Properties

Label 441.2.h.h.214.6
Level $441$
Weight $2$
Character 441.214
Analytic conductor $3.521$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 214.6
Character \(\chi\) \(=\) 441.214
Dual form 441.2.h.h.373.6

$q$-expansion

\(f(q)\) \(=\) \(q-1.10281 q^{2} +(1.22001 - 1.22947i) q^{3} -0.783802 q^{4} +(0.0527330 - 0.0913363i) q^{5} +(-1.34544 + 1.35587i) q^{6} +3.07001 q^{8} +(-0.0231690 - 2.99991i) q^{9} +O(q^{10})\) \(q-1.10281 q^{2} +(1.22001 - 1.22947i) q^{3} -0.783802 q^{4} +(0.0527330 - 0.0913363i) q^{5} +(-1.34544 + 1.35587i) q^{6} +3.07001 q^{8} +(-0.0231690 - 2.99991i) q^{9} +(-0.0581547 + 0.100727i) q^{10} +(-1.66866 - 2.89020i) q^{11} +(-0.956244 + 0.963657i) q^{12} +(1.23997 + 2.14770i) q^{13} +(-0.0479602 - 0.176264i) q^{15} -1.81805 q^{16} +(0.806594 - 1.39706i) q^{17} +(0.0255511 + 3.30834i) q^{18} +(-3.84133 - 6.65338i) q^{19} +(-0.0413323 + 0.0715896i) q^{20} +(1.84022 + 3.18735i) q^{22} +(0.948593 - 1.64301i) q^{23} +(3.74544 - 3.77448i) q^{24} +(2.49444 + 4.32049i) q^{25} +(-1.36746 - 2.36851i) q^{26} +(-3.71655 - 3.63142i) q^{27} +(4.64521 - 8.04574i) q^{29} +(0.0528911 + 0.194387i) q^{30} -9.26162 q^{31} -4.13506 q^{32} +(-5.58917 - 1.47451i) q^{33} +(-0.889523 + 1.54070i) q^{34} +(0.0181599 + 2.35134i) q^{36} +(0.991268 + 1.71693i) q^{37} +(4.23627 + 7.33744i) q^{38} +(4.15329 + 1.09570i) q^{39} +(0.161891 - 0.280404i) q^{40} +(-3.74268 - 6.48252i) q^{41} +(-3.77388 + 6.53655i) q^{43} +(1.30790 + 2.26534i) q^{44} +(-0.275223 - 0.156078i) q^{45} +(-1.04612 + 1.81194i) q^{46} +3.19560 q^{47} +(-2.21803 + 2.23523i) q^{48} +(-2.75090 - 4.76470i) q^{50} +(-0.733589 - 2.69610i) q^{51} +(-0.971894 - 1.68337i) q^{52} +(4.98839 - 8.64015i) q^{53} +(4.09866 + 4.00478i) q^{54} -0.351974 q^{55} +(-12.8665 - 3.39438i) q^{57} +(-5.12280 + 8.87296i) q^{58} -4.45986 q^{59} +(0.0375913 + 0.138156i) q^{60} +5.67100 q^{61} +10.2138 q^{62} +8.19630 q^{64} +0.261550 q^{65} +(6.16381 + 1.62610i) q^{66} +9.97141 q^{67} +(-0.632210 + 1.09502i) q^{68} +(-0.862736 - 3.17075i) q^{69} +3.29042 q^{71} +(-0.0711292 - 9.20977i) q^{72} +(-2.36189 + 4.09091i) q^{73} +(-1.09318 - 1.89345i) q^{74} +(8.35513 + 2.20421i) q^{75} +(3.01084 + 5.21493i) q^{76} +(-4.58031 - 1.20835i) q^{78} +7.69409 q^{79} +(-0.0958713 + 0.166054i) q^{80} +(-8.99893 + 0.139010i) q^{81} +(4.12748 + 7.14901i) q^{82} +(0.584428 - 1.01226i) q^{83} +(-0.0850683 - 0.147343i) q^{85} +(4.16189 - 7.20860i) q^{86} +(-4.22477 - 15.5270i) q^{87} +(-5.12280 - 8.87296i) q^{88} +(3.01477 + 5.22173i) q^{89} +(0.303519 + 0.172125i) q^{90} +(-0.743509 + 1.28780i) q^{92} +(-11.2992 + 11.3868i) q^{93} -3.52415 q^{94} -0.810260 q^{95} +(-5.04480 + 5.08391i) q^{96} +(1.90127 - 3.29310i) q^{97} +(-8.63168 + 5.07279i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24q - 8q^{2} + 24q^{4} - 24q^{8} - 4q^{9} + O(q^{10}) \) \( 24q - 8q^{2} + 24q^{4} - 24q^{8} - 4q^{9} + 20q^{11} + 4q^{15} + 24q^{16} - 32q^{18} + 32q^{23} - 12q^{25} + 16q^{29} - 84q^{30} - 96q^{32} - 4q^{36} - 12q^{37} + 8q^{39} + 56q^{44} + 24q^{46} - 4q^{50} + 64q^{51} + 32q^{53} - 12q^{57} + 32q^{60} + 96q^{64} - 120q^{65} + 24q^{67} - 112q^{71} + 68q^{74} - 60q^{78} - 24q^{79} - 40q^{81} + 12q^{85} + 76q^{86} + 16q^{92} - 32q^{93} - 128q^{95} + 20q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.10281 −0.779807 −0.389903 0.920856i \(-0.627492\pi\)
−0.389903 + 0.920856i \(0.627492\pi\)
\(3\) 1.22001 1.22947i 0.704371 0.709832i
\(4\) −0.783802 −0.391901
\(5\) 0.0527330 0.0913363i 0.0235829 0.0408468i −0.853993 0.520284i \(-0.825826\pi\)
0.877576 + 0.479438i \(0.159159\pi\)
\(6\) −1.34544 + 1.35587i −0.549273 + 0.553532i
\(7\) 0 0
\(8\) 3.07001 1.08541
\(9\) −0.0231690 2.99991i −0.00772300 0.999970i
\(10\) −0.0581547 + 0.100727i −0.0183901 + 0.0318527i
\(11\) −1.66866 2.89020i −0.503119 0.871428i −0.999994 0.00360543i \(-0.998852\pi\)
0.496874 0.867822i \(-0.334481\pi\)
\(12\) −0.956244 + 0.963657i −0.276044 + 0.278184i
\(13\) 1.23997 + 2.14770i 0.343907 + 0.595664i 0.985155 0.171670i \(-0.0549162\pi\)
−0.641248 + 0.767334i \(0.721583\pi\)
\(14\) 0 0
\(15\) −0.0479602 0.176264i −0.0123833 0.0455113i
\(16\) −1.81805 −0.454512
\(17\) 0.806594 1.39706i 0.195628 0.338837i −0.751478 0.659758i \(-0.770659\pi\)
0.947106 + 0.320921i \(0.103992\pi\)
\(18\) 0.0255511 + 3.30834i 0.00602245 + 0.779784i
\(19\) −3.84133 6.65338i −0.881262 1.52639i −0.849939 0.526880i \(-0.823362\pi\)
−0.0313221 0.999509i \(-0.509972\pi\)
\(20\) −0.0413323 + 0.0715896i −0.00924218 + 0.0160079i
\(21\) 0 0
\(22\) 1.84022 + 3.18735i 0.392336 + 0.679546i
\(23\) 0.948593 1.64301i 0.197795 0.342592i −0.750018 0.661417i \(-0.769955\pi\)
0.947813 + 0.318826i \(0.103289\pi\)
\(24\) 3.74544 3.77448i 0.764534 0.770462i
\(25\) 2.49444 + 4.32049i 0.498888 + 0.864099i
\(26\) −1.36746 2.36851i −0.268181 0.464503i
\(27\) −3.71655 3.63142i −0.715251 0.698868i
\(28\) 0 0
\(29\) 4.64521 8.04574i 0.862594 1.49406i −0.00682200 0.999977i \(-0.502172\pi\)
0.869416 0.494080i \(-0.164495\pi\)
\(30\) 0.0528911 + 0.194387i 0.00965655 + 0.0354900i
\(31\) −9.26162 −1.66344 −0.831718 0.555199i \(-0.812642\pi\)
−0.831718 + 0.555199i \(0.812642\pi\)
\(32\) −4.13506 −0.730982
\(33\) −5.58917 1.47451i −0.972950 0.256678i
\(34\) −0.889523 + 1.54070i −0.152552 + 0.264228i
\(35\) 0 0
\(36\) 0.0181599 + 2.35134i 0.00302665 + 0.391889i
\(37\) 0.991268 + 1.71693i 0.162963 + 0.282261i 0.935930 0.352186i \(-0.114561\pi\)
−0.772967 + 0.634447i \(0.781228\pi\)
\(38\) 4.23627 + 7.33744i 0.687214 + 1.19029i
