + 0.951285i \(0.599764\pi\)
\(168\) 0 0
\(169\) 6.60301 11.4367i 0.507924 0.879750i
\(170\) 3.08577 1.78157i 0.236668 0.136640i
\(171\) −4.81732 12.5763i −0.368390 0.961731i
\(172\) 12.1654 21.0711i 0.927602 1.60665i
\(173\) 1.95621 0.148728 0.0743638 0.997231i \(-0.476307\pi\)
0.0743638 + 0.997231i \(0.476307\pi\)
\(174\) 4.60483 0.851761i 0.349091 0.0645718i
\(175\) 0 0
\(176\) 0.669905 0.386770i 0.0504960 0.0291539i
\(177\) 10.6488 + 12.4772i 0.800416 + 0.937841i
\(178\) −26.9915 + 15.5835i −2.02310 + 1.16804i
\(179\) −20.0933 11.6009i −1.50184 0.867090i −0.999998 0.00213247i \(-0.999321\pi\)
−0.501846 0.864957i \(-0.667345\pi\)
\(180\) −10.6341 8.62388i −0.792622 0.642786i
\(181\) 10.2744i 0.763689i 0.924226 + 0.381845i \(0.124711\pi\)
−0.924226 + 0.381845i \(0.875289\pi\)
\(182\) 0 0
\(183\) −4.30150 + 3.67119i −0.317976 + 0.271382i
\(184\) −5.39248 + 9.34004i −0.397539 + 0.688557i
\(185\) 0.342971 0.0252158
\(186\) 9.58414 + 11.2297i 0.702743 + 0.823399i
\(187\) 3.53030i 0.258161i
\(188\) 13.4305 0.979520
\(189\) 0 0
\(190\) −14.6569 −1.06332
\(191\) 22.7197i 1.64394i −0.569533 0.821968i \(-0.692876\pi\)
0.569533 0.821968i \(-0.307124\pi\)
\(192\) −14.6290 17.1407i −1.05576 1.23702i
\(193\) 16.8720 1.21447 0.607235 0.794522i \(-0.292278\pi\)
0.607235 + 0.794522i \(0.292278\pi\)
\(194\) 3.54471 6.13962i 0.254495 0.440799i
\(195\) 9.67330 8.25583i 0.692719 0.591212i
\(196\) 0 0
\(197\) 8.94426i 0.637252i −0.947880 0.318626i \(-0.896779\pi\)
0.947880 0.318626i \(-0.103221\pi\)
\(198\) 20.6300 7.90228i 1.46611 0.561590i
\(199\) −5.01020 2.89264i −0.355164 0.205054i 0.311794 0.950150i \(-0.399070\pi\)
−0.666957 + 0.745096i \(0.732404\pi\)
\(200\) 6.85705 3.95892i 0.484867 0.279938i
\(201\) −0.742323 0.869775i −0.0523594 0.0613492i
\(202\) 13.9762 8.06914i 0.983359 0.567743i
\(203\) 0 0
\(204\) 5.91423 1.09396i 0.414079 0.0765927i
\(205\) −10.6602 −0.744540
\(206\) −1.93894 + 3.35834i −0.135092 + 0.233987i
\(207\) 7.57442 9.34004i 0.526459 0.649178i
\(208\) 1.06012 0.612058i 0.0735058 0.0424386i
\(209\) 7.26091 12.5763i 0.502248 0.869918i
\(210\) 0 0
\(211\) −12.9451 22.4216i −0.891180 1.54357i −0.838462 0.544960i \(-0.816545\pi\)
−0.0527186 0.998609i \(-0.516789\pi\)
\(212\) −19.3285 11.1593i −1.32748 0.766423i
\(213\) −5.03727 + 4.29914i −0.345148 + 0.294572i
\(214\) 5.61793 + 9.73053i 0.384034 + 0.665166i
\(215\) 5.48365 + 9.49796i 0.373982 + 0.647756i
\(216\) −7.29211 11.9282i −0.496165 0.811610i
\(217\) 0 0
\(218\) −16.0442 9.26312i −1.08665 0.627378i
\(219\) −2.30314 12.4513i −0.155632 0.841383i
\(220\) 14.7635i 0.995355i
\(221\) 5.58664i 0.375798i
\(222\) 0.888629 + 0.315036i 0.0596409 + 0.0211438i
\(223\) −15.4827 8.93892i −1.03680 0.598594i −0.117871 0.993029i \(-0.537607\pi\)
−0.918924 + 0.394435i \(0.870940\pi\)
\(224\) 0 0
\(225\) −8.24433 + 3.15798i −0.549622 + 0.210532i
\(226\) −4.46457 7.73287i −0.296979 0.514383i
\(227\) 5.48365 + 9.49796i 0.363963 + 0.630402i 0.988609 0.150506i \(-0.0480902\pi\)
−0.624646 + 0.780908i \(0.714757\pi\)
\(228\) −23.3187 8.26693i −1.54432 0.547491i
\(229\) −16.8349 9.71965i −1.11248 0.642293i −0.173012 0.984920i \(-0.555350\pi\)
−0.939471 + 0.342627i \(0.888683\pi\)
\(230\) −6.54377 11.3341i −0.431483 0.747351i
\(231\) 0 0
\(232\) 1.59781 2.76748i 0.104901 0.181694i
\(233\) 2.54639 1.47016i 0.166819 0.0963131i −0.414266 0.910156i \(-0.635962\pi\)
0.581085 + 0.813843i \(0.302628\pi\)
\(234\) 32.6466 12.5052i 2.13418 0.817493i
\(235\) −3.02696 + 5.24284i −0.197457 + 0.342005i
\(236\) 30.1350 1.96162
\(237\) −4.11555 4.82216i −0.267334 0.313233i
\(238\) 0 0
\(239\) −10.7255 + 6.19234i −0.693772 + 0.400549i −0.805023 0.593243i \(-0.797847\pi\)
0.111252 + 0.993792i \(0.464514\pi\)
\(240\) 0.584135 0.108048i 0.0377058 0.00697449i
\(241\) 11.6943 6.75168i 0.753293 0.434914i −0.0735896 0.997289i \(-0.523445\pi\)
0.826882 + 0.562375i \(0.190112\pi\)
\(242\) −1.05555 0.609419i −0.0678530 0.0391750i
\(243\) 5.93984 + 14.4124i 0.381041 + 0.924558i
\(244\) 10.3890i 0.665089i
\(245\) 0 0
\(246\) −27.6202 9.79190i −1.76100 0.624308i
\(247\) 11.4903 19.9018i 0.731109 1.26632i
\(248\) 10.0745 0.639734
\(249\) −18.5728 + 3.43543i −1.17700 + 0.217712i
\(250\) 25.9333i 1.64016i
\(251\) −7.51441 −0.474305 −0.237153 0.971472i \(-0.576214\pi\)
−0.237153 + 0.971472i \(0.576214\pi\)
\(252\) 0 0
\(253\) 12.9669 0.815222
\(254\) 14.0414i 0.881034i
\(255\) −0.905896 + 2.55528i −0.0567294 + 0.160018i
\(256\) −14.4211 −0.901317
\(257\) −3.87788 + 6.71668i −0.241895 + 0.418975i −0.961254 0.275664i \(-0.911102\pi\)
0.719359 + 0.694639i \(0.244436\pi\)
\(258\) 5.48365 + 29.6459i 0.341397 + 1.84568i
\(259\) 0 0
\(260\) 23.3630i 1.44891i
\(261\) −2.24433 + 2.76748i −0.138920 + 0.171303i
\(262\) −16.2893 9.40462i −1.00635 0.581019i
\(263\) 12.1127 6.99329i 0.746903 0.431224i −0.0776710 0.996979i \(-0.524748\pi\)
0.824574 + 0.565755i \(0.191415\pi\)
\(264\) 5.03727 14.2088i 0.310023 0.874489i
\(265\) 8.71246 5.03014i 0.535202 0.308999i
\(266\) 0 0
\(267\) 7.92395 22.3513i 0.484938 1.36788i
\(268\) −2.10069 −0.128320
\(269\) −12.9160 + 22.3712i −0.787505 + 1.36400i 0.139986 + 0.990154i \(0.455294\pi\)
−0.927491 + 0.373846i \(0.878039\pi\)
\(270\) 16.9601 0.426015i 1.03216 0.0259264i
\(271\) −14.4225 + 8.32686i −0.876107 + 0.505821i −0.869373 0.494157i \(-0.835477\pi\)
−0.00673411 + 0.999977i \(0.502144\pi\)
\(272\) −0.130480 + 0.225997i −0.00791148 + 0.0137031i
\(273\) 0 0
\(274\) 11.7781 + 20.4003i 0.711542 + 1.23243i
\(275\) −8.24433 4.75986i −0.497152 0.287031i
