Properties

Label 441.2.h.h.214.4
Level $441$
Weight $2$
Character 441.214
Analytic conductor $3.521$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 214.4
Character \(\chi\) \(=\) 441.214
Dual form 441.2.h.h.373.4

$q$-expansion

\(f(q)\) \(=\) \(q-1.72661 q^{2} +(1.70981 - 0.276691i) q^{3} +0.981184 q^{4} +(1.75616 - 3.04175i) q^{5} +(-2.95217 + 0.477737i) q^{6} +1.75910 q^{8} +(2.84688 - 0.946176i) q^{9} +O(q^{10})\) \(q-1.72661 q^{2} +(1.70981 - 0.276691i) q^{3} +0.981184 q^{4} +(1.75616 - 3.04175i) q^{5} +(-2.95217 + 0.477737i) q^{6} +1.75910 q^{8} +(2.84688 - 0.946176i) q^{9} +(-3.03220 + 5.25192i) q^{10} +(3.04532 + 5.27465i) q^{11} +(1.67764 - 0.271484i) q^{12} +(-0.560139 - 0.970190i) q^{13} +(2.16106 - 5.68672i) q^{15} -4.99965 q^{16} +(0.601978 - 1.04266i) q^{17} +(-4.91546 + 1.63368i) q^{18} +(-1.10269 - 1.90991i) q^{19} +(1.72311 - 2.98452i) q^{20} +(-5.25808 - 9.10727i) q^{22} +(0.636695 - 1.10279i) q^{23} +(3.00772 - 0.486726i) q^{24} +(-3.66817 - 6.35345i) q^{25} +(0.967143 + 1.67514i) q^{26} +(4.60583 - 2.40548i) q^{27} +(-3.10262 + 5.37390i) q^{29} +(-3.73132 + 9.81875i) q^{30} +0.188404 q^{31} +5.11425 q^{32} +(6.66636 + 8.17602i) q^{33} +(-1.03938 + 1.80026i) q^{34} +(2.79332 - 0.928373i) q^{36} +(-1.78835 - 3.09752i) q^{37} +(1.90391 + 3.29767i) q^{38} +(-1.22617 - 1.50385i) q^{39} +(3.08925 - 5.35074i) q^{40} +(-1.68320 - 2.91538i) q^{41} +(-1.90276 + 3.29567i) q^{43} +(2.98802 + 5.17540i) q^{44} +(2.12154 - 10.3211i) q^{45} +(-1.09932 + 1.90408i) q^{46} +5.72070 q^{47} +(-8.54843 + 1.38336i) q^{48} +(6.33349 + 10.9699i) q^{50} +(0.740773 - 1.94930i) q^{51} +(-0.549600 - 0.951935i) q^{52} +(4.16913 - 7.22115i) q^{53} +(-7.95247 + 4.15334i) q^{54} +21.3922 q^{55} +(-2.41384 - 2.96047i) q^{57} +(5.35702 - 9.27862i) q^{58} +11.2685 q^{59} +(2.12040 - 5.57972i) q^{60} -12.0022 q^{61} -0.325300 q^{62} +1.16898 q^{64} -3.93477 q^{65} +(-11.5102 - 14.1168i) q^{66} -7.91303 q^{67} +(0.590651 - 1.02304i) q^{68} +(0.783494 - 2.06172i) q^{69} -12.2052 q^{71} +(5.00795 - 1.66442i) q^{72} +(-2.65737 + 4.60269i) q^{73} +(3.08779 + 5.34820i) q^{74} +(-8.02980 - 9.84823i) q^{75} +(-1.08194 - 1.87397i) q^{76} +(2.11712 + 2.59657i) q^{78} +9.21711 q^{79} +(-8.78016 + 15.2077i) q^{80} +(7.20950 - 5.38731i) q^{81} +(2.90623 + 5.03373i) q^{82} +(-0.624950 + 1.08245i) q^{83} +(-2.11433 - 3.66213i) q^{85} +(3.28532 - 5.69034i) q^{86} +(-3.81798 + 10.0468i) q^{87} +(5.35702 + 9.27862i) q^{88} +(2.77066 + 4.79892i) q^{89} +(-3.66308 + 17.8206i) q^{90} +(0.624715 - 1.08204i) q^{92} +(0.322134 - 0.0521295i) q^{93} -9.87741 q^{94} -7.74596 q^{95} +(8.74438 - 1.41506i) q^{96} +(-8.24277 + 14.2769i) q^{97} +(13.6604 + 