\(39\) 4.15329 + 1.09570i 0.665059 + 0.175452i
\(40\) 0.161891 0.280404i 0.0255973 0.0443357i
\(41\) −3.74268 6.48252i −0.584509 1.01240i −0.994936 0.100506i \(-0.967954\pi\)
0.410427 0.911893i \(-0.365379\pi\)
\(42\) 0 0
\(43\) −3.77388 + 6.53655i −0.575512 + 0.996815i 0.420474 + 0.907304i \(0.361864\pi\)
−0.995986 + 0.0895108i \(0.971470\pi\)
\(44\) 1.30790 + 2.26534i 0.197173 + 0.341514i
\(45\) −0.275223 0.156078i −0.0410278 0.0232668i
\(46\) −1.04612 + 1.81194i −0.154242 + 0.267155i
\(47\) 3.19560 0.466127 0.233063 0.972462i \(-0.425125\pi\)
0.233063 + 0.972462i \(0.425125\pi\)
\(48\) −2.21803 + 2.23523i −0.320145 + 0.322627i
\(49\) 0 0
\(50\) −2.75090 4.76470i −0.389036 0.673830i
\(51\) −0.733589 2.69610i −0.102723 0.377530i
\(52\) −0.971894 1.68337i −0.134777 0.233441i
\(53\) 4.98839 8.64015i 0.685209 1.18682i −0.288163 0.957581i \(-0.593044\pi\)
0.973371 0.229234i \(-0.0736223\pi\)
\(54\) 4.09866 + 4.00478i 0.557757 + 0.544982i
\(55\) −0.351974 −0.0474601
\(56\) 0 0
\(57\) −12.8665 3.39438i −1.70422 0.449597i
\(58\) −5.12280 + 8.87296i −0.672657 + 1.16508i
\(59\) −4.45986 −0.580625 −0.290312 0.956932i \(-0.593759\pi\)
−0.290312 + 0.956932i \(0.593759\pi\)
\(60\) 0.0375913 + 0.138156i 0.00485301 + 0.0178359i
\(61\) 5.67100 0.726097 0.363048 0.931770i \(-0.381736\pi\)
0.363048 + 0.931770i \(0.381736\pi\)
\(62\) 10.2138 1.29716
\(63\) 0 0
\(64\) 8.19630 1.02454
\(65\) 0.261550 0.0324413
\(66\) 6.16381 + 1.62610i 0.758713 + 0.200160i
\(67\) 9.97141 1.21820 0.609101 0.793093i \(-0.291530\pi\)
0.609101 + 0.793093i \(0.291530\pi\)
\(68\) −0.632210 + 1.09502i −0.0766667 + 0.132791i
\(69\) −0.862736 3.17075i −0.103861 0.381713i
\(70\) 0 0
\(71\) 3.29042 0.390502 0.195251 0.980753i \(-0.437448\pi\)
0.195251 + 0.980753i \(0.437448\pi\)
\(72\) −0.0711292 9.20977i −0.00838265 1.08538i
\(73\) −2.36189 + 4.09091i −0.276438 + 0.478805i −0.970497 0.241113i \(-0.922488\pi\)
0.694059 + 0.719919i \(0.255821\pi\)
\(74\) −1.09318 1.89345i −0.127080 0.220109i
\(75\) 8.35513 + 2.20421i 0.964767 + 0.254520i
\(76\) 3.01084 + 5.21493i 0.345367 + 0.598194i
\(77\) 0 0
\(78\) −4.58031 1.20835i −0.518618 0.136819i
\(79\) 7.69409 0.865653 0.432827 0.901477i \(-0.357516\pi\)
0.432827 + 0.901477i \(0.357516\pi\)
\(80\) −0.0958713 + 0.166054i −0.0107187 + 0.0185654i
\(81\) −8.99893 + 0.139010i −0.999881 + 0.0154455i
\(82\) 4.12748 + 7.14901i 0.455804 + 0.789476i
\(83\) 0.584428 1.01226i 0.0641493 0.111110i −0.832167 0.554525i \(-0.812900\pi\)
0.896316 + 0.443415i \(0.146233\pi\)
\(84\) 0 0
\(85\) −0.0850683 0.147343i −0.00922695 0.0159815i
\(86\) 4.16189 7.20860i 0.448788 0.777323i
\(87\) −4.22477 15.5270i −0.452943 1.66467i
\(88\) −5.12280 8.87296i −0.546093 0.945860i
\(89\) 3.01477 + 5.22173i 0.319565 + 0.553503i 0.980397 0.197031i \(-0.0631299\pi\)
−0.660832 + 0.750534i \(0.729797\pi\)
\(90\) 0.303519 + 0.172125i 0.0319937 + 0.0181436i
\(91\) 0 0
\(92\) −0.743509 + 1.28780i −0.0775162 + 0.134262i
\(93\) −11.2992 + 11.3868i −1.17168 + 1.18076i
\(94\) −3.52415 −0.363489
\(95\) −0.810260 −0.0831309
\(96\) −5.04480 + 5.08391i −0.514883 + 0.518875i
\(97\) 1.90127 3.29310i 0.193045 0.334364i −0.753213 0.657777i \(-0.771497\pi\)
0.946258 + 0.323413i \(0.104830\pi\)
\(98\) 0 0
\(99\) −8.63168 + 5.07279i −0.867516 + 0.509834i
\(100\) −1.95515 3.38641i −0.195515 0.338641i
\(101\) 8.73512 + 15.1297i 0.869177 + 1.50546i 0.862839 + 0.505479i \(0.168684\pi\)
0.00633771 + 0.999980i \(0.497983\pi\)
\(102\) 0.809012 + 2.97330i 0.0801041 + 0.294400i
\(103\) −4.36602 + 7.56217i −0.430197 + 0.745123i −0.996890 0.0788062i \(-0.974889\pi\)
0.566693 + 0.823929i \(0.308223\pi\)
\(104\) 3.80674 + 6.59346i 0.373281 + 0.646542i
\(105\) 0 0
\(106\) −5.50127 + 9.52848i −0.534330 + 0.925487i
\(107\) 9.07316 + 15.7152i 0.877135 + 1.51924i 0.854471 + 0.519500i \(0.173882\pi\)
0.0226645 + 0.999743i \(0.492785\pi\)
\(108\) 2.91304 + 2.84632i 0.280308 + 0.273887i
\(109\) 2.11124 3.65678i 0.202220 0.350256i −0.747023 0.664798i \(-0.768518\pi\)
0.949243 + 0.314542i \(0.101851\pi\)
\(110\) 0.388161 0.0370097
\(111\) 3.32025 + 0.875932i 0.315145 + 0.0831398i
\(112\) 0 0
\(113\) 1.02824 + 1.78096i 0.0967285 + 0.167539i 0.910329 0.413886i \(-0.135829\pi\)
−0.813600 + 0.581425i \(0.802495\pi\)
\(114\) 14.1894 + 3.74337i 1.32896 + 0.350599i
\(115\) −0.100044 0.173282i −0.00932919 0.0161586i
\(116\) −3.64093 + 6.30627i −0.338052 + 0.585523i
\(117\) 6.41417 3.76957i 0.592990 0.348497i
\(118\) 4.91840 0.452775
\(119\) 0 0
\(120\) −0.147238 0.541134i −0.0134410 0.0493986i
\(121\) −0.0688352 + 0.119226i −0.00625774 + 0.0108387i
\(122\) −6.25405 −0.566215
\(123\) −12.5361 3.30721i −1.13034 0.298201i
\(124\) 7.25928 0.651902
\(125\) 1.05349 0.0942268
\(126\) 0 0
\(127\) 0.317159 0.0281433 0.0140717 0.999901i \(-0.495521\pi\)
0.0140717 + 0.999901i \(0.495521\pi\)
\(128\) −0.768871 −0.0679592
\(129\) 3.43231 + 12.6145i 0.302198 + 1.11064i
\(130\) −0.288441 −0.0252980
\(131\) −7.47816 + 12.9525i −0.653370 + 1.13167i 0.328930 + 0.944354i \(0.393312\pi\)
−0.982300 + 0.187315i \(0.940021\pi\)
\(132\) 4.38081 + 1.15572i 0.381300 + 0.100593i
\(133\) 0 0
\(134\) −10.9966 −0.949962
\(135\) −0.527666 + 0.147960i −0.0454143 + 0.0127344i
\(136\) 2.47625 4.28900i 0.212337 0.367779i
\(137\) 7.62367 + 13.2046i 0.651334 + 1.12814i 0.982799 + 0.184676i \(0.0591235\pi\)
−0.331466 + 0.943467i \(0.607543\pi\)
\(138\) 0.951437 + 3.49674i 0.0809917 + 0.297663i
\(139\) 4.05943 + 7.03114i 0.344316 + 0.596374i 0.985229 0.171240i \(-0.0547774\pi\)