\(276\) −4.01816 21.7232i −0.241865 1.30758i
\(277\) −15.7044 27.2008i −0.943585 1.63434i −0.758560 0.651603i \(-0.774097\pi\)
−0.185025 0.982734i \(-0.559237\pi\)
\(278\) −20.3172 35.1905i −1.21855 2.11059i
\(279\) −11.0937 1.76515i −0.664160 0.105677i
\(280\) 0 0
\(281\) 8.10464 + 4.67922i 0.483483 + 0.279139i 0.721867 0.692032i \(-0.243284\pi\)
−0.238384 + 0.971171i \(0.576618\pi\)
\(282\) −12.6586 + 10.8036i −0.753806 + 0.643348i
\(283\) 15.7735i 0.937638i 0.883294 + 0.468819i \(0.155320\pi\)
−0.883294 + 0.468819i \(0.844680\pi\)
\(284\) 12.1661i 0.721923i
\(285\) 8.48270 7.23970i 0.502472 0.428843i
\(286\) 32.6466 + 18.8485i 1.93044 + 1.11454i
\(287\) 0 0
\(288\) 17.5555 + 2.79332i 1.03447 + 0.164598i
\(289\) 7.90451 + 13.6910i 0.464971 + 0.805354i
\(290\) 1.93894 + 3.35834i 0.113858 + 0.197209i
\(291\) 0.981125 + 5.30420i 0.0575146 + 0.310938i
\(292\) −20.1458 11.6312i −1.17894 0.680662i
\(293\) −12.4287 21.5271i −0.726090 1.25762i −0.958524 0.285013i \(-0.908002\pi\)
0.232434 0.972612i \(-0.425331\pi\)
\(294\) 0 0
\(295\) −6.79179 + 11.7637i −0.395433 + 0.684911i
\(296\) 0.557180 0.321688i 0.0323854 0.0186977i
\(297\) −8.03633 + 14.7635i −0.466315 + 0.856665i
\(298\) −19.9451 + 34.5460i −1.15539 + 2.00120i
\(299\) 20.5199 1.18670
\(300\) −5.41936 + 15.2865i −0.312887 + 0.882568i
\(301\) 0 0
\(302\) 2.16991 1.25280i 0.124864 0.0720903i
\(303\) −4.10301 + 11.5735i −0.235712 + 0.664878i
\(304\) 0.929636 0.536725i 0.0533183 0.0307833i
\(305\) −4.05555 2.34147i −0.232220 0.134072i
\(306\) −4.69430 + 5.78856i −0.268355 + 0.330910i
\(307\) 18.8878i 1.07799i 0.842310 + 0.538993i \(0.181195\pi\)
−0.842310 + 0.538993i \(0.818805\pi\)
\(308\) 0 0
\(309\) −0.536670 2.90137i −0.0305301 0.165053i
\(310\) −6.11273 + 10.5876i −0.347179 + 0.601332i
\(311\) 7.95431 0.451048 0.225524 0.974238i \(-0.427591\pi\)
0.225524 + 0.974238i \(0.427591\pi\)
\(312\) 7.97141 22.4852i 0.451292 1.27297i
\(313\) 11.1337i 0.629316i 0.949205 + 0.314658i \(0.101890\pi\)
−0.949205 + 0.314658i \(0.898110\pi\)
\(314\) −22.2152 −1.25367
\(315\) 0 0
\(316\) −11.6465 −0.655168
\(317\) 23.2534i 1.30604i 0.757340 + 0.653021i \(0.226499\pi\)
−0.757340 + 0.653021i \(0.773501\pi\)
\(318\) 27.1942 5.03014i 1.52497 0.282076i
\(319\) −3.84213 −0.215118
\(320\) 9.33033 16.1606i 0.521581 0.903405i
\(321\) −8.05772 2.85661i −0.449738 0.159441i
\(322\) 0 0
\(323\) 4.89904i 0.272590i
\(324\) 27.2233 + 8.88819i 1.51240 + 0.493788i
\(325\) −13.0465 7.53242i −0.723691 0.417823i
\(326\) −14.2443 + 8.22396i −0.788920 + 0.455483i
\(327\) 13.8611 2.56390i 0.766518 0.141784i
\(328\) −17.3182 + 9.99866i −0.956237 + 0.552084i
\(329\) 0 0
\(330\) 11.8759 + 13.9149i 0.653748 + 0.765992i
\(331\) −19.1592 −1.05309 −0.526544 0.850148i \(-0.676512\pi\)
−0.526544 + 0.850148i \(0.676512\pi\)
\(332\) −17.3494 + 30.0500i −0.952171 + 1.64921i
\(333\) −0.669905 + 0.256606i −0.0367106 + 0.0140619i
\(334\) −34.1219 + 19.7003i −1.86707 + 1.07795i
\(335\) 0.473451 0.820041i 0.0258674 0.0448036i
\(336\) 0 0
\(337\) 14.2781 + 24.7304i 0.777779 + 1.34715i 0.933219 + 0.359307i \(0.116987\pi\)
−0.155441 + 0.987845i \(0.549680\pi\)
\(338\) 26.0345 + 15.0310i 1.41609 + 0.817579i
\(339\) 6.40348 + 2.27015i 0.347789 + 0.123298i
\(340\) 2.49028 + 4.31330i 0.135055 + 0.233922i
\(341\) −6.05638 10.4900i −0.327971 0.568063i
\(342\) 28.6285 10.9661i 1.54805 0.592978i
\(343\) 0 0
\(344\) 17.8171 + 10.2867i 0.960634 + 0.554622i
\(345\) 9.38564 + 3.32738i 0.505306 + 0.179140i
\(346\) 4.45308i 0.239399i
\(347\) 2.96400i 0.159116i 0.996830 + 0.0795578i \(0.0253508\pi\)
−0.996830 + 0.0795578i \(0.974649\pi\)
\(348\) 1.19059 + 6.43664i 0.0638226 + 0.345040i
\(349\) 23.3885 + 13.5034i 1.25196 + 0.722818i 0.971498 0.237048i \(-0.0761797\pi\)
0.280460 + 0.959866i \(0.409513\pi\)
\(350\) 0 0
\(351\) −12.7174 + 23.3630i −0.678803 + 1.24703i
\(352\) 9.58414 + 16.6002i 0.510836 + 0.884794i
\(353\) −14.8238 25.6755i −0.788990 1.36657i −0.926586 0.376083i \(-0.877271\pi\)
0.137596 0.990488i \(-0.456063\pi\)
\(354\) −28.4029 + 24.2409i −1.50960 + 1.28839i
\(355\) −4.74924 2.74198i −0.252064 0.145529i
\(356\) −21.7827 37.7288i −1.15448 1.99962i
\(357\) 0 0
\(358\) 26.4081 45.7401i 1.39571 2.41744i
\(359\) −21.3268 + 12.3130i −1.12559 + 0.649858i −0.942821 0.333299i \(-0.891838\pi\)
−0.182766 + 0.983157i \(0.558505\pi\)
\(360\) 7.29211 8.99193i 0.384328 0.473916i
\(361\) 0.576055 0.997756i 0.0303187 0.0525135i
\(362\) −23.3885 −1.22927
\(363\) 0.911917 0.168678i 0.0478632 0.00885332i
\(364\) 0 0
\(365\) 9.08087 5.24284i 0.475314 0.274423i
\(366\) −8.35705 9.79190i −0.436830 0.511831i
\(367\) −4.85598 + 2.80360i −0.253480 + 0.146347i −0.621357 0.783528i \(-0.713418\pi\)
0.367877 + 0.929875i \(0.380085\pi\)
\(368\) 0.830095 + 0.479256i 0.0432717 + 0.0249829i
\(369\) 20.8219 7.97579i 1.08394 0.415203i
\(370\) 0.780736i 0.0405885i
\(371\) 0 0
\(372\) −15.6969 + 13.3967i −0.813844 + 0.694588i
\(373\) 1.86677 3.23333i 0.0966574 0.167416i −0.813642 0.581367i \(-0.802518\pi\)
0.910299 + 0.413951i \(0.135852\pi\)
\(374\) −8.03633 −0.415549
\(375\) −12.8096 15.0089i −0.661484 0.775056i
\(376\) 11.3565i 0.585665i
\(377\) −6.08012 −0.313142
\(378\) 0 0
\(379\) −30.4419 −1.56369 −0.781847 0.623470i \(-0.785722\pi\)
−0.781847 + 0.623470i \(0.785722\pi\)
\(380\) 20.4875i 1.05099i
\(381\) −6.93566 8.12646i −0.355324 0.416331i
\(382\) 51.7187 2.64616
\(383\) 8.49251 14.7095i 0.433947 0.751618i −0.563262 0.826278i \(-0.690454\pi\)
0.997209 + 0.0746601i \(0.0237872\pi\)