12.1349i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24q - 8q^{2} + 24q^{4} - 24q^{8} - 4q^{9} + O(q^{10}) \) \( 24q - 8q^{2} + 24q^{4} - 24q^{8} - 4q^{9} + 20q^{11} + 4q^{15} + 24q^{16} - 32q^{18} + 32q^{23} - 12q^{25} + 16q^{29} - 84q^{30} - 96q^{32} - 4q^{36} - 12q^{37} + 8q^{39} + 56q^{44} + 24q^{46} - 4q^{50} + 64q^{51} + 32q^{53} - 12q^{57} + 32q^{60} + 96q^{64} - 120q^{65} + 24q^{67} - 112q^{71} + 68q^{74} - 60q^{78} - 24q^{79} - 40q^{81} + 12q^{85} + 76q^{86} + 16q^{92} - 32q^{93} - 128q^{95} + 20q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.72661 −1.22090 −0.610449 0.792056i \(-0.709011\pi\)
−0.610449 + 0.792056i \(0.709011\pi\)
\(3\) 1.70981 0.276691i 0.987158 0.159747i
\(4\) 0.981184 0.490592
\(5\) 1.75616 3.04175i 0.785377 1.36031i −0.143397 0.989665i \(-0.545803\pi\)
0.928774 0.370647i \(-0.120864\pi\)
\(6\) −2.95217 + 0.477737i −1.20522 + 0.195035i
\(7\) 0 0
\(8\) 1.75910 0.621935
\(9\) 2.84688 0.946176i 0.948962 0.315392i
\(10\) −3.03220 + 5.25192i −0.958865 + 1.66080i
\(11\) 3.04532 + 5.27465i 0.918199 + 1.59037i 0.802150 + 0.597123i \(0.203690\pi\)
0.116049 + 0.993244i \(0.462977\pi\)
\(12\) 1.67764 0.271484i 0.484292 0.0783708i
\(13\) −0.560139 0.970190i −0.155355 0.269082i 0.777833 0.628471i \(-0.216319\pi\)
−0.933188 + 0.359388i \(0.882985\pi\)
\(14\) 0 0
\(15\) 2.16106 5.68672i 0.557984 1.46831i
\(16\) −4.99965 −1.24991
\(17\) 0.601978 1.04266i 0.146001 0.252881i −0.783745 0.621083i \(-0.786693\pi\)
0.929746 + 0.368202i \(0.120026\pi\)
\(18\) −4.91546 + 1.63368i −1.15859 + 0.385061i
\(19\) −1.10269 1.90991i −0.252974 0.438163i 0.711370 0.702818i \(-0.248075\pi\)
−0.964343 + 0.264655i \(0.914742\pi\)
\(20\) 1.72311 2.98452i 0.385300 0.667359i
\(21\) 0 0
\(22\) −5.25808 9.10727i −1.12103 1.94168i
\(23\) 0.636695 1.10279i 0.132760 0.229947i −0.791980 0.610548i \(-0.790949\pi\)
0.924740 + 0.380601i \(0.124283\pi\)
\(24\) 3.00772 0.486726i 0.613948 0.0993525i
\(25\) −3.66817 6.35345i −0.733633 1.27069i
\(26\) 0.967143 + 1.67514i 0.189672 + 0.328522i
\(27\) 4.60583 2.40548i 0.886392 0.462936i
\(28\) 0 0
\(29\) −3.10262 + 5.37390i −0.576142 + 0.997907i 0.419774 + 0.907628i \(0.362109\pi\)
−0.995917 + 0.0902789i \(0.971224\pi\)
\(30\) −3.73132 + 9.81875i −0.681242 + 1.79265i
\(31\) 0.188404 0.0338383 0.0169192 0.999857i \(-0.494614\pi\)
0.0169192 + 0.999857i \(0.494614\pi\)
\(32\) 5.11425 0.904079
\(33\) 6.66636 + 8.17602i 1.16046 + 1.42326i
\(34\) −1.03938 + 1.80026i −0.178252 + 0.308742i
\(35\) 0 0
\(36\) 2.79332 0.928373i 0.465553 0.154729i
\(37\) −1.78835 3.09752i −0.294003 0.509228i 0.680749 0.732516i \(-0.261654\pi\)
−0.974753 + 0.223288i \(0.928321\pi\)
\(38\) 1.90391 + 3.29767i 0.308855 + 0.534953i