−0.640913 + 0.767614i \(0.721444\pi\)
\(140\) 0 0
\(141\) 3.89866 3.92888i 0.328326 0.330872i
\(142\) −3.62872 −0.304516
\(143\) 4.13818 7.16754i 0.346052 0.599380i
\(144\) 0.0421224 + 5.45399i 0.00351020 + 0.454499i
\(145\) −0.489912 0.848553i −0.0406850 0.0704685i
\(146\) 2.60473 4.51152i 0.215569 0.373376i
\(147\) 0 0
\(148\) −0.776958 1.34573i −0.0638656 0.110618i
\(149\) 5.57430 9.65497i 0.456664 0.790966i −0.542118 0.840303i \(-0.682377\pi\)
0.998782 + 0.0493365i \(0.0157107\pi\)
\(150\) −9.21415 2.43083i −0.752332 0.198476i
\(151\) 5.63676 + 9.76315i 0.458713 + 0.794514i 0.998893 0.0470354i \(-0.0149774\pi\)
−0.540180 + 0.841549i \(0.681644\pi\)
\(152\) −11.7929 20.4260i −0.956534 1.65677i
\(153\) −4.20975 2.38734i −0.340338 0.193005i
\(154\) 0 0
\(155\) −0.488393 + 0.845922i −0.0392287 + 0.0679461i
\(156\) −3.25536 0.858812i −0.260637 0.0687600i
\(157\) 12.2064 0.974173 0.487087 0.873354i \(-0.338060\pi\)
0.487087 + 0.873354i \(0.338060\pi\)
\(158\) −8.48515 −0.675042
\(159\) −4.53689 16.6741i −0.359799 1.32234i
\(160\) −0.218054 + 0.377681i −0.0172387 + 0.0298583i
\(161\) 0 0
\(162\) 9.92414 0.153302i 0.779714 0.0120445i
\(163\) −4.48132 7.76187i −0.351004 0.607957i 0.635422 0.772165i \(-0.280826\pi\)
−0.986426 + 0.164209i \(0.947493\pi\)
\(164\) 2.93352 + 5.08101i 0.229070 + 0.396760i
\(165\) −0.429410 + 0.432739i −0.0334295 + 0.0336887i
\(166\) −0.644515 + 1.11633i −0.0500240 + 0.0866442i
\(167\) −8.70833 15.0833i −0.673871 1.16718i −0.976798 0.214165i \(-0.931297\pi\)
0.302927 0.953014i \(-0.402036\pi\)
\(168\) 0 0
\(169\) 3.42493 5.93216i 0.263456 0.456320i
\(170\) 0.0938145 + 0.162491i 0.00719524 + 0.0124625i
\(171\) −19.8705 + 11.6778i −1.51954 + 0.893024i
\(172\) 2.95798 5.12337i 0.225544 0.390653i
\(173\) 2.82933 0.215110 0.107555 0.994199i \(-0.465698\pi\)
0.107555 + 0.994199i \(0.465698\pi\)
\(174\) 4.65914 + 17.1234i 0.353208 + 1.29812i
\(175\) 0 0
\(176\) 3.03370 + 5.25453i 0.228674 + 0.396075i
\(177\) −5.44106 + 5.48325i −0.408975 + 0.412146i
\(178\) −3.32473 5.75860i −0.249199 0.431625i
\(179\) 5.08135 8.80115i 0.379798 0.657829i −0.611235 0.791449i \(-0.709327\pi\)
0.991033 + 0.133620i \(0.0426603\pi\)
\(180\) 0.215720 + 0.122334i 0.0160788 + 0.00911827i
\(181\) −17.0870 −1.27006 −0.635032 0.772486i \(-0.719013\pi\)
−0.635032 + 0.772486i \(0.719013\pi\)
\(182\) 0 0
\(183\) 6.91865 6.97229i 0.511441 0.515407i
\(184\) 2.91220 5.04407i 0.214690 0.371854i
\(185\) 0.209090 0.0153726
\(186\) 12.4609 12.5576i 0.913681 0.920765i
\(187\) −5.38371 −0.393696
\(188\) −2.50472 −0.182676
\(189\) 0 0
\(190\) 0.893566 0.0648261
\(191\) −22.4000 −1.62081 −0.810404 0.585872i \(-0.800752\pi\)
−0.810404 + 0.585872i \(0.800752\pi\)
\(192\) 9.99954 10.0771i 0.721654 0.727249i
\(193\) −0.256786 −0.0184839 −0.00924194 0.999957i \(-0.502942\pi\)
−0.00924194 + 0.999957i \(0.502942\pi\)
\(194\) −2.09675 + 3.63168i −0.150538 + 0.260739i
\(195\) 0.319093 0.321567i 0.0228507 0.0230279i
\(196\) 0 0
\(197\) −0.763370 −0.0543878 −0.0271939 0.999630i \(-0.508657\pi\)
−0.0271939 + 0.999630i \(0.508657\pi\)
\(198\) 9.51913 5.59434i 0.676495 0.397572i
\(199\) 2.51561 4.35716i 0.178327 0.308871i −0.762981 0.646421i \(-0.776265\pi\)
0.941307 + 0.337550i \(0.109598\pi\)
\(200\) 7.65796 + 13.2640i 0.541500 + 0.937905i
\(201\) 12.1652 12.2595i 0.858066 0.864719i
\(202\) −9.63321 16.6852i −0.677790 1.17397i
\(203\) 0 0
\(204\) 0.574988 + 2.11321i 0.0402572 + 0.147954i
\(205\) −0.789452 −0.0551377
\(206\) 4.81491 8.33966i 0.335470 0.581052i
\(207\) −4.95087 2.80763i −0.344109 0.195144i
\(208\) −2.25433 3.90462i −0.156310 0.270737i
\(209\) −12.8197 + 22.2044i −0.886759 + 1.53591i
\(210\) 0 0
\(211\) −3.60537 6.24468i −0.248204 0.429901i 0.714824 0.699305i \(-0.246507\pi\)
−0.963027 + 0.269403i \(0.913174\pi\)
\(212\) −3.90991 + 6.77217i −0.268534 + 0.465114i
\(213\) 4.01434 4.04546i 0.275058 0.277190i
\(214\) −10.0060 17.3309i −0.683996 1.18472i
\(215\) 0.398017 + 0.689385i 0.0271445 + 0.0470157i
\(216\) −11.4099 11.1485i −0.776343 0.758561i
\(217\) 0 0
\(218\) −2.32831 + 4.03274i −0.157693 + 0.273132i
\(219\) 2.14812 + 7.89480i 0.145156 + 0.533481i
\(220\) 0.275878 0.0185997
\(221\) 4.00062 0.269111
\(222\) −3.66162 0.965990i −0.245752 0.0648330i
\(223\) 5.59106 9.68400i 0.374405 0.648488i −0.615833 0.787877i \(-0.711180\pi\)
0.990238 + 0.139388i \(0.0445137\pi\)
\(224\) 0 0
\(225\) 12.9033 7.58319i 0.860220 0.505546i
\(226\) −1.13395 1.96407i −0.0754295 0.130648i
\(227\) −11.8853 20.5860i −0.788857 1.36634i −0.926668 0.375881i \(-0.877340\pi\)
0.137811 0.990459i \(-0.455993\pi\)
\(228\) 10.0848 + 2.66052i 0.667884 + 0.176198i
\(229\) 0.952737 1.65019i 0.0629586 0.109048i −0.832828 0.553532i \(-0.813280\pi\)
0.895787 + 0.444484i \(0.146613\pi\)
\(230\) 0.110330 + 0.191098i 0.00727497 + 0.0126006i
\(231\) 0 0
\(232\) 14.2609 24.7006i 0.936272 1.62167i
\(233\) −3.27092 5.66540i −0.214285 0.371153i 0.738766 0.673962i \(-0.235409\pi\)
−0.953051 + 0.302809i \(0.902075\pi\)
\(234\) −7.07363 + 4.15713i −0.462418 + 0.271760i
\(235\) 0.168514 0.291875i 0.0109926 0.0190398i
\(236\) 3.49565 0.227547
\(237\) 9.38684 9.45962i 0.609741 0.614468i
\(238\) 0 0
\(239\) 10.6735 + 18.4870i 0.690409 + 1.19582i 0.971704 + 0.236202i \(0.0759028\pi\)
−0.281295 + 0.959621i \(0.590764\pi\)
\(240\) 0.0871940 + 0.320457i 0.00562835 + 0.0206854i
\(241\) 10.0331 + 17.3778i 0.646288 + 1.11940i 0.984003 + 0.178155i \(0.0570127\pi\)