\(384\) 23.4058 19.9760i 1.19442 1.01940i
\(385\) 0 0
\(386\) 38.4071i 1.95487i
\(387\) −17.8171 14.4490i −0.905695 0.734484i
\(388\) 8.58198 + 4.95481i 0.435684 + 0.251542i
\(389\) −9.43310 + 5.44621i −0.478277 + 0.276134i −0.719698 0.694287i \(-0.755720\pi\)
0.241421 + 0.970420i \(0.422387\pi\)
\(390\) 18.7935 + 22.0202i 0.951645 + 1.11504i
\(391\) −3.78840 + 2.18724i −0.191588 + 0.110613i
\(392\) 0 0
\(393\) 14.0728 2.60306i 0.709878 0.131307i
\(394\) 20.3606 1.02575
\(395\) 2.62488 4.54643i 0.132072 0.228756i
\(396\) 11.0458 + 28.8366i 0.555074 + 1.44910i
\(397\) −19.3154 + 11.1518i −0.969412 + 0.559690i −0.899057 0.437832i \(-0.855747\pi\)
−0.0703551 + 0.997522i \(0.522413\pi\)
\(398\) 6.58477 11.4052i 0.330065 0.571689i
\(399\) 0 0
\(400\) −0.351848 0.609419i −0.0175924 0.0304710i
\(401\) −20.8554 12.0409i −1.04147 0.601293i −0.121221 0.992626i \(-0.538681\pi\)
−0.920249 + 0.391333i \(0.872014\pi\)
\(402\) 1.97995 1.68982i 0.0987507 0.0842804i
\(403\) −9.58414 16.6002i −0.477420 0.826915i
\(404\) 11.2791 + 19.5359i 0.561155 + 0.971949i
\(405\) −9.60522 + 8.62388i −0.477287 + 0.428524i
\(406\) 0 0
\(407\) −0.669905 0.386770i −0.0332060 0.0191715i
\(408\) 0.925025 + 5.00091i 0.0457955 + 0.247582i
\(409\) 26.3492i 1.30289i −0.758698 0.651443i \(-0.774164\pi\)
0.758698 0.651443i \(-0.225836\pi\)
\(410\) 24.2667i 1.19845i
\(411\) −16.8932 5.98896i −0.833280 0.295413i
\(412\) −4.69430 2.71026i −0.231272 0.133525i
\(413\) 0 0
\(414\) 21.2616 + 17.2423i 1.04495 + 0.847414i
\(415\) −7.82038 13.5453i −0.383887 0.664912i
\(416\) 15.1668 + 26.2696i 0.743611 + 1.28797i
\(417\) 29.1408 + 10.3309i 1.42703 + 0.505909i
\(418\) 28.6285 + 16.5286i 1.40026 + 0.808443i
\(419\) 16.1761 + 28.0178i 0.790252 + 1.36876i 0.925811 + 0.377988i \(0.123384\pi\)
−0.135558 + 0.990769i \(0.543283\pi\)
\(420\) 0 0
\(421\) −5.54746 + 9.60849i −0.270367 + 0.468289i −0.968956 0.247234i \(-0.920478\pi\)
0.698589 + 0.715523i \(0.253812\pi\)
\(422\) 51.0404 29.4682i 2.48461 1.43449i
\(423\) 1.98975 12.5052i 0.0967450 0.608026i
\(424\) 9.43598 16.3436i 0.458252 0.793716i
\(425\) 3.21155 0.155783
\(426\) −9.78651 11.4668i −0.474158 0.555568i
\(427\) 0 0
\(428\) −13.6014 + 7.85276i −0.657447 + 0.379577i
\(429\) −28.2044 + 5.21700i −1.36172 + 0.251879i
\(430\) −21.6210 + 12.4829i −1.04266 + 0.601980i
\(431\) 14.1202 + 8.15233i 0.680149 + 0.392684i 0.799911 0.600119i \(-0.204880\pi\)
−0.119762 + 0.992803i \(0.538213\pi\)
\(432\) −1.06012 + 0.648085i −0.0510048 + 0.0311810i
\(433\) 12.5359i 0.602438i −0.953555 0.301219i \(-0.902606\pi\)
0.953555 0.301219i \(-0.0973936\pi\)
\(434\) 0 0
\(435\) −2.78100 0.985915i −0.133339 0.0472710i
\(436\) 12.9480 22.4266i 0.620098 1.07404i
\(437\) 17.9943 0.860785
\(438\) 28.3441 5.24284i 1.35433 0.250513i
\(439\) 18.6225i 0.888805i −0.895827 0.444403i \(-0.853416\pi\)
0.895827 0.444403i \(-0.146584\pi\)
\(440\) 12.4836 0.595132
\(441\) 0 0
\(442\) −12.7174 −0.604904
\(443\) 4.75085i 0.225720i −0.993611 0.112860i \(-0.963999\pi\)
0.993611 0.112860i \(-0.0360011\pi\)
\(444\) −0.440358 + 1.24213i −0.0208985 + 0.0589488i
\(445\) 19.6375 0.930906
\(446\) 20.3484 35.2445i 0.963527 1.66888i
\(447\) −5.52053 29.8453i −0.261112 1.41163i
\(448\) 0 0
\(449\) 16.2393i 0.766379i −0.923670 0.383189i \(-0.874826\pi\)
0.923670 0.383189i \(-0.125174\pi\)
\(450\) −7.18878 18.7673i −0.338882 0.884698i
\(451\) 20.8219 + 12.0215i 0.980465 + 0.566072i
\(452\) 10.8090 6.24060i 0.508414 0.293533i
\(453\) −0.637023 + 1.79687i −0.0299300 + 0.0844242i
\(454\) −21.6210 + 12.4829i −1.01473 + 0.585852i
\(455\) 0 0
\(456\) 6.99028 19.7177i 0.327350 0.923365i
\(457\) −5.74720 −0.268843 −0.134421 0.990924i \(-0.542918\pi\)
−0.134421 + 0.990924i \(0.542918\pi\)
\(458\) 22.1257 38.3228i 1.03387 1.79071i
\(459\) −0.142394 5.66886i −0.00664640 0.264599i
\(460\) 15.8429 9.14690i 0.738679 0.426476i
\(461\) −18.1346 + 31.4101i −0.844613 + 1.46291i 0.0413440 + 0.999145i \(0.486836\pi\)
−0.885957 + 0.463768i \(0.846497\pi\)
\(462\) 0 0
\(463\) 14.6202 + 25.3230i 0.679461 + 1.17686i 0.975144 + 0.221574i \(0.0711195\pi\)
−0.295683 + 0.955286i \(0.595547\pi\)
\(464\) −0.245960 0.142005i −0.0114184 0.00659241i
\(465\) −1.69191 9.14690i −0.0784606 0.424177i
\(466\) 3.34665 + 5.79656i 0.155030 + 0.268521i
\(467\) 1.32107 + 2.28817i 0.0611320 + 0.105884i 0.894972 0.446123i \(-0.147196\pi\)
−0.833840 + 0.552007i \(0.813862\pi\)
\(468\) 17.4799 + 45.6336i 0.808007 + 2.10941i
\(469\) 0 0
\(470\) −11.9347 6.89053i −0.550508 0.317836i
\(471\) 12.8571 10.9731i 0.592422 0.505612i
\(472\) 25.4813i 1.17287i
\(473\) 24.7357i 1.13735i
\(474\) 10.9771 9.36859i 0.504195 0.430314i
\(475\) −11.4408 6.60532i −0.524938 0.303073i
\(476\) 0 0
\(477\) −13.2540 + 16.3436i −0.606861 + 0.748322i
\(478\) −14.0962 24.4153i −0.644744 1.11673i
\(479\) 15.5409 + 26.9177i 0.710083 + 1.22990i 0.964826 + 0.262891i \(0.0846760\pi\)
−0.254742 + 0.967009i \(0.581991\pi\)
\(480\) 2.67743 + 14.4748i 0.122207 + 0.660683i
\(481\) −1.06012 0.612058i −0.0483371 0.0279074i
\(482\) 15.3694 + 26.6207i 0.700059 + 1.21254i
\(483\) 0 0
\(484\) 0.851848 1.47544i 0.0387204 0.0670657i
\(485\) −3.86840 + 2.23342i −0.175655 + 0.101414i
\(486\) −32.8083 + 13.5214i −1.48821 + 0.613342i
\(487\) −17.4360 + 30.2000i −0.790100 + 1.36849i 0.135805 + 0.990736i \(0.456638\pi\)
−0.925905 + 0.377757i \(0.876695\pi\)
\(488\) −8.78467 −0.397663
\(489\) 4.18174 11.7955i 0.189105 0.533412i
\(490\) 0 0
\(491\) −22.6758 + 13.0919i −1.02334 + 0.590828i −0.915071 0.403293i \(-0.867866\pi\)