\(39\) −1.22617 1.50385i −0.196345 0.240809i
\(40\) 3.08925 5.35074i 0.488453 0.846026i
\(41\) −1.68320 2.91538i −0.262871 0.455307i 0.704132 0.710069i \(-0.251336\pi\)
−0.967004 + 0.254762i \(0.918003\pi\)
\(42\) 0 0
\(43\) −1.90276 + 3.29567i −0.290168 + 0.502585i −0.973849 0.227195i \(-0.927044\pi\)
0.683681 + 0.729781i \(0.260378\pi\)
\(44\) 2.98802 + 5.17540i 0.450461 + 0.780221i
\(45\) 2.12154 10.3211i 0.316261 1.53859i
\(46\) −1.09932 + 1.90408i −0.162086 + 0.280742i
\(47\) 5.72070 0.834449 0.417225 0.908803i \(-0.363003\pi\)
0.417225 + 0.908803i \(0.363003\pi\)
\(48\) −8.54843 + 1.38336i −1.23386 + 0.199670i
\(49\) 0 0
\(50\) 6.33349 + 10.9699i 0.895691 + 1.55138i
\(51\) 0.740773 1.94930i 0.103729 0.272957i
\(52\) −0.549600 0.951935i −0.0762158 0.132010i
\(53\) 4.16913 7.22115i 0.572675 0.991901i −0.423615 0.905842i \(-0.639239\pi\)
0.996290 0.0860593i \(-0.0274275\pi\)
\(54\) −7.95247 + 4.15334i −1.08219 + 0.565197i
\(55\) 21.3922 2.88453
\(56\) 0 0
\(57\) −2.41384 2.96047i −0.319720 0.392124i
\(58\) 5.35702 9.27862i 0.703411 1.21834i
\(59\) 11.2685 1.46704 0.733519 0.679669i \(-0.237877\pi\)
0.733519 + 0.679669i \(0.237877\pi\)
\(60\) 2.12040 5.57972i 0.273743 0.720339i
\(61\) −12.0022 −1.53672 −0.768361 0.640017i \(-0.778927\pi\)
−0.768361 + 0.640017i \(0.778927\pi\)
\(62\) −0.325300 −0.0413131
\(63\) 0 0
\(64\) 1.16898 0.146123
\(65\) −3.93477 −0.488048
\(66\) −11.5102 14.1168i −1.41681 1.73766i
\(67\) −7.91303 −0.966731 −0.483366 0.875419i \(-0.660586\pi\)
−0.483366 + 0.875419i \(0.660586\pi\)
\(68\) 0.590651 1.02304i 0.0716270 0.124062i
\(69\) 0.783494 2.06172i 0.0943217 0.248202i
\(70\) 0 0
\(71\) −12.2052 −1.44850 −0.724248 0.689540i \(-0.757813\pi\)
−0.724248 + 0.689540i \(0.757813\pi\)
\(72\) 5.00795 1.66442i 0.590192 0.196153i
\(73\) −2.65737 + 4.60269i −0.311021 + 0.538704i −0.978584 0.205849i \(-0.934004\pi\)
0.667563 + 0.744554i \(0.267338\pi\)
\(74\) 3.08779 + 5.34820i 0.358948 + 0.621716i
\(75\) −8.02980 9.84823i −0.927201 1.13718i
\(76\) −1.08194 1.87397i −0.124107 0.214959i
\(77\) 0 0
\(78\) 2.11712 + 2.59657i 0.239717 + 0.294003i
\(79\) 9.21711 1.03701 0.518503 0.855076i \(-0.326490\pi\)
0.518503 + 0.855076i \(0.326490\pi\)
\(80\) −8.78016 + 15.2077i −0.981651 + 1.70027i
\(81\) 7.20950 5.38731i 0.801056 0.598589i
\(82\) 2.90623 + 5.03373i 0.320939 + 0.555883i
\(83\) −0.624950 + 1.08245i −0.0685972 + 0.118814i −0.898284 0.439415i \(-0.855186\pi\)
0.829687 + 0.558229i \(0.188519\pi\)
\(84\) 0 0
\(85\) −2.11433 3.66213i −0.229332 0.397214i
\(86\) 3.28532 5.69034i 0.354265 0.613605i
\(87\) −3.81798 + 10.0468i −0.409330 + 1.07713i
\(88\) 5.35702 + 9.27862i 0.571060 + 0.989105i