−0.337715 + 0.941248i \(0.609654\pi\)
\(242\) 0.0759124 0.131484i 0.00487983 0.00845212i
\(243\) −10.8078 + 11.2335i −0.693323 + 0.720627i
\(244\) −4.44494 −0.284558
\(245\) 0 0
\(246\) 13.8250 + 3.64724i 0.881451 + 0.232540i
\(247\) 9.52629 16.5000i 0.606144 1.04987i
\(248\) −28.4333 −1.80552
\(249\) −0.531531 1.95349i −0.0336844 0.123798i
\(250\) −1.16180 −0.0734787
\(251\) −6.81467 −0.430138 −0.215069 0.976599i \(-0.568998\pi\)
−0.215069 + 0.976599i \(0.568998\pi\)
\(252\) 0 0
\(253\) −6.33151 −0.398059
\(254\) −0.349767 −0.0219464
\(255\) −0.284936 0.0751704i −0.0178434 0.00470735i
\(256\) −15.5447 −0.971542
\(257\) 7.19415 12.4606i 0.448759 0.777273i −0.549546 0.835463i \(-0.685199\pi\)
0.998306 + 0.0581897i \(0.0185328\pi\)
\(258\) −3.78519 13.9114i −0.235656 0.866088i
\(259\) 0 0
\(260\) −0.205004 −0.0127138
\(261\) −24.2441 13.7488i −1.50067 0.851030i
\(262\) 8.24701 14.2842i 0.509502 0.882484i
\(263\) 0.769503 + 1.33282i 0.0474496 + 0.0821851i 0.888775 0.458344i \(-0.151557\pi\)
−0.841325 + 0.540529i \(0.818224\pi\)
\(264\) −17.1588 4.52675i −1.05605 0.278602i
\(265\) −0.526106 0.911243i −0.0323185 0.0559772i
\(266\) 0 0
\(267\) 10.0980 + 2.66399i 0.617986 + 0.163034i
\(268\) −7.81562 −0.477415
\(269\) 13.1285 22.7393i 0.800461 1.38644i −0.118852 0.992912i \(-0.537921\pi\)
0.919313 0.393527i \(-0.128745\pi\)
\(270\) 0.581917 0.163172i 0.0354144 0.00993035i
\(271\) −8.96673 15.5308i −0.544690 0.943431i −0.998626 0.0523969i \(-0.983314\pi\)
0.453936 0.891034i \(-0.350019\pi\)
\(272\) −1.46643 + 2.53993i −0.0889152 + 0.154006i
\(273\) 0 0
\(274\) −8.40748 14.5622i −0.507915 0.879734i
\(275\) 8.32473 14.4188i 0.502000 0.869489i
\(276\) 0.676214 + 2.48524i 0.0407033 + 0.149594i
\(277\) 9.43563 + 16.3430i 0.566932 + 0.981955i 0.996867 + 0.0790954i \(0.0252032\pi\)
−0.429935 + 0.902860i \(0.641463\pi\)
\(278\) −4.47680 7.75404i −0.268500 0.465056i
\(279\) 0.214582 + 27.7840i 0.0128467 + 1.66339i
\(280\) 0 0
\(281\) −2.49578 + 4.32283i −0.148886 + 0.257878i −0.930816 0.365488i \(-0.880902\pi\)
0.781930 + 0.623366i \(0.214235\pi\)
\(282\) −4.29949 + 4.33282i −0.256031 + 0.258016i
\(283\) 15.3927 0.915000 0.457500 0.889210i \(-0.348745\pi\)
0.457500 + 0.889210i \(0.348745\pi\)
\(284\) −2.57904 −0.153038
\(285\) −0.988522 + 0.996187i −0.0585550 + 0.0590090i
\(286\) −4.56364 + 7.90446i −0.269854 + 0.467401i
\(287\) 0 0
\(288\) 0.0958052 + 12.4048i 0.00564537 + 0.730960i
\(289\) 7.19881 + 12.4687i 0.423460 + 0.733454i
\(290\) 0.540282 + 0.935796i 0.0317265 + 0.0549518i
\(291\) −1.72919 6.35516i −0.101367 0.372546i
\(292\) 1.85126 3.20647i 0.108337 0.187644i
\(293\) 12.9013 + 22.3456i 0.753700 + 1.30545i 0.946018 + 0.324114i \(0.105066\pi\)
−0.192318 + 0.981333i \(0.561601\pi\)
\(294\) 0 0
\(295\) −0.235182 + 0.407347i −0.0136928 + 0.0237167i
\(296\) 3.04321 + 5.27099i 0.176883 + 0.306370i
\(297\) −4.29389 + 16.8012i −0.249157 + 0.974903i
\(298\) −6.14741 + 10.6476i −0.356110 + 0.616801i
\(299\) 4.70492 0.272093
\(300\) −6.54877 1.72766i −0.378093 0.0997465i
\(301\) 0 0
\(302\) −6.21629 10.7669i −0.357707 0.619567i
\(303\) 29.2583 + 7.71877i 1.68085 + 0.443432i
\(304\) 6.98373 + 12.0962i 0.400544 + 0.693763i
\(305\) 0.299049 0.517968i 0.0171235 0.0296588i
\(306\) 4.64257 + 2.63279i 0.265398 + 0.150507i
\(307\) 22.2914 1.27224 0.636120 0.771590i \(-0.280538\pi\)
0.636120 + 0.771590i \(0.280538\pi\)
\(308\) 0 0
\(309\) 3.97085 + 14.5938i 0.225894 + 0.830210i
\(310\) 0.538607 0.932894i 0.0305908 0.0529848i
\(311\) 1.30986 0.0742755 0.0371377 0.999310i \(-0.488176\pi\)
0.0371377 + 0.999310i \(0.488176\pi\)
\(312\) 12.7507 + 3.36382i 0.721865 + 0.190439i
\(313\) −21.5770 −1.21960 −0.609802 0.792554i \(-0.708751\pi\)
−0.609802 + 0.792554i \(0.708751\pi\)
\(314\) −13.4613 −0.759667
\(315\) 0 0
\(316\) −6.03065 −0.339250
\(317\) −24.7819 −1.39189 −0.695946 0.718094i \(-0.745015\pi\)
−0.695946 + 0.718094i \(0.745015\pi\)
\(318\) 5.00335 + 18.3884i 0.280574 + 1.03117i
\(319\) −31.0051 −1.73595
\(320\) 0.432216 0.748620i 0.0241616 0.0418491i
\(321\) 30.3906 + 8.01748i 1.69624 + 0.447492i
\(322\) 0 0
\(323\) −12.3936 −0.689597
\(324\) 7.05338 0.108956i 0.391854 0.00605312i
\(325\) −6.18608 + 10.7146i −0.343142 + 0.594339i
\(326\) 4.94206 + 8.55990i 0.273715 + 0.474089i
\(327\) −1.92015 7.05699i −0.106185 0.390252i
\(328\) −11.4901 19.9014i −0.634434 1.09887i
\(329\) 0 0
\(330\) 0.473559 0.477231i 0.0260686 0.0262707i
\(331\) 13.8451 0.760996 0.380498 0.924782i \(-0.375753\pi\)
0.380498 + 0.924782i \(0.375753\pi\)
\(332\) −0.458076 + 0.793410i −0.0251402 + 0.0435440i
\(333\) 5.12766 3.01349i 0.280994 0.165139i
\(334\) 9.60367 + 16.6340i 0.525489 + 0.910174i
\(335\) 0.525823 0.910752i 0.0287288 0.0497597i
\(336\) 0 0
\(337\) 1.69444 + 2.93485i 0.0923018 + 0.159871i 0.908479 0.417930i \(-0.137244\pi\)
−0.816178 + 0.577801i \(0.803911\pi\)
\(338\) −3.77706 + 6.54206i −0.205445 + 0.355841i
\(339\) 3.44408 + 0.908600i 0.187057 + 0.0493484i
\(340\) 0.0666767 + 0.115487i 0.00361605 + 0.00626319i
\(341\) 15.4545 + 26.7679i 0.836906 + 1.44956i
\(342\) 21.9135 12.8784i 1.18495 0.696386i
\(343\) 0 0
\(344\) −11.5859 + 20.0673i −0.624668 + 1.08196i
\(345\) −0.335099 0.0884040i −0.0180411 0.00475951i
\(346\) −3.12022 −0.167744
\(347\) −14.5148 −0.779195 −0.389597 0.920985i \(-0.627386\pi\)
−0.389597 + 0.920985i \(0.627386\pi\)
\(348\) 3.31139 + 12.1701i 0.177509 + 0.652385i
\(349\) −7.86412 + 13.6211i −0.420957 + 0.729119i −0.996033 0.0889810i \(-0.971639\pi\)
0.575076 + 0.818100i \(0.304972\pi\)