−0.108273 + 0.994121i \(0.534532\pi\)
\(492\) 13.6871 38.6077i 0.617064 1.74057i
\(493\) 1.12252 0.648085i 0.0505556 0.0291883i
\(494\) 45.3041 + 26.1563i 2.03833 + 1.17683i
\(495\) −13.7464 2.18724i −0.617855 0.0983090i
\(496\) 0.895374i 0.0402035i
\(497\) 0 0
\(498\) −7.82038 42.2789i −0.350440 1.89456i
\(499\) −6.23912 + 10.8065i −0.279302 + 0.483764i −0.971211 0.238220i \(-0.923436\pi\)
0.691910 + 0.721984i \(0.256770\pi\)
\(500\) −36.2496 −1.62113
\(501\) 10.0172 28.2559i 0.447537 1.26238i
\(502\) 17.1057i 0.763465i
\(503\) 37.8479 1.68756 0.843778 0.536693i \(-0.180327\pi\)
0.843778 + 0.536693i \(0.180327\pi\)
\(504\) 0 0
\(505\) −10.1683 −0.452482
\(506\) 29.5177i 1.31222i
\(507\) −22.4920 + 4.16037i −0.998903 + 0.184768i
\(508\) −19.6271 −0.870811
\(509\) −17.6924 + 30.6441i −0.784200 + 1.35827i 0.145276 + 0.989391i \(0.453593\pi\)
−0.929476 + 0.368883i \(0.879740\pi\)
\(510\) −5.81682 2.06217i −0.257573 0.0913144i
\(511\) 0 0
\(512\) 2.70367i 0.119486i
\(513\) −11.1521 + 20.4875i −0.492378 + 0.904545i
\(514\) −15.2898 8.82756i −0.674403 0.389367i
\(515\) 2.11599 1.22167i 0.0932419 0.0538332i
\(516\) −41.4392 + 7.66507i −1.82426 + 0.337436i
\(517\) 11.8247 6.82701i 0.520051 0.300252i
\(518\) 0 0
\(519\) −2.19957 2.57723i −0.0965506 0.113128i
\(520\) 19.7551 0.866319
\(521\) −1.15939 + 2.00813i −0.0507940 + 0.0879777i −0.890304 0.455366i \(-0.849509\pi\)
0.839511 + 0.543343i \(0.182842\pi\)
\(522\) −6.29987 5.10896i −0.275738 0.223613i
\(523\) 17.4799 10.0920i 0.764341 0.441293i −0.0665110 0.997786i \(-0.521187\pi\)
0.830852 + 0.556493i \(0.187853\pi\)
\(524\) 13.1458 22.7692i 0.574277 0.994677i
\(525\) 0 0
\(526\) 15.9194 + 27.5733i 0.694120 + 1.20225i
\(527\) 3.53886 + 2.04316i 0.154155 + 0.0890015i
\(528\) −1.26280 0.447687i −0.0549564 0.0194831i
\(529\) −3.46621 6.00365i −0.150705 0.261028i
\(530\) 11.4506 + 19.8329i 0.497380 + 0.861488i
\(531\) 4.46454 28.0589i 0.193745 1.21765i
\(532\) 0 0
\(533\) 32.9503 + 19.0239i 1.42724 + 0.824016i
\(534\) 50.8802 + 18.0380i 2.20180 + 0.780580i
\(535\) 7.07939i 0.306069i
\(536\) 1.77628i 0.0767237i
\(537\) 7.30938 + 39.5163i 0.315423 + 1.70525i
\(538\) −50.9256 29.4019i −2.19556 1.26761i
\(539\) 0 0
\(540\) 0.595485 + 23.7068i 0.0256256 + 1.02018i
\(541\) 11.3856 + 19.7205i 0.489507 + 0.847851i 0.999927 0.0120743i \(-0.00384346\pi\)
−0.510420 + 0.859925i \(0.670510\pi\)
\(542\) −18.9552 32.8313i −0.814194 1.41023i
\(543\) 13.5361 11.5526i 0.580890 0.495770i
\(544\) −5.60020 3.23327i −0.240106 0.138626i
\(545\) 5.83643 + 10.1090i 0.250005 + 0.433022i
\(546\) 0 0
\(547\) 14.7918 25.6201i 0.632451 1.09544i −0.354598 0.935019i \(-0.615382\pi\)
0.987049 0.160419i \(-0.0512845\pi\)
\(548\) −28.5156 + 16.4635i −1.21813 + 0.703286i
\(549\) 9.67330 + 1.53915i 0.412846 + 0.0656894i
\(550\) 10.8353 18.7673i 0.462019 0.800240i
\(551\) −5.33178 −0.227141
\(552\) 18.3685 3.39765i 0.781815 0.144613i
\(553\) 0 0
\(554\) 61.9196 35.7493i 2.63071 1.51884i
\(555\) −0.385640 0.451852i −0.0163695 0.0191800i
\(556\) 49.1894 28.3995i 2.08609 1.20441i
\(557\) −4.08250 2.35703i −0.172981 0.0998707i 0.411010 0.911631i \(-0.365176\pi\)
−0.583991 + 0.811760i \(0.698510\pi\)
\(558\) 4.01816 25.2535i 0.170102 1.06906i
\(559\) 39.1439i 1.65561i
\(560\) 0 0
\(561\) 4.65103 3.96950i 0.196367 0.167592i
\(562\) −10.6517 + 18.4493i −0.449316 + 0.778238i
\(563\) 27.3484 1.15260 0.576299 0.817239i \(-0.304497\pi\)
0.576299 + 0.817239i \(0.304497\pi\)
\(564\) −15.1014 17.6942i −0.635883 0.745059i
\(565\) 5.62600i 0.236688i
\(566\) −35.9066 −1.50927
\(567\) 0 0
\(568\) −10.2873 −0.431645
\(569\) 23.5580i 0.987601i −0.869575 0.493801i \(-0.835607\pi\)
0.869575 0.493801i \(-0.164393\pi\)
\(570\) 16.4804 + 19.3099i 0.690287 + 0.808804i
\(571\) 19.1877 0.802980 0.401490 0.915863i \(-0.368492\pi\)
0.401490 + 0.915863i \(0.368492\pi\)
\(572\) −26.3465 + 45.6336i −1.10160 + 1.90804i
\(573\) −29.9323 + 25.5462i −1.25044 + 1.06721i
\(574\) 0 0
\(575\) 11.7961i 0.491932i
\(576\) −6.13323 + 38.5463i −0.255551 + 1.60610i
\(577\) −1.93481 1.11706i −0.0805472 0.0465039i 0.459185 0.888340i \(-0.348141\pi\)
−0.539733 + 0.841836i \(0.681475\pi\)
\(578\) −31.1661 + 17.9937i −1.29634 + 0.748441i
\(579\) −18.9710 22.2282i −0.788407 0.923771i
\(580\) −4.69430 + 2.71026i −0.194920 + 0.112537i
\(581\) 0 0
\(582\) −12.0744 + 2.23342i −0.500501 + 0.0925783i
\(583\) −22.6900 −0.939725
\(584\) 9.83498 17.0347i 0.406974 0.704900i
\(585\) −21.7535 3.46127i −0.899396 0.143106i
\(586\) 49.0040 28.2925i 2.02434 1.16875i
\(587\) −12.9883 + 22.4963i −0.536083 + 0.928522i 0.463028 + 0.886344i \(0.346763\pi\)
−0.999110 + 0.0421784i \(0.986570\pi\)
\(588\) 0 0
\(589\) −8.40451 14.5570i −0.346302 0.599813i
\(590\) −26.7788 15.4608i −1.10247 0.636509i
\(591\) −11.7837 + 10.0570i −0.484718 + 0.413690i
\(592\) −0.0285900 0.0495193i −0.00117504 0.00203523i
\(593\) −2.85877 4.95153i −0.117396 0.203335i 0.801339 0.598210i \(-0.204121\pi\)
−0.918735 + 0.394875i \(0.870788\pi\)
\(594\) −33.6075 18.2938i −1.37893 0.750604i
\(595\) 0 0
\(596\) −48.2885 27.8794i −1.97797 1.14198i
\(597\) 1.82257 + 9.85326i 0.0745928 + 0.403267i
\(598\) 46.7113i 1.91017i
\(599\) 25.2489i 1.03164i 0.856696 + 0.515822i \(0.172513\pi\)
−0.856696 + 0.515822i \(0.827487\pi\)
\(600\) −12.9259 4.58246i −0.527696 0.187078i
\(601\) 40.2546 + 23.2410i 1.64202 + 0.948021i 0.980114 + 0.198435i \(0.0635858\pi\)
0.661907 + 0.749586i \(0.269748\pi\)
\(602\) 0 0
\(603\) −0.311220 + 1.95596i −0.0126739 + 0.0796530i