\(89\) 2.77066 + 4.79892i 0.293689 + 0.508684i 0.974679 0.223608i \(-0.0717837\pi\)
−0.680990 + 0.732293i \(0.738450\pi\)
\(90\) −3.66308 + 17.8206i −0.386122 + 1.87846i
\(91\) 0 0
\(92\) 0.624715 1.08204i 0.0651310 0.112810i
\(93\) 0.322134 0.0521295i 0.0334038 0.00540558i
\(94\) −9.87741 −1.01878
\(95\) −7.74596 −0.794718
\(96\) 8.74438 1.41506i 0.892469 0.144424i
\(97\) −8.24277 + 14.2769i −0.836926 + 1.44960i 0.0555261 + 0.998457i \(0.482316\pi\)
−0.892452 + 0.451142i \(0.851017\pi\)
\(98\) 0 0
\(99\) 13.6604 + 12.1349i 1.37292 + 1.21960i
\(100\) −3.59915 6.23391i −0.359915 0.623391i
\(101\) −6.48192 11.2270i −0.644975 1.11713i −0.984307 0.176463i \(-0.943534\pi\)
0.339332 0.940667i \(-0.389799\pi\)
\(102\) −1.27903 + 3.36569i −0.126643 + 0.333253i
\(103\) 1.35091 2.33984i 0.133109 0.230552i −0.791765 0.610826i \(-0.790837\pi\)
0.924873 + 0.380275i \(0.124171\pi\)
\(104\) −0.985340 1.70666i −0.0966205 0.167352i
\(105\) 0 0
\(106\) −7.19847 + 12.4681i −0.699177 + 1.21101i
\(107\) 0.0892402 + 0.154569i 0.00862718 + 0.0149427i 0.870307 0.492510i \(-0.163921\pi\)
−0.861680 + 0.507453i \(0.830587\pi\)
\(108\) 4.51917 2.36022i 0.434857 0.227113i
\(109\) −4.67927 + 8.10473i −0.448192 + 0.776292i −0.998268 0.0588226i \(-0.981265\pi\)
0.550076 + 0.835115i \(0.314599\pi\)
\(110\) −36.9360 −3.52171
\(111\) −3.91479 4.80134i −0.371575 0.455723i
\(112\) 0 0
\(113\) 4.21019 + 7.29226i 0.396061 + 0.685998i 0.993236 0.116113i \(-0.0370434\pi\)
−0.597175 + 0.802111i \(0.703710\pi\)
\(114\) 4.16775 + 5.11159i 0.390346 + 0.478744i
\(115\) −2.23627 3.87333i −0.208533 0.361190i
\(116\) −3.04424 + 5.27278i −0.282651 + 0.489565i
\(117\) −2.51262 2.23203i −0.232292 0.206351i
\(118\) −19.4564 −1.79110
\(119\) 0 0
\(120\) 3.80152 10.0035i 0.347030 0.913190i
\(121\) −13.0479 + 22.5997i −1.18618 + 2.05452i
\(122\) 20.7231 1.87618
\(123\) −3.68460 4.51902i −0.332230 0.407467i
\(124\) 0.184859 0.0166008
\(125\) −8.20593 −0.733960
\(126\) 0 0
\(127\) −9.92438 −0.880647 −0.440323 0.897839i \(-0.645136\pi\)
−0.440323 + 0.897839i \(0.645136\pi\)
\(128\) −12.2469 −1.08248
\(129\) −2.34147 + 6.16144i −0.206155 + 0.542485i
\(130\) 6.79381 0.595857
\(131\) −7.62335 + 13.2040i −0.666055 + 1.15364i 0.312943 + 0.949772i \(0.398685\pi\)
−0.978998 + 0.203870i \(0.934648\pi\)
\(132\) 6.54093 + 8.02219i 0.569314 + 0.698242i
\(133\) 0 0
\(134\) 13.6627 1.18028
\(135\) 0.771665 18.2342i 0.0664144 1.56935i
\(136\) 1.05894 1.83413i 0.0908032 0.157276i
\(137\) −3.07350 5.32346i −0.262587 0.454814i 0.704342 0.709861i \(-0.251242\pi\)
−0.966929 + 0.255047i \(0.917909\pi\)
\(138\) −1.35279 + 3.55979i −0.115157 + 0.303030i
\(139\) −0.438687 0.759829i −0.0372090 0.0644478i 0.846821 0.531878i \(-0.178513\pi\)