\(350\) 0 0
\(351\) 3.19077 12.4849i 0.170311 0.666395i
\(352\) 6.90000 + 11.9511i 0.367771 + 0.636998i
\(353\) −2.07211 3.58900i −0.110287 0.191023i 0.805599 0.592462i \(-0.201844\pi\)
−0.915886 + 0.401438i \(0.868510\pi\)
\(354\) 6.00048 6.04700i 0.318922 0.321394i
\(355\) 0.173514 0.300535i 0.00920917 0.0159508i
\(356\) −2.36298 4.09281i −0.125238 0.216918i
\(357\) 0 0
\(358\) −5.60378 + 9.70603i −0.296169 + 0.512979i
\(359\) −3.96994 6.87614i −0.209525 0.362909i 0.742040 0.670356i \(-0.233859\pi\)
−0.951565 + 0.307447i \(0.900525\pi\)
\(360\) −0.844937 0.479163i −0.0445321 0.0252541i
\(361\) −20.0116 + 34.6612i −1.05324 + 1.82427i
\(362\) 18.8437 0.990405
\(363\) 0.0626049 + 0.230087i 0.00328590 + 0.0120764i
\(364\) 0 0
\(365\) 0.249099 + 0.431453i 0.0130385 + 0.0225833i
\(366\) −7.62998 + 7.68914i −0.398826 + 0.401918i
\(367\) −6.57455 11.3875i −0.343189 0.594420i 0.641834 0.766843i \(-0.278174\pi\)
−0.985023 + 0.172423i \(0.944840\pi\)
\(368\) −1.72459 + 2.98708i −0.0899004 + 0.155712i
\(369\) −19.3603 + 11.3779i −1.00785 + 0.592310i
\(370\) −0.230588 −0.0119877
\(371\) 0 0
\(372\) 8.85636 8.92503i 0.459181 0.462741i
\(373\) −3.90543 + 6.76441i −0.202216 + 0.350248i −0.949242 0.314547i \(-0.898147\pi\)
0.747026 + 0.664794i \(0.231481\pi\)
\(374\) 5.93723 0.307007
\(375\) 1.28526 1.29523i 0.0663706 0.0668852i
\(376\) 9.81055 0.505940
\(377\) 23.0398 1.18661
\(378\) 0 0
\(379\) −31.6147 −1.62394 −0.811968 0.583702i \(-0.801604\pi\)
−0.811968 + 0.583702i \(0.801604\pi\)
\(380\) 0.635084 0.0325791
\(381\) 0.386936 0.389936i 0.0198233 0.0199770i
\(382\) 24.7030 1.26392
\(383\) −5.36593 + 9.29407i −0.274186 + 0.474905i −0.969930 0.243386i \(-0.921742\pi\)
0.695743 + 0.718291i \(0.255075\pi\)
\(384\) −0.938027 + 0.945300i −0.0478685 + 0.0482396i
\(385\) 0 0
\(386\) 0.283187 0.0144139
\(387\) 19.6965 + 11.1699i 1.00123 + 0.567796i
\(388\) −1.49022 + 2.58114i −0.0756546 + 0.131038i
\(389\) −12.0734 20.9118i −0.612147 1.06027i −0.990878 0.134763i \(-0.956973\pi\)
0.378731 0.925507i \(-0.376361\pi\)
\(390\) −0.351900 + 0.354628i −0.0178192 + 0.0179573i
\(391\) −1.53026 2.65049i −0.0773885 0.134041i
\(392\) 0 0
\(393\) 6.80131 + 24.9963i 0.343081 + 1.26090i
\(394\) 0.841854 0.0424120
\(395\) 0.405733 0.702750i 0.0204146 0.0353592i
\(396\) 6.76553 3.97606i 0.339981 0.199805i
\(397\) 12.0285 + 20.8339i 0.603691 + 1.04562i 0.992257 + 0.124203i \(0.0396373\pi\)
−0.388566 + 0.921421i \(0.627029\pi\)
\(398\) −2.77424 + 4.80513i −0.139060 + 0.240860i
\(399\) 0 0
\(400\) −4.53501 7.85487i −0.226751 0.392744i
\(401\) 0.781158 1.35301i 0.0390092 0.0675659i −0.845862 0.533402i \(-0.820913\pi\)
0.884871 + 0.465836i \(0.154247\pi\)
\(402\) −13.4159 + 13.5199i −0.669126 + 0.674314i
\(403\) −11.4842 19.8911i −0.572067 0.990849i
\(404\) −6.84661 11.8587i −0.340631 0.589991i
\(405\) −0.461844 + 0.829259i −0.0229492 + 0.0412062i
\(406\) 0 0
\(407\) 3.30817 5.72992i 0.163980 0.284022i
\(408\) −2.25213 8.27708i −0.111497 0.409776i
\(409\) 22.3456 1.10492 0.552460 0.833539i \(-0.313689\pi\)
0.552460 + 0.833539i \(0.313689\pi\)
\(410\) 0.870619 0.0429968
\(411\) 25.5355 + 6.73664i 1.25957 + 0.332294i
\(412\) 3.42210 5.92725i 0.168595 0.292014i
\(413\) 0 0
\(414\) 5.45988 + 3.09629i 0.268339 + 0.152174i
\(415\) −0.0616373 0.106759i −0.00302566 0.00524059i
\(416\) −5.12736 8.88086i −0.251390 0.435420i
\(417\) 13.5971 + 3.58711i 0.665852 + 0.175661i
\(418\) 14.1378 24.4873i 0.691501 1.19771i
\(419\) −2.98648 5.17273i −0.145899 0.252704i 0.783809 0.621002i \(-0.213274\pi\)
−0.929708 + 0.368298i \(0.879941\pi\)
\(420\) 0 0
\(421\) 7.31594 12.6716i 0.356557 0.617575i −0.630826 0.775924i \(-0.717284\pi\)
0.987383 + 0.158349i \(0.0506172\pi\)
\(422\) 3.97605 + 6.88672i 0.193551 + 0.335240i
\(423\) −0.0740389 9.58652i −0.00359989 0.466113i
\(424\) 15.3144 26.5254i 0.743735 1.28819i
\(425\) 8.04799 0.390385
\(426\) −4.42707 + 4.46139i −0.214492 + 0.216155i
\(427\) 0 0
\(428\) −7.11156 12.3176i −0.343750 0.595393i
\(429\) −3.76363 13.8322i −0.181710 0.667825i
\(430\) −0.438938 0.760263i −0.0211675 0.0366631i
\(431\) 9.70169 16.8038i 0.467314 0.809411i −0.531989 0.846751i \(-0.678555\pi\)
0.999303 + 0.0373401i \(0.0118885\pi\)
\(432\) 6.75688 + 6.60211i 0.325090 + 0.317644i
\(433\) −1.35217 −0.0649810 −0.0324905 0.999472i \(-0.510344\pi\)
−0.0324905 + 0.999472i \(0.510344\pi\)
\(434\) 0 0
\(435\) −1.64096 0.432910i −0.0786781 0.0207564i
\(436\) −1.65480 + 2.86619i −0.0792503 + 0.137266i
\(437\) −14.5754 −0.697238
\(438\) −2.36897 8.70650i −0.113194 0.416013i
\(439\) −17.3412 −0.827650 −0.413825 0.910356i \(-0.635807\pi\)
−0.413825 + 0.910356i \(0.635807\pi\)
\(440\) −1.08056 −0.0515139
\(441\) 0 0
\(442\) −4.41194 −0.209854
\(443\) 19.6100 0.931698 0.465849 0.884864i \(-0.345749\pi\)
0.465849 + 0.884864i \(0.345749\pi\)
\(444\) −2.60242 0.686557i −0.123506 0.0325826i
\(445\) 0.635912 0.0301451
\(446\) −6.16590 + 10.6796i −0.291964 + 0.505696i
\(447\) −5.06977 18.6325i −0.239792 0.881289i
\(448\) 0 0
\(449\) −17.7345 −0.836942 −0.418471 0.908230i \(-0.637434\pi\)
−0.418471 + 0.908230i \(0.637434\pi\)
\(450\) −14.2299 + 8.36285i −0.670806 + 0.394228i
\(451\) −12.4905 + 21.6342i −0.588155 + 1.01871i
\(452\) −0.805935 1.39592i −0.0379080 0.0656586i
\(453\) 18.8803 + 4.98091i 0.887075 + 0.234023i
\(454\) 13.1073 + 22.7025i 0.615156 + 1.06548i
\(455\) 0 0
\(456\) −39.5005 10.4208i −1.84978 0.487999i
\(457\) 0.485451 0.0227084 0.0113542 0.999936i \(-0.496386\pi\)