\(604\) 1.75116 + 3.03310i 0.0712538 + 0.123415i
\(605\) 0.383978 + 0.665069i 0.0156109 + 0.0270389i
\(606\) −26.3457 9.34004i −1.07022 0.379413i
\(607\) 6.09405 + 3.51840i 0.247350 + 0.142808i 0.618550 0.785745i \(-0.287720\pi\)
−0.371200 + 0.928553i \(0.621054\pi\)
\(608\) 13.3000 + 23.0363i 0.539387 + 0.934246i
\(609\) 0 0
\(610\) 5.33009 9.23200i 0.215809 0.373793i
\(611\) 18.7125 10.8036i 0.757025 0.437069i
\(612\) −8.09127 6.56171i −0.327070 0.265241i
\(613\) −3.27128 + 5.66602i −0.132126 + 0.228849i −0.924496 0.381192i \(-0.875514\pi\)
0.792370 + 0.610041i \(0.208847\pi\)
\(614\) −42.9961 −1.73518
\(615\) 11.9864 + 14.0444i 0.483339 + 0.566324i
\(616\) 0 0
\(617\) −30.0043 + 17.3230i −1.20793 + 0.697396i −0.962306 0.271970i \(-0.912325\pi\)
−0.245620 + 0.969366i \(0.578992\pi\)
\(618\) 6.60464 1.22167i 0.265678 0.0491428i
\(619\) −14.7072 + 8.49123i −0.591134 + 0.341291i −0.765546 0.643381i \(-0.777531\pi\)
0.174412 + 0.984673i \(0.444198\pi\)
\(620\) −14.7993 8.54439i −0.594355 0.343151i
\(621\) −20.8219 + 0.523019i −0.835554 + 0.0209880i
\(622\) 18.1071i 0.726029i
\(623\) 0 0
\(624\) −1.99837 0.708458i −0.0799986 0.0283610i
\(625\) 0.812855 1.40791i 0.0325142 0.0563162i
\(626\) −25.3447 −1.01298
\(627\) −24.7330 + 4.57489i −0.987740 + 0.182704i
\(628\) 31.0524i 1.23913i
\(629\) 0.260959 0.0104051
\(630\) 0 0
\(631\) 26.2438 1.04475 0.522374 0.852716i \(-0.325047\pi\)
0.522374 + 0.852716i \(0.325047\pi\)
\(632\) 9.84797i 0.391731i
\(633\) −14.9840 + 42.2658i −0.595562 + 1.67992i
\(634\) −52.9338 −2.10227
\(635\) 4.42354 7.66179i 0.175543 0.304049i
\(636\) 7.03115 + 38.0121i 0.278803 + 1.50728i
\(637\) 0 0
\(638\) 8.74619i 0.346265i
\(639\) 11.3279 + 1.80242i 0.448125 + 0.0713027i
\(640\) 22.0674 + 12.7406i 0.872292 + 0.503618i
\(641\) −16.5092 + 9.53157i −0.652073 + 0.376474i −0.789250 0.614072i \(-0.789530\pi\)
0.137177 + 0.990547i \(0.456197\pi\)
\(642\) 6.50276 18.3425i 0.256643 0.723921i
\(643\) 15.3447 8.85928i 0.605136 0.349376i −0.165923 0.986139i \(-0.553060\pi\)
0.771060 + 0.636763i \(0.219727\pi\)
\(644\) 0 0
\(645\) 6.34733 17.9041i 0.249926 0.704973i
\(646\) −11.1521 −0.438774
\(647\) 10.8951 18.8709i 0.428330 0.741890i −0.568395 0.822756i \(-0.692435\pi\)
0.996725 + 0.0808661i \(0.0257686\pi\)
\(648\) −7.51561 + 23.0192i −0.295241 + 0.904281i
\(649\) 26.5320 15.3182i 1.04147 0.601294i
\(650\) 17.1467 29.6990i 0.672549 1.16489i
\(651\) 0 0
\(652\) −11.4955 19.9108i −0.450198 0.779766i
\(653\) 13.0852 + 7.55475i 0.512064 + 0.295640i 0.733682 0.679493i \(-0.237800\pi\)
−0.221618 + 0.975134i \(0.571134\pi\)
\(654\) 5.83643 + 31.5531i 0.228222 + 1.23383i
\(655\) 5.92558 + 10.2634i 0.231532 + 0.401024i
\(656\) 0.888629 + 1.53915i 0.0346951 + 0.0600938i
\(657\) −13.8145 + 17.0347i −0.538954 + 0.664586i
\(658\) 0 0
\(659\) −27.1850 15.6952i −1.05898 0.611400i −0.133827 0.991005i \(-0.542727\pi\)
−0.925149 + 0.379605i \(0.876060\pi\)
\(660\) −19.4503 + 16.6002i −0.757104 + 0.646162i
\(661\) 43.7116i 1.70019i −0.526633 0.850093i \(-0.676546\pi\)
0.526633 0.850093i \(-0.323454\pi\)
\(662\) 43.6139i 1.69510i
\(663\) 7.36019 6.28167i 0.285846 0.243960i
\(664\) −25.4095 14.6702i −0.986078 0.569312i
\(665\) 0 0
\(666\) −0.584135 1.52496i −0.0226348 0.0590912i
\(667\) −2.38044 4.12304i −0.0921709 0.159645i
\(668\) −27.5371 47.6957i −1.06544 1.84540i
\(669\) 5.63216 + 30.4488i 0.217752 + 1.17722i
\(670\) 1.86673 + 1.07776i 0.0721181 + 0.0416374i
\(671\) 5.28096 + 9.14690i 0.203869 + 0.353112i
\(672\) 0 0
\(673\) −4.60589 + 7.97763i −0.177544 + 0.307515i −0.941039 0.338299i \(-0.890149\pi\)
0.763495 + 0.645814i \(0.223482\pi\)
\(674\) −56.2960 + 32.5025i −2.16844 + 1.25195i
\(675\) 13.4305 + 7.31073i 0.516940 + 0.281390i
\(676\) −21.0104 + 36.3911i −0.808092 + 1.39966i
\(677\) 22.8387 0.877763 0.438882 0.898545i \(-0.355375\pi\)
0.438882 + 0.898545i \(0.355375\pi\)
\(678\) −5.16775 + 14.5768i −0.198466 + 0.559819i
\(679\) 0 0
\(680\) −3.64721 + 2.10571i −0.139864 + 0.0807505i
\(681\) 6.34733 17.9041i 0.243230 0.686086i
\(682\) 23.8792 13.7867i 0.914383 0.527919i
\(683\) −29.6030 17.0913i −1.13273 0.653981i −0.188108 0.982148i \(-0.560236\pi\)
−0.944619 + 0.328168i \(0.893569\pi\)
\(684\) 15.3284 + 40.0170i 0.586097 + 1.53009i
\(685\) 14.8421i 0.567088i
\(686\) 0 0
\(687\) 6.12408 + 33.1082i 0.233648 + 1.26316i
\(688\) 0.914230 1.58349i 0.0348547 0.0603701i
\(689\) −35.9066 −1.36793
\(690\) −7.57442 + 21.3654i −0.288353 + 0.813365i
\(691\) 0.258747i 0.00984320i 0.999988 + 0.00492160i \(0.00156660\pi\)
−0.999988 + 0.00492160i \(0.998433\pi\)
\(692\) −6.22453 −0.236621
\(693\) 0 0
\(694\) −6.74720 −0.256120
\(695\) 25.6026i 0.971163i
\(696\) −5.44264 + 1.00673i −0.206303 + 0.0381601i
\(697\) −8.11109 −0.307229
\(698\) −30.7389 + 53.2413i −1.16348 + 2.01521i
\(699\) −4.80005 1.70171i −0.181555 0.0643645i
\(700\) 0 0
\(701\) 5.16189i 0.194962i 0.995237 + 0.0974810i \(0.0310785\pi\)
−0.995237 + 0.0974810i \(0.968921\pi\)
\(702\) −53.1833 28.9497i −2.00728 1.09263i
\(703\) −0.929636 0.536725i −0.0350619 0.0202430i
\(704\) −36.4487 + 21.0437i −1.37371 + 0.793113i
\(705\) 10.3108 1.90720i 0.388326 0.0718292i
\(706\) 58.4475 33.7447i 2.19970 1.27000i
\(707\) 0 0
\(708\) −33.8840 39.7016i −1.27344 1.49208i
\(709\) 23.4944 0.882351 0.441175 0.897421i \(-0.354562\pi\)
0.441175 + 0.897421i \(0.354562\pi\)
\(710\) 6.24180 10.8111i 0.234251 0.405734i
\(711\) −1.72545 + 10.8442i −0.0647094 + 0.406688i
\(712\) 31.9024 18.4189i 1.19559 0.690276i
\(713\) 7.50460 12.9984i 0.281050 0.486792i
\(714\) 0 0
\(715\) −11.8759 20.5697i −0.444134 0.769263i
\(716\) 63.9357 + 36.9133i 2.38939 + 1.37952i
\(717\) 20.2180 + 7.16765i 0.755054 + 0.267681i
\(718\) −28.0293 48.5481i −1.04604 1.81180i
\(719\) 5.07828 + 8.79584i 0.189388 + 0.328029i 0.945046 0.326937i \(-0.106016\pi\)
−0.755658 + 0.654966i \(0.772683\pi\)
\(720\) −0.799156 0.648085i −0.0297828 0.0241527i
\(721\) 0 0
\(722\) 2.27128 + 1.31132i 0.0845283 + 0.0488024i
\(723\) −22.0442 7.81508i −0.819832 0.290646i
\(724\) 32.6925i 1.21501i
\(725\) 3.49523i 0.129809i
\(726\) 0.383978 + 2.07588i 0.0142507 + 0.0770430i
\(727\) −5.74874 3.31904i −0.213209 0.123096i 0.389593 0.920987i \(-0.372616\pi\)
−0.602802 + 0.797891i \(0.705949\pi\)
\(728\) 0 0
\(729\) 12.3090 24.0310i 0.455890 0.890036i
\(730\) 11.9347 + 20.6716i 0.441725 + 0.765089i
\(731\) 4.17238 + 7.22678i 0.154321 + 0.267292i
\(732\) 13.6871 11.6815i 0.505891 0.431761i
\(733\) −5.20130 3.00297i −0.192114 0.110917i 0.400858 0.916140i \(-0.368712\pi\)
−0.592972 + 0.805223i \(0.702046\pi\)
\(734\) −6.38209 11.0541i −0.235567 0.408014i
\(735\) 0 0
\(736\) −11.8759 + 20.5697i −0.437752 + 0.758209i
\(737\) −1.84953 + 1.06782i −0.0681281 + 0.0393338i
\(738\) 18.1560 + 47.3987i 0.668332 + 1.74477i
\(739\) 7.81930 13.5434i 0.287638 0.498203i −0.685608 0.727971i \(-0.740463\pi\)
0.973245 + 0.229768i \(0.0737968\pi\)
\(740\) −1.09132 −0.0401176
\(741\) −39.1396 + 7.23970i −1.43783 + 0.265957i
\(742\) 0 0
\(743\) 27.3807 15.8083i 1.00450 0.579949i 0.0949246 0.995484i \(-0.469739\pi\)
0.909577 + 0.415535i \(0.136406\pi\)
\(744\) −11.3279 13.2728i −0.415301 0.486605i
\(745\) 21.7664 12.5669i 0.797461 0.460414i
\(746\) 7.36032 + 4.24948i 0.269480 + 0.155585i
\(747\) 25.4095 + 20.6061i 0.929683 + 0.753938i
\(748\) 11.2332i 0.410727i
\(749\) 0 0
\(750\) 34.1661 29.1596i 1.24757 1.06476i
\(751\) 7.13680 12.3613i 0.260426 0.451070i −0.705929 0.708282i \(-0.749470\pi\)
0.966355 + 0.257212i \(0.0828038\pi\)
\(752\) 1.00930 0.0368055
\(753\) 8.44927 + 9.89994i 0.307908 + 0.360774i
\(754\) 13.8407i 0.504049i
\(755\) −1.57870 −0.0574548
\(756\) 0 0
\(757\) −10.8227 −0.393358 −0.196679 0.980468i \(-0.563016\pi\)
−0.196679 + 0.980468i \(0.563016\pi\)
\(758\) 69.2975i 2.51700i
\(759\) −14.5801 17.0834i −0.529224 0.620088i
\(760\) 17.3236 0.628395
\(761\) 2.93098 5.07660i 0.106248 0.184027i −0.808000 0.589183i \(-0.799450\pi\)
0.914247 + 0.405157i \(0.132783\pi\)
\(762\) 18.4990 15.7882i 0.670147 0.571948i
\(763\) 0 0
\(764\) 72.2926i 2.61546i
\(765\) 4.38508 1.67970i 0.158543 0.0607297i
\(766\) 33.4844 + 19.3323i 1.20984 + 0.698503i
\(767\) 41.9865 24.2409i 1.51604 0.875288i
\(768\) 16.2152 + 18.9992i 0.585115 + 0.685575i
\(769\) 27.5683 15.9166i 0.994140 0.573967i 0.0876307 0.996153i \(-0.472070\pi\)
0.906509 + 0.422186i \(0.138737\pi\)
\(770\) 0 0
\(771\) 13.2093 2.44334i 0.475721 0.0879947i
\(772\) −53.6856 −1.93219
\(773\) −9.51908 + 16.4875i −0.342378 + 0.593015i −0.984874 0.173274i \(-0.944566\pi\)
0.642496 + 0.766289i \(0.277899\pi\)
\(774\) 32.8915 40.5587i 1.18226 1.45785i
\(775\) −9.54282 + 5.50955i −0.342788 + 0.197909i
\(776\) −4.18965 + 7.25668i −0.150400 + 0.260500i
\(777\) 0 0
\(778\) −12.3977 21.4734i −0.444478 0.769859i
\(779\) 28.8948 + 16.6824i 1.03526 + 0.597710i
\(780\) −30.7799 + 26.2696i −1.10210 + 0.940602i
\(781\) 6.18427 + 10.7115i 0.221290 + 0.383286i
\(782\) −4.97900 8.62388i −0.178049 0.308389i
\(783\) 6.16959 0.154972i 0.220483 0.00553826i
\(784\) 0 0
\(785\) 12.1219 + 6.99857i 0.432649 + 0.249790i
\(786\) 5.92558 + 32.0351i 0.211358 + 1.14265i
\(787\) 18.9513i 0.675540i −0.941229 0.337770i \(-0.890327\pi\)
0.941229 0.337770i \(-0.109673\pi\)
\(788\) 28.4601i 1.01385i
\(789\) −22.8330 8.09474i −0.812878 0.288180i
\(790\) 10.3494 + 5.97525i 0.368216 + 0.212590i
\(791\) 0 0
\(792\) −24.3834 + 9.34004i −0.866428 + 0.331884i
\(793\) 8.35705 + 14.4748i 0.296768 + 0.514016i
\(794\) −25.3857 43.9693i −0.900905 1.56041i
\(795\) −16.4234 5.82240i −0.582478 0.206499i
\(796\) 15.9422 + 9.20422i 0.565055 + 0.326235i
\(797\) −26.7207 46.2816i −0.946497 1.63938i −0.752727 0.658333i \(-0.771262\pi\)
−0.193770 0.981047i \(-0.562071\pi\)
\(798\) 0 0
\(799\) −2.30314 + 3.98916i −0.0814792 + 0.141126i
\(800\) 15.1014 8.71878i 0.533914 0.308256i
\(801\) −38.3567 + 14.6925i −1.35527 + 0.519133i
\(802\) 27.4097 47.4750i 0.967871 1.67640i
\(803\) −23.6495 −0.834571
\(804\) 2.36203 + 2.76757i 0.0833024 + 0.0976048i
\(805\) 0 0
\(806\) 37.7885 21.8172i 1.33104 0.768479i
\(807\) 43.9962 8.13803i 1.54874 0.286472i
\(808\) −16.5190 + 9.53727i −0.581137 + 0.335520i
\(809\) 2.23517 + 1.29047i 0.0785842 + 0.0453706i 0.538777 0.842448i \(-0.318886\pi\)
−0.460193 + 0.887819i \(0.652220\pi\)
\(810\) −19.6313 21.8652i −0.689773 0.768265i
\(811\) 6.06938i 0.213125i 0.994306 + 0.106562i \(0.0339844\pi\)
−0.994306 + 0.106562i \(0.966016\pi\)
\(812\) 0 0
\(813\) 27.1871 + 9.63835i 0.953495 + 0.338032i
\(814\) 0.880438 1.52496i 0.0308593 0.0534500i
\(815\) 10.3634 0.363013
\(816\) 0.444455 0.0822114i 0.0155590 0.00287798i
\(817\) 34.3261i 1.20092i
\(818\) 59.9811 2.09719
\(819\) 0 0
\(820\) 33.9201 1.18454
\(821\) 9.28308i 0.323982i −0.986792 0.161991i \(-0.948208\pi\)
0.986792 0.161991i \(-0.0517915\pi\)
\(822\) 13.6332 38.4555i 0.475512 1.34129i
\(823\) 18.0690 0.629844 0.314922 0.949117i \(-0.398022\pi\)
0.314922 + 0.949117i \(0.398022\pi\)
\(824\) 2.29172 3.96937i 0.0798357 0.138280i
\(825\) 2.99905 + 16.2136i 0.104414 + 0.564486i
\(826\) 0 0