0.0113542 + 0.999936i \(0.496386\pi\)
\(458\) −1.05069 + 1.81985i −0.0490956 + 0.0850361i
\(459\) −8.07107 + 2.26317i −0.376725 + 0.105636i
\(460\) 0.0784150 + 0.135819i 0.00365612 + 0.00633259i
\(461\) −3.99687 + 6.92279i −0.186153 + 0.322426i −0.943964 0.330047i \(-0.892935\pi\)
0.757811 + 0.652474i \(0.226269\pi\)
\(462\) 0 0
\(463\) 5.24280 + 9.08080i 0.243654 + 0.422021i 0.961752 0.273921i \(-0.0883206\pi\)
−0.718098 + 0.695942i \(0.754987\pi\)
\(464\) −8.44523 + 14.6276i −0.392060 + 0.679068i
\(465\) 0.444189 + 1.63249i 0.0205988 + 0.0757050i
\(466\) 3.60721 + 6.24788i 0.167101 + 0.289427i
\(467\) 10.9489 + 18.9640i 0.506653 + 0.877549i 0.999970 + 0.00769944i \(0.00245083\pi\)
−0.493317 + 0.869849i \(0.664216\pi\)
\(468\) −5.02744 + 2.95460i −0.232394 + 0.136576i
\(469\) 0 0
\(470\) −0.185839 + 0.321883i −0.00857213 + 0.0148474i
\(471\) 14.8918 15.0073i 0.686179 0.691499i
\(472\) −13.6918 −0.630218
\(473\) 25.1893 1.15820
\(474\) −10.3519 + 10.4322i −0.475480 + 0.479167i
\(475\) 19.1639 33.1929i 0.879301 1.52299i
\(476\) 0 0
\(477\) −26.0353 14.7645i −1.19207 0.676022i
\(478\) −11.7708 20.3877i −0.538386 0.932512i
\(479\) 2.00085 + 3.46557i 0.0914210 + 0.158346i 0.908109 0.418733i \(-0.137526\pi\)
−0.816688 + 0.577079i \(0.804192\pi\)
\(480\) 0.198318 + 0.728864i 0.00905194 + 0.0332679i
\(481\) −2.45829 + 4.25789i −0.112088 + 0.194143i
\(482\) −11.0646 19.1645i −0.503980 0.872918i
\(483\) 0 0
\(484\) 0.0539532 0.0934496i 0.00245242 0.00424771i
\(485\) −0.200520 0.347311i −0.00910514 0.0157706i
\(486\) 11.9190 12.3884i 0.540658 0.561950i
\(487\) 13.2377 22.9284i 0.599859 1.03899i −0.392982 0.919546i \(-0.628557\pi\)
0.992841 0.119440i \(-0.0381100\pi\)
\(488\) 17.4100 0.788116
\(489\) −15.0102 3.95991i −0.678784 0.179073i
\(490\) 0 0
\(491\) 14.2149 + 24.6210i 0.641511 + 1.11113i 0.985096 + 0.172008i \(0.0550255\pi\)
−0.343584 + 0.939122i \(0.611641\pi\)
\(492\) 9.82584 + 2.59220i 0.442983 + 0.116865i
\(493\) −7.49360 12.9793i −0.337495 0.584558i
\(494\) −10.5057 + 18.1965i −0.472675 + 0.818697i
\(495\) 0.00815487 + 1.05589i 0.000366534 + 0.0474587i
\(496\) 16.8381 0.756052
\(497\) 0 0
\(498\) 0.586179 + 2.15434i 0.0262673 + 0.0965383i
\(499\) 3.71559 6.43559i 0.166333 0.288097i −0.770795 0.637083i \(-0.780141\pi\)
0.937128 + 0.348986i \(0.113474\pi\)
\(500\) −0.825726 −0.0369276
\(501\) −29.1686 7.69510i −1.30316 0.343792i
\(502\) 7.51531 0.335425
\(503\) 10.1610 0.453057 0.226529 0.974004i \(-0.427262\pi\)
0.226529 + 0.974004i \(0.427262\pi\)
\(504\) 0 0
\(505\) 1.84252 0.0819910
\(506\) 6.98247 0.310409
\(507\) −3.11494 11.4481i −0.138339 0.508428i
\(508\) −0.248590 −0.0110294
\(509\) 14.4532 25.0336i 0.640625 1.10960i −0.344668 0.938725i \(-0.612009\pi\)
0.985293 0.170871i \(-0.0546581\pi\)
\(510\) 0.314232 + 0.0828990i 0.0139144 + 0.00367083i
\(511\) 0 0
\(512\) 18.6806 0.825575
\(513\) −9.88474 + 38.6771i −0.436422 + 1.70764i
\(514\) −7.93381 + 13.7418i −0.349945 + 0.606123i
\(515\) 0.460467 + 0.797553i 0.0202906 + 0.0351444i
\(516\) −2.69025 9.88727i −0.118432 0.435263i
\(517\) −5.33237 9.23593i −0.234517 0.406196i
\(518\) 0 0
\(519\) 3.45180 3.47856i 0.151517 0.152692i
\(520\) 0.802963 0.0352123
\(521\) −16.8995 + 29.2708i −0.740381 + 1.28238i 0.211941 + 0.977283i \(0.432022\pi\)
−0.952322 + 0.305095i \(0.901312\pi\)
\(522\) 26.7368 + 15.1624i 1.17024 + 0.663639i
\(523\) 7.18895 + 12.4516i 0.314351 + 0.544471i 0.979299 0.202418i \(-0.0648799\pi\)
−0.664949 + 0.746889i \(0.731547\pi\)
\(524\) 5.86140 10.1522i 0.256056 0.443502i
\(525\) 0 0
\(526\) −0.848618 1.46985i −0.0370015 0.0640885i
\(527\) −7.47036 + 12.9390i −0.325414 + 0.563634i
\(528\) 10.1614 + 2.68072i 0.442218 + 0.116664i
\(529\) 9.70034 + 16.8015i 0.421754 + 0.730499i
\(530\) 0.580197 + 1.00493i 0.0252022 + 0.0436514i
\(531\) 0.103331 + 13.3792i 0.00448416 + 0.580607i
\(532\) 0 0
\(533\) 9.28166 16.0763i 0.402033 0.696342i
\(534\) −11.1362 2.93789i −0.481910 0.127135i
\(535\) 1.91382 0.0827417
\(536\) 30.6124 1.32225
\(537\) −4.62143 16.9848i −0.199429 0.732948i
\(538\) −14.4783 + 25.0772i −0.624205 + 1.08116i
\(539\) 0 0
\(540\) 0.413586 0.115971i 0.0177979 0.00499062i
\(541\) 12.5882 + 21.8034i 0.541210 + 0.937403i 0.998835 + 0.0482577i \(0.0153669\pi\)
−0.457625 + 0.889145i \(0.651300\pi\)
\(542\) 9.88863 + 17.1276i 0.424753 + 0.735694i
\(543\) −20.8462 + 21.0078i −0.894596 + 0.901532i
\(544\) −3.33531 + 5.77693i −0.143000 + 0.247684i
\(545\) −0.222664 0.385666i −0.00953789 0.0165201i
\(546\) 0 0
\(547\) 1.59011 2.75416i 0.0679883 0.117759i −0.830027 0.557723i \(-0.811675\pi\)
0.898016 + 0.439963i \(0.145009\pi\)
\(548\) −5.97545 10.3498i −0.255258 0.442121i
\(549\) −0.131391 17.0125i −0.00560764 0.726075i
\(550\) −9.18062 + 15.9013i −0.391463 + 0.678034i
\(551\) −71.3752 −3.04068
\(552\) −2.64861 9.73424i −0.112732 0.414317i
\(553\) 0 0
\(554\) −10.4057 18.0233i −0.442098 0.765736i
\(555\) 0.255092 0.257069i 0.0108280 0.0109120i
\(556\) −3.18179 5.51102i −0.134938 0.233719i
\(557\) −10.0229 + 17.3602i −0.424686 + 0.735577i −0.996391 0.0848820i \(-0.972949\pi\)
0.571705 + 0.820459i \(0.306282\pi\)
\(558\) −0.236644 30.6406i −0.0100180 1.29712i
\(559\) −18.7181 −0.791689
\(560\) 0 0
\(561\) −6.56817 + 6.61909i −0.277308 + 0.279458i
\(562\) 2.75238 4.76727i 0.116102 0.201095i
\(563\) 39.8013 1.67743 0.838713 0.544574i \(-0.183309\pi\)
0.838713 + 0.544574i \(0.183309\pi\)
\(564\) −3.05578 + 3.07947i −0.128671 + 0.129669i
\(565\) 0.216888 0.00912457