\(827\) 48.5440i 1.68804i −0.536310 0.844021i \(-0.680182\pi\)
0.536310 0.844021i \(-0.319818\pi\)
\(828\) −24.1014 + 29.7195i −0.837581 + 1.03282i
\(829\) 4.71804 + 2.72396i 0.163864 + 0.0946071i 0.579689 0.814837i \(-0.303174\pi\)
−0.415825 + 0.909445i \(0.636507\pi\)
\(830\) 30.8344 17.8022i 1.07028 0.617924i
\(831\) −18.1779 + 51.2747i −0.630583 + 1.77870i
\(832\) −57.6796 + 33.3013i −1.99968 + 1.15452i
\(833\) 0 0
\(834\) −23.5172 + 66.3357i −0.814335 + 2.29702i
\(835\) 24.8252 0.859111
\(836\) −23.1038 + 40.0170i −0.799062 + 1.38402i
\(837\) 10.1483 + 16.6002i 0.350776 + 0.573787i
\(838\) −63.7793 + 36.8230i −2.20322 + 1.27203i
\(839\) −24.2673 + 42.0322i −0.837801 + 1.45111i 0.0539281 + 0.998545i \(0.482826\pi\)
−0.891729 + 0.452569i \(0.850508\pi\)
\(840\) 0 0
\(841\) −13.7947 23.8931i −0.475678 0.823899i
\(842\) −21.8727 12.6282i −0.753781 0.435196i
\(843\) −2.94824 15.9389i −0.101543 0.548965i
\(844\) 41.1907 + 71.3444i 1.41784 + 2.45578i
\(845\) −9.47061 16.4036i −0.325799 0.564300i
\(846\) 28.4668 + 4.52945i 0.978708 + 0.155726i
\(847\) 0 0
\(848\) −1.45254 0.838622i −0.0498803 0.0287984i
\(849\) 20.7810 17.7359i 0.713202 0.608694i
\(850\) 7.31073i 0.250756i
\(851\) 0.958511i 0.0328573i
\(852\) 16.0283 13.6796i 0.549121 0.468656i
\(853\) −10.7703 6.21823i −0.368768 0.212908i 0.304152 0.952623i \(-0.401627\pi\)
−0.672920 + 0.739715i \(0.734960\pi\)
\(854\) 0 0
\(855\) −19.0761 3.03526i −0.652387 0.103804i
\(856\) −6.64007 11.5009i −0.226953 0.393094i
\(857\) 5.29077 + 9.16388i 0.180729 + 0.313032i 0.942129 0.335250i \(-0.108821\pi\)
−0.761400 + 0.648283i \(0.775488\pi\)
\(858\) −11.8759 64.2041i −0.405437 2.19189i
\(859\) 28.1452 + 16.2496i 0.960302 + 0.554431i 0.896266 0.443517i \(-0.146269\pi\)
0.0640360 + 0.997948i \(0.479603\pi\)
\(860\) −17.4487 30.2220i −0.594995 1.03056i
\(861\) 0 0
\(862\) −18.5579 + 32.1432i −0.632084 + 1.09480i
\(863\) −21.8414 + 12.6102i −0.743491 + 0.429255i −0.823337 0.567552i \(-0.807890\pi\)
0.0798460 + 0.996807i \(0.474557\pi\)
\(864\) −16.0595 26.2696i −0.546356 0.893710i
\(865\) 1.40288 2.42986i 0.0476994 0.0826177i
\(866\) 28.5366 0.969715
\(867\) 9.14949 25.8082i 0.310733 0.876492i
\(868\) 0 0
\(869\) −10.2540 + 5.92017i −0.347844 + 0.200828i
\(870\) 2.24433 6.33063i 0.0760897 0.214628i
\(871\) −2.92685 + 1.68982i −0.0991724 + 0.0572572i
\(872\) 18.9633 + 10.9485i 0.642179 + 0.370762i
\(873\) 5.88489 7.25668i 0.199174 0.245602i
\(874\) 40.9621i 1.38556i
\(875\) 0 0
\(876\) 7.32846 + 39.6194i 0.247606 + 1.33862i
\(877\) 7.47893 12.9539i 0.252546 0.437422i −0.711680 0.702503i \(-0.752066\pi\)
0.964226 + 0.265082i \(0.0853989\pi\)
\(878\) 42.3921 1.43067
\(879\) −14.3862 + 40.5795i −0.485234 + 1.36871i
\(880\) 1.10948i 0.0374005i
\(881\) −36.4482 −1.22797 −0.613985 0.789318i \(-0.710434\pi\)
−0.613985 + 0.789318i \(0.710434\pi\)
\(882\) 0 0
\(883\) 15.9831 0.537873 0.268936 0.963158i \(-0.413328\pi\)
0.268936 + 0.963158i \(0.413328\pi\)
\(884\) 17.7764i 0.597884i
\(885\) 23.1350 4.27931i 0.777675 0.143848i
\(886\) 10.8148 0.363330
\(887\) 24.5208 42.4713i 0.823329 1.42605i −0.0798613 0.996806i \(-0.525448\pi\)
0.903190 0.429241i \(-0.141219\pi\)
\(888\) −1.05031 0.372354i −0.0352461 0.0124954i
\(889\) 0 0
\(890\) 44.7026i 1.49843i
\(891\) 28.4865 6.01266i 0.954332 0.201432i
\(892\) 49.2649 + 28.4431i 1.64951 + 0.952346i
\(893\) 16.4093 9.47393i 0.549117 0.317033i
\(894\) 67.9395 12.5669i 2.27224 0.420299i
\(895\) −28.8196 + 16.6390i −0.963332 + 0.556180i
\(896\) 0 0
\(897\) −23.0728 27.0342i −0.770378 0.902646i
\(898\) 36.9669 1.23360
\(899\) −2.22364 + 3.85145i −0.0741625 + 0.128453i
\(900\) 26.2330 10.0485i 0.874433 0.334950i
\(901\) 6.62911 3.82732i 0.220848 0.127506i
\(902\) −27.3657 + 47.3987i −0.911177 + 1.57820i
\(903\) 0 0
\(904\) 5.27687 + 9.13981i 0.175506 + 0.303986i
\(905\) 12.7621 + 7.36821i 0.424227 + 0.244928i
\(906\) −4.09037 1.45011i −0.135893 0.0481768i
\(907\) 2.42915 + 4.20741i 0.0806585 + 0.139705i 0.903533 0.428519i \(-0.140964\pi\)
−0.822874 + 0.568223i \(0.807631\pi\)
\(908\) −17.4487 30.2220i −0.579054 1.00295i
\(909\) 19.8611 7.60775i 0.658750 0.252333i
\(910\) 0 0
\(911\) 14.4945 + 8.36843i 0.480226 + 0.277258i 0.720510 0.693444i \(-0.243908\pi\)
−0.240285 + 0.970702i \(0.577241\pi\)
\(912\) −1.75241 0.621261i −0.0580279 0.0205720i
\(913\) 35.2763i 1.16747i
\(914\) 13.0829i 0.432743i
\(915\) 1.47529 + 7.97579i 0.0487717 + 0.263672i
\(916\) 53.5678 + 30.9274i 1.76993 + 1.02187i
\(917\) 0 0
\(918\) 12.9045 0.324145i 0.425912 0.0106984i
\(919\) −15.3200 26.5350i −0.505360 0.875309i −0.999981 0.00620006i \(-0.998026\pi\)
0.494621 0.869109i \(-0.335307\pi\)
\(920\) 7.73436 + 13.3963i 0.254994 + 0.441663i
\(921\) 24.8840 21.2377i 0.819956 0.699804i
\(922\) −71.5015 41.2814i −2.35478 1.35953i
\(923\) 9.78651 + 16.9507i 0.322127 + 0.557940i
\(924\) 0 0
\(925\) −0.351848 + 0.609419i −0.0115687 + 0.0200376i
\(926\) −57.6450 + 33.2814i −1.89433 + 1.09369i
\(927\) −3.21901 + 3.96937i −0.105726 + 0.130371i
\(928\) 3.51887 6.09487i 0.115513 0.200074i
\(929\) −29.7445 −0.975885 −0.487943 0.872876i \(-0.662253\pi\)
−0.487943 + 0.872876i \(0.662253\pi\)
\(930\) 20.8219 3.85145i 0.682777 0.126294i
\(931\) 0 0
\(932\) −8.10245 + 4.67795i −0.265405 + 0.153231i
\(933\) −8.94390 10.4795i −0.292810 0.343083i
\(934\) −5.20876 + 3.00728i −0.170436 + 0.0984011i
\(935\) 4.38508 + 2.53173i 0.143408 + 0.0827964i
\(936\) −38.5865 + 14.7805i −1.26124 + 0.483115i
\(937\) 4.03712i 0.131887i 0.997823 + 0.0659434i \(0.0210057\pi\)