\(566\) −16.9753 −0.713523
\(567\) 0 0
\(568\) 10.1017 0.423856
\(569\) 13.8159 0.579194 0.289597 0.957149i \(-0.406479\pi\)
0.289597 + 0.957149i \(0.406479\pi\)
\(570\) 1.09016 1.09861i 0.0456616 0.0460156i
\(571\) 10.4387 0.436846 0.218423 0.975854i \(-0.429909\pi\)
0.218423 + 0.975854i \(0.429909\pi\)
\(572\) −3.24352 + 5.61793i −0.135618 + 0.234898i
\(573\) −27.3281 + 27.5400i −1.14165 + 1.15050i
\(574\) 0 0
\(575\) 9.46483 0.394711
\(576\) −0.189900 24.5882i −0.00791250 1.02451i
\(577\) 12.7461 22.0769i 0.530628 0.919075i −0.468733 0.883340i \(-0.655289\pi\)
0.999361 0.0357353i \(-0.0113773\pi\)
\(578\) −7.93895 13.7507i −0.330217 0.571952i
\(579\) −0.313281 + 0.315710i −0.0130195 + 0.0131204i
\(580\) 0.383994 + 0.665098i 0.0159445 + 0.0276167i
\(581\) 0 0
\(582\) 1.90697 + 7.00855i 0.0790466 + 0.290514i
\(583\) −33.2957 −1.37897
\(584\) −7.25104 + 12.5592i −0.300050 + 0.519702i
\(585\) −0.00605986 0.784628i −0.000250544 0.0324404i
\(586\) −14.2277 24.6431i −0.587740 1.01800i
\(587\) 17.5168 30.3401i 0.722998 1.25227i −0.236795 0.971560i \(-0.576097\pi\)
0.959793 0.280709i \(-0.0905697\pi\)
\(588\) 0 0
\(589\) 35.5769 + 61.6210i 1.46592 + 2.53905i
\(590\) 0.259362 0.449228i 0.0106778 0.0184944i
\(591\) −0.931316 + 0.938536i −0.0383092 + 0.0386062i
\(592\) −1.80217 3.12146i −0.0740689 0.128291i
\(593\) −18.0646 31.2888i −0.741824 1.28488i −0.951664 0.307141i \(-0.900628\pi\)
0.209840 0.977736i \(-0.432706\pi\)
\(594\) 4.73536 18.5286i 0.194294 0.760236i
\(595\) 0 0
\(596\) −4.36915 + 7.56759i −0.178967 + 0.309980i
\(597\) −2.28792 8.40861i −0.0936383 0.344142i
\(598\) −5.18865 −0.212180
\(599\) −40.9484 −1.67310 −0.836552 0.547887i \(-0.815432\pi\)
−0.836552 + 0.547887i \(0.815432\pi\)
\(600\) 25.6504 + 6.76694i 1.04717 + 0.276259i
\(601\) −12.8547 + 22.2650i −0.524354 + 0.908207i 0.475244 + 0.879854i \(0.342360\pi\)
−0.999598 + 0.0283533i \(0.990974\pi\)
\(602\) 0 0
\(603\) −0.231028 29.9133i −0.00940817 1.21817i
\(604\) −4.41810 7.65238i −0.179770 0.311371i
\(605\) 0.00725978 + 0.0125743i 0.000295152 + 0.000511218i
\(606\) −32.2665 8.51236i −1.31074 0.345791i
\(607\) 3.42258 5.92808i 0.138918 0.240613i −0.788169 0.615459i \(-0.788971\pi\)
0.927087 + 0.374845i \(0.122304\pi\)
\(608\) 15.8841 + 27.5121i 0.644187 + 1.11576i
\(609\) 0 0
\(610\) −0.329795 + 0.571222i −0.0133530 + 0.0231281i
\(611\) 3.96246 + 6.86319i 0.160304 + 0.277655i
\(612\) 3.29961 + 1.87120i 0.133379 + 0.0756389i
\(613\) 14.5648 25.2271i 0.588269 1.01891i −0.406191 0.913788i \(-0.633143\pi\)
0.994459 0.105123i \(-0.0335235\pi\)
\(614\) −24.5833 −0.992101
\(615\) −0.963137 + 0.970604i −0.0388374 + 0.0391385i
\(616\) 0 0
\(617\) −10.3395 17.9085i −0.416252 0.720969i 0.579307 0.815109i \(-0.303323\pi\)
−0.995559 + 0.0941404i \(0.969990\pi\)
\(618\) −4.37911 16.0942i −0.176154 0.647404i
\(619\) −4.43178 7.67606i −0.178128 0.308527i 0.763111 0.646267i \(-0.223671\pi\)
−0.941239 + 0.337740i \(0.890337\pi\)
\(620\) 0.382804 0.663035i 0.0153738 0.0266281i
\(621\) −9.49197 + 2.66159i −0.380900 + 0.106806i
\(622\) −1.44453 −0.0579205
\(623\) 0 0
\(624\) −7.55090 1.99204i −0.302278 0.0797453i
\(625\) −12.4166 + 21.5062i −0.496666 + 0.860250i
\(626\) 23.7954 0.951055
\(627\) 11.6594 + 42.8509i 0.465632 + 1.71130i
\(628\) −9.56737 −0.381779
\(629\) 3.19820 0.127521
\(630\) 0 0
\(631\) 26.4661 1.05360 0.526799 0.849990i \(-0.323392\pi\)
0.526799 + 0.849990i \(0.323392\pi\)
\(632\) 23.6210 0.939592
\(633\) −12.0762 3.18588i −0.479985 0.126627i
\(634\) 27.3299 1.08541
\(635\) 0.0167248 0.0289681i 0.000663702 0.00114957i
\(636\) 3.55603 + 13.0692i 0.141006 + 0.518227i
\(637\) 0 0
\(638\) 34.1928 1.35371
\(639\) −0.0762358 9.87098i −0.00301584 0.390490i
\(640\) −0.0405449 + 0.0702258i −0.00160268 + 0.00277592i
\(641\) 8.26595 + 14.3171i 0.326486 + 0.565489i 0.981812 0.189856i \(-0.0608022\pi\)
−0.655326 + 0.755346i \(0.727469\pi\)
\(642\) −33.5151 8.84178i −1.32274 0.348957i
\(643\) 15.4460 + 26.7532i 0.609130 + 1.05504i 0.991384 + 0.130987i \(0.0418147\pi\)
−0.382254 + 0.924057i \(0.624852\pi\)
\(644\) 0 0
\(645\) 1.33316 + 0.351706i 0.0524930 + 0.0138484i
\(646\) 13.6678 0.537752
\(647\) −0.649903 + 1.12567i −0.0255503 + 0.0442545i −0.878518 0.477710i \(-0.841467\pi\)
0.852968 + 0.521964i \(0.174800\pi\)
\(648\) −27.6268 + 0.426762i −1.08528 + 0.0167648i
\(649\) 7.44198 + 12.8899i 0.292123 + 0.505972i
\(650\) 6.82209 11.8162i 0.267584 0.463470i
\(651\) 0 0
\(652\) 3.51247 + 6.08377i 0.137559 + 0.238259i
\(653\) 22.4435 38.8733i 0.878281 1.52123i 0.0250558 0.999686i \(-0.492024\pi\)
0.853226 0.521542i \(-0.174643\pi\)
\(654\) 2.11757 + 7.78254i 0.0828035 + 0.304321i
\(655\) 0.788692 + 1.36605i 0.0308167 + 0.0533762i
\(656\) 6.80438 + 11.7855i 0.265667 + 0.460148i
\(657\) 12.3271 + 6.99068i 0.480926 + 0.272732i
\(658\) 0 0
\(659\) 8.96167 15.5221i 0.349097 0.604654i −0.636992 0.770870i \(-0.719822\pi\)
0.986089 + 0.166216i \(0.0531549\pi\)
\(660\) 0.336572 0.339182i 0.0131011 0.0132026i
\(661\) −33.0256 −1.28455 −0.642274 0.766475i \(-0.722009\pi\)
−0.642274 + 0.766475i \(0.722009\pi\)
\(662\) −15.2686 −0.593430
\(663\) 4.88078 4.91862i 0.189554 0.191023i
\(664\) 1.79420 3.10765i 0.0696285 0.120600i
\(665\) 0 0
\(666\) −5.65485 + 3.32332i −0.219121 + 0.128776i
\(667\) −8.81283 15.2643i −0.341234 0.591035i
\(668\) 6.82561 + 11.8223i 0.264091 + 0.457419i
\(669\) −5.08501 18.6885i −0.196598 0.722541i
\(670\) −0.579885 + 1.00439i −0.0224029 + 0.0388030i
\(671\) −9.46295 16.3903i −0.365313 0.632741i