−0.997823 + 0.0659434i \(0.978994\pi\)
\(938\) 0 0
\(939\) 14.6683 12.5189i 0.478681 0.408538i
\(940\) 9.63160 16.6824i 0.314148 0.544121i
\(941\) −14.4053 −0.469599 −0.234799 0.972044i \(-0.575443\pi\)
−0.234799 + 0.972044i \(0.575443\pi\)
\(942\) 24.9789 + 29.2676i 0.813858 + 0.953591i
\(943\) 29.7923i 0.970171i
\(944\) 2.26464 0.0737079
\(945\) 0 0
\(946\) 56.3081 1.83073
\(947\) 31.2155i 1.01437i −0.861838 0.507183i \(-0.830687\pi\)
0.861838 0.507183i \(-0.169313\pi\)
\(948\) 13.0954 + 15.3438i 0.425320 + 0.498345i
\(949\) −37.4249 −1.21486
\(950\) 15.0363 26.0436i 0.487841 0.844966i
\(951\) 30.6355 26.1463i 0.993423 0.847853i
\(952\) 0 0
\(953\) 8.55869i 0.277243i 0.990345 + 0.138622i \(0.0442672\pi\)
−0.990345 + 0.138622i \(0.955733\pi\)
\(954\) −37.2044 30.1713i −1.20454 0.976833i
\(955\) −28.2207 16.2933i −0.913202 0.527237i
\(956\) 34.1278 19.7037i 1.10377 0.637263i
\(957\) 4.32013 + 5.06186i 0.139650 + 0.163627i
\(958\) −61.2751 + 35.3772i −1.97971 + 1.14298i
\(959\) 0 0
\(960\) −31.7821 + 5.87877i −1.02576 + 0.189737i
\(961\) 16.9795 0.547724
\(962\) 1.39328 2.41323i 0.0449212 0.0778058i
\(963\) 5.29669 + 13.8277i 0.170684 + 0.445593i
\(964\) −37.2104 + 21.4835i −1.19847 + 0.691936i
\(965\) 12.0996 20.9572i 0.389501 0.674635i
\(966\) 0 0
\(967\) 16.0280 + 27.7614i 0.515427 + 0.892745i 0.999840 + 0.0179059i \(0.00569994\pi\)
−0.484413 + 0.874840i \(0.660967\pi\)
\(968\) 1.24759 + 0.720299i 0.0400992 + 0.0231513i
\(969\) 6.45429 5.50852i 0.207342 0.176959i
\(970\) −5.08414 8.80598i −0.163242 0.282743i
\(971\) −16.6183 28.7838i −0.533307 0.923715i −0.999243 0.0388964i \(-0.987616\pi\)
0.465936 0.884818i \(-0.345718\pi\)
\(972\) −18.9002 45.8596i −0.606225 1.47095i
\(973\) 0 0
\(974\) −68.7469 39.6911i −2.20279 1.27178i
\(975\) 4.74596 + 25.6578i 0.151992 + 0.821708i
\(976\) 0.780736i 0.0249908i
\(977\) 52.1414i 1.66815i 0.551649 + 0.834076i \(0.313999\pi\)
−0.551649 + 0.834076i \(0.686001\pi\)
\(978\) 26.8512 + 9.51925i 0.858607 + 0.304392i
\(979\) −38.3567 22.1453i −1.22589 0.707765i
\(980\) 0 0
\(981\) −18.9633 15.3785i −0.605453 0.490999i
\(982\) −29.8022 51.6189i −0.951026 1.64723i
\(983\) −12.1192 20.9911i −0.386544 0.669513i 0.605438 0.795892i \(-0.292998\pi\)
−0.991982 + 0.126379i \(0.959664\pi\)
\(984\) 32.6456 + 11.5735i 1.04070 + 0.368949i
\(985\) −11.1099 6.41432i −0.353992 0.204377i
\(986\) 1.47529 + 2.55528i 0.0469829 + 0.0813768i
\(987\) 0 0
\(988\) −36.5614 + 63.3263i −1.16317 + 2.01468i
\(989\) 26.5442 15.3253i 0.844056 0.487316i
\(990\) 4.97900 31.2921i 0.158243 0.994530i
\(991\) 12.0991 20.9562i 0.384339 0.665695i −0.607338 0.794443i \(-0.707763\pi\)
0.991677 + 0.128749i \(0.0410960\pi\)
\(992\) 22.1873 0.704448
\(993\) 21.5428 + 25.2416i 0.683641 + 0.801017i
\(994\) 0 0
\(995\) −7.18607 + 4.14888i −0.227814 + 0.131528i
\(996\) 59.0976 10.9314i 1.87258 0.346373i
\(997\) −8.81920 + 5.09177i −0.279307 + 0.161258i −0.633110 0.774062i \(-0.718222\pi\)
0.353803 + 0.935320i \(0.384888\pi\)
\(998\) −24.5997 14.2027i −0.778691 0.449578i
\(999\) 1.09132 + 0.594044i 0.0345277 + 0.0187947i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.i.c.227.5 12
3.2 odd 2 1323.2.i.c.521.1 12
7.2 even 3 441.2.s.c.362.6 12
7.3 odd 6 63.2.o.a.20.2 yes 12
7.4 even 3 63.2.o.a.20.1 12
7.5 odd 6 441.2.s.c.362.5 12
7.6 odd 2 inner 441.2.i.c.227.6 12
9.4 even 3 1323.2.s.c.962.1 12
9.5 odd 6 441.2.s.c.374.5 12
21.2 odd 6 1323.2.s.c.656.2 12
21.5 even 6 1323.2.s.c.656.1 12
21.11 odd 6 189.2.o.a.62.5 12
21.17 even 6 189.2.o.a.62.6 12
21.20 even 2 1323.2.i.c.521.2 12
28.3 even 6 1008.2.cc.a.209.2 12
28.11 odd 6 1008.2.cc.a.209.5 12
63.4 even 3 189.2.o.a.125.6 12
63.5 even 6 inner 441.2.i.c.68.1 12
63.11 odd 6 567.2.c.c.566.2 12
63.13 odd 6 1323.2.s.c.962.2 12
63.23 odd 6 inner 441.2.i.c.68.2 12
63.25 even 3 567.2.c.c.566.11 12
63.31 odd 6 189.2.o.a.125.5 12
63.32 odd 6 63.2.o.a.41.2 yes 12
63.38 even 6 567.2.c.c.566.1 12
63.40 odd 6 1323.2.i.c.1097.5 12
63.41 even 6 441.2.s.c.374.6 12
63.52 odd 6 567.2.c.c.566.12 12
63.58 even 3 1323.2.i.c.1097.6 12
63.59 even 6 63.2.o.a.41.1 yes 12
84.11 even 6 3024.2.cc.a.2897.3 12
84.59 odd 6 3024.2.cc.a.2897.4 12
252.31 even 6 3024.2.cc.a.881.3 12
252.59 odd 6 1008.2.cc.a.545.5 12
252.67 odd 6 3024.2.cc.a.881.4 12
252.95 even 6 1008.2.cc.a.545.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.o.a.20.1 12 7.4 even 3
63.2.o.a.20.2 yes 12 7.3 odd 6
63.2.o.a.41.1 yes 12 63.59 even 6
63.2.o.a.41.2 yes 12 63.32 odd 6
189.2.o.a.62.5 12 21.11 odd 6
189.2.o.a.62.6 12 21.17 even 6
189.2.o.a.125.5 12 63.31 odd 6
189.2.o.a.125.6 12 63.4 even 3
441.2.i.c.68.1 12 63.5 even 6 inner
441.2.i.c.68.2 12 63.23 odd 6 inner
441.2.i.c.227.5 12 1.1 even 1 trivial
441.2.i.c.227.6 12 7.6 odd 2 inner
441.2.s.c.362.5 12 7.5 odd 6
441.2.s.c.362.6 12 7.2 even 3
441.2.s.c.374.5 12 9.5 odd 6
441.2.s.c.374.6 12 63.41 even 6
567.2.c.c.566.1 12 63.38 even 6
567.2.c.c.566.2 12 63.11 odd 6
567.2.c.c.566.11 12 63.25 even 3
567.2.c.c.566.12 12 63.52 odd 6
1008.2.cc.a.209.2 12 28.3 even 6
1008.2.cc.a.209.5 12 28.11 odd 6
1008.2.cc.a.545.2 12 252.95 even 6
1008.2.cc.a.545.5 12 252.59 odd 6
1323.2.i.c.521.1 12 3.2 odd 2
1323.2.i.c.521.2 12 21.20 even 2
1323.2.i.c.1097.5 12 63.40 odd 6
1323.2.i.c.1097.6 12 63.58 even 3
1323.2.s.c.656.1 12 21.5 even 6
1323.2.s.c.656.2 12 21.2 odd 6
1323.2.s.c.962.1 12 9.4 even 3
1323.2.s.c.962.2 12 63.13 odd 6
3024.2.cc.a.881.3 12 252.31 even 6
3024.2.cc.a.881.4 12 252.67 odd 6
3024.2.cc.a.2897.3 12 84.11 even 6
3024.2.cc.a.2897.4 12 84.59 odd 6