\(672\) 0 0
\(673\) −10.6758 + 18.4909i −0.411520 + 0.712774i −0.995056 0.0993135i \(-0.968335\pi\)
0.583536 + 0.812087i \(0.301669\pi\)
\(674\) −1.86865 3.23659i −0.0719776 0.124669i
\(675\) 6.41884 25.1157i 0.247061 0.966704i
\(676\) −2.68447 + 4.64964i −0.103249 + 0.178832i
\(677\) −8.30167 −0.319059 −0.159530 0.987193i \(-0.550998\pi\)
−0.159530 + 0.987193i \(0.550998\pi\)
\(678\) −3.79818 1.00202i −0.145868 0.0384822i
\(679\) 0 0
\(680\) −0.261161 0.452344i −0.0100151 0.0173466i
\(681\) −39.8099 10.5024i −1.52552 0.402454i
\(682\) −17.0434 29.5200i −0.652625 1.13038i
\(683\) −1.24728 + 2.16036i −0.0477259 + 0.0826637i −0.888902 0.458098i \(-0.848531\pi\)
0.841176 + 0.540762i \(0.181864\pi\)
\(684\) 15.5746 9.15308i 0.595509 0.349977i
\(685\) 1.60808 0.0614414
\(686\) 0 0
\(687\) −0.866505 3.18460i −0.0330592 0.121500i
\(688\) 6.86110 11.8838i 0.261577 0.453065i
\(689\) 24.7419 0.942591
\(690\) 0.369552 + 0.0974932i 0.0140686 + 0.00371150i
\(691\) 16.8691 0.641731 0.320865 0.947125i \(-0.396026\pi\)
0.320865 + 0.947125i \(0.396026\pi\)
\(692\) −2.21763 −0.0843017
\(693\) 0 0
\(694\) 16.0071 0.607621
\(695\) 0.856265 0.0324800
\(696\) −12.9701 47.6681i −0.491631 1.80685i
\(697\) −12.0753 −0.457385
\(698\) 8.67266 15.0215i 0.328265 0.568572i
\(699\) −10.9559 2.89034i −0.414392 0.109323i
\(700\) 0 0
\(701\) 16.4806 0.622465 0.311232 0.950334i \(-0.399258\pi\)
0.311232 + 0.950334i \(0.399258\pi\)
\(702\) −3.51883 + 13.7685i −0.132810 + 0.519659i
\(703\) 7.61558 13.1906i 0.287227 0.497492i
\(704\) −13.6768 23.6889i −0.515464 0.892811i
\(705\) −0.153262 0.563271i −0.00577217 0.0212140i
\(706\) 2.28515 + 3.95800i 0.0860029 + 0.148961i
\(707\) 0 0
\(708\) 4.26472 4.29778i 0.160278 0.161520i
\(709\) −29.4925 −1.10761 −0.553807 0.832645i \(-0.686825\pi\)
−0.553807 + 0.832645i \(0.686825\pi\)
\(710\) −0.191354 + 0.331434i −0.00718138 + 0.0124385i
\(711\) −0.178264 23.0816i −0.00668544 0.865627i
\(712\) 9.25539 + 16.0308i 0.346860 + 0.600780i
\(713\) −8.78551 + 15.2169i −0.329020 + 0.569879i
\(714\) 0 0
\(715\) −0.436438 0.755933i −0.0163219 0.0282703i
\(716\) −3.98277 + 6.89836i −0.148843 + 0.257804i
\(717\) 35.7508 + 9.43158i 1.33514 + 0.352229i
\(718\) 4.37810 + 7.58310i 0.163389 + 0.282999i
\(719\) −0.217311 0.376394i −0.00810433 0.0140371i 0.861945 0.507002i \(-0.169246\pi\)
−0.870049 + 0.492965i \(0.835913\pi\)
\(720\) 0.500368 + 0.283758i 0.0186476 + 0.0105750i
\(721\) 0 0
\(722\) 22.0691 38.2248i 0.821327 1.42258i
\(723\) 33.6058 + 8.86571i 1.24981 + 0.329719i
\(724\) 13.3928 0.497740
\(725\) 46.3488 1.72135
\(726\) −0.0690415 0.253743i −0.00256237 0.00941729i
\(727\) −13.5839 + 23.5280i −0.503799 + 0.872605i 0.496192 + 0.868213i \(0.334731\pi\)
−0.999990 + 0.00439187i \(0.998602\pi\)
\(728\) 0 0
\(729\) 0.625513 + 26.9928i 0.0231672 + 0.999732i
\(730\) −0.274710 0.475812i −0.0101675 0.0176106i
\(731\) 6.08798 + 10.5447i 0.225172 + 0.390009i
\(732\) −5.42285 + 5.46490i −0.200434 + 0.201988i
\(733\) −2.83307 + 4.90702i −0.104642 + 0.181245i −0.913592 0.406632i \(-0.866703\pi\)
0.808950 + 0.587878i \(0.200036\pi\)
\(734\) 7.25050 + 12.5582i 0.267621 + 0.463533i
\(735\) 0 0
\(736\) −3.92249 + 6.79395i −0.144585 + 0.250428i
\(737\) −16.6389 28.8194i −0.612901 1.06158i
\(738\) 21.3508 12.5477i 0.785932 0.461888i
\(739\) 6.80540 11.7873i 0.250341 0.433603i −0.713279 0.700880i \(-0.752791\pi\)
0.963620 + 0.267278i \(0.0861241\pi\)
\(740\) −0.163885 −0.00602455
\(741\) −8.66407 31.8424i −0.318282 1.16976i
\(742\) 0 0
\(743\) −6.33421 10.9712i −0.232380 0.402493i 0.726128 0.687559i \(-0.241318\pi\)
−0.958508 + 0.285066i \(0.907985\pi\)
\(744\) −34.6888 + 34.9578i −1.27175 + 1.28161i
\(745\) −0.587900 1.01827i −0.0215390 0.0373066i
\(746\) 4.30696 7.45988i 0.157689 0.273126i
\(747\) −3.05022 1.72978i −0.111602 0.0632892i
\(748\) 4.21977 0.154290
\(749\) 0 0
\(750\) −1.41740 + 1.42839i −0.0517563 + 0.0521576i
\(751\) 3.57269 6.18808i 0.130369 0.225806i −0.793450 0.608636i \(-0.791717\pi\)
0.923819 + 0.382830i \(0.125050\pi\)
\(752\) −5.80977 −0.211860
\(753\) −8.31394 + 8.37840i −0.302977 + 0.305326i
\(754\) −25.4086 −0.925325
\(755\) 1.18897 0.0432712
\(756\) 0 0
\(757\) 37.6446 1.36822 0.684108 0.729381i \(-0.260192\pi\)
0.684108 + 0.729381i \(0.260192\pi\)
\(758\) 34.8651 1.26636
\(759\) −7.72448 + 7.78437i −0.280381 + 0.282555i
\(760\) −2.48751 −0.0902315
\(761\) 5.02358 8.70109i 0.182104 0.315414i −0.760493 0.649347i \(-0.775042\pi\)
0.942597 + 0.333933i \(0.108376\pi\)
\(762\) −0.426718 + 0.430027i −0.0154584 + 0.0155782i
\(763\) 0 0
\(764\) 17.5572 0.635196
\(765\) −0.440044 + 0.258611i −0.0159098 + 0.00935010i
\(766\) 5.91762 10.2496i 0.213812 0.370334i
\(767\) −5.53011 9.57843i −0.199681 0.345857i
\(768\) −18.9646 + 19.1116i −0.684326 + 0.689632i
\(769\) −16.1463 27.9663i −0.582252 1.00849i −0.995212 0.0977407i \(-0.968838\pi\)
0.412960 0.910749i \(-0.364495\pi\)
\(770\) 0 0
\(771\) −6.54301 24.0470i −0.235641 0.866032i
\(772\) 0.201270 0.00724385
\(773\) −24.2939 + 42.0783i −0.873792 + 1.51345i −0.0157473 + 0.999876i \(0.505013\pi\)
−0.858044 + 0.513576i \(0.828321\pi\)
\(774\) −21.7216 12.3183i −0.780766 0.442771i
\(775\) −23.1025 40.0148i −0.829867 1.43737i
\(776\) 5.83694 10.1099i 0.209534 0.362923i
\(777\) 0 0
\(778\) 13.3147 + 23.0618i 0.477356 + 0.826806i
\(779\) −28.7538 + 49.8030i −1.03021 + 1.78438i
\(780\) −0.250106 + 0.252045i −0.00895522 + 0.00902466i
\(781\) −5.49059 9.50998i −0.196469 0.340294i
\(782\) 1.68759