−0.884030 + 0.467430i \(0.845180\pi\)
\(140\) 0 0
\(141\) 9.78129 1.58286i 0.823733 0.133301i
\(142\) 21.0737 1.76847
\(143\) 3.41161 5.90908i 0.285293 0.494142i
\(144\) −14.2334 + 4.73054i −1.18612 + 0.394212i
\(145\) 10.8974 + 18.8748i 0.904977 + 1.56747i
\(146\) 4.58824 7.94706i 0.379725 0.657703i
\(147\) 0 0
\(148\) −1.75470 3.03923i −0.144236 0.249823i
\(149\) −2.88776 + 5.00175i −0.236575 + 0.409760i −0.959729 0.280927i \(-0.909358\pi\)
0.723154 + 0.690686i \(0.242692\pi\)
\(150\) 13.8643 + 17.0041i 1.13202 + 1.38838i
\(151\) 1.01321 + 1.75494i 0.0824541 + 0.142815i 0.904304 0.426890i \(-0.140391\pi\)
−0.821849 + 0.569705i \(0.807058\pi\)
\(152\) −1.93973 3.35972i −0.157333 0.272509i
\(153\) 0.727226 3.53790i 0.0587927 0.286022i
\(154\) 0 0
\(155\) 0.330866 0.573077i 0.0265758 0.0460307i
\(156\) −1.20310 1.47556i −0.0963252 0.118139i
\(157\) 3.04756 0.243222 0.121611 0.992578i \(-0.461194\pi\)
0.121611 + 0.992578i \(0.461194\pi\)
\(158\) −15.9144 −1.26608
\(159\) 5.13039 13.5003i 0.406867 1.07065i
\(160\) 8.98141 15.5563i 0.710043 1.22983i
\(161\) 0 0
\(162\) −12.4480 + 9.30178i −0.978008 + 0.730817i
\(163\) 2.69445 + 4.66693i 0.211046 + 0.365542i 0.952042 0.305967i \(-0.0989797\pi\)
−0.740996 + 0.671509i \(0.765646\pi\)
\(164\) −1.65153 2.86053i −0.128963 0.223370i
\(165\) 36.5766 5.91903i 2.84748 0.460796i
\(166\) 1.07905 1.86896i 0.0837502 0.145060i
\(167\) 8.30480 + 14.3843i 0.642645 + 1.11309i 0.984840 + 0.173464i \(0.0554961\pi\)
−0.342196 + 0.939629i \(0.611171\pi\)
\(168\) 0 0
\(169\) 5.87249 10.1714i 0.451730 0.782419i
\(170\) 3.65063 + 6.32308i 0.279991 + 0.484958i
\(171\) −4.94633 4.39396i −0.378255 0.336014i
\(172\) −1.86696 + 3.23366i −0.142354 + 0.246564i
\(173\) 17.6503 1.34193 0.670965 0.741489i \(-0.265880\pi\)
0.670965 + 0.741489i \(0.265880\pi\)
\(174\) 6.59216 17.3469i 0.499750 1.31507i
\(175\) 0 0
\(176\) −15.2255 26.3714i −1.14767 1.98782i
\(177\) 19.2670 3.11790i 1.44820 0.234355i
\(178\) −4.78384 8.28586i −0.358564 0.621051i
\(179\) −1.31422 + 2.27630i −0.0982294 + 0.170138i −0.910952 0.412513i \(-0.864651\pi\)
0.812722 + 0.582651i \(0.197985\pi\)
\(180\) 2.08162 10.1269i 0.155155 0.754818i
\(181\) −3.97391 −0.295378 −0.147689 0.989034i \(-0.547184\pi\)
−0.147689 + 0.989034i \(0.547184\pi\)
\(182\) 0 0
\(183\) −20.5214 + 3.32089i −1.51699 + 0.245487i
\(184\) 1.12001 1.93991i 0.0825681 0.143012i
\(185\) −12.5625 −0.923613
\(186\) −0.556200 + 0.0900074i −0.0407826 + 0.00659966i
\(187\) 7.33286 0.536232
\(188\) 5.61306 0.409374
\(189\) 0 0
\(190\) 13.3743 0.970270
\(191\) −18.2059 −1.31733 −0.658666 0.752435i \(-0.728879\pi\)
−0.658666 + 0.752435i \(0.728879\pi\)
\(192\) 1.99873 0.323446i 0.144246 0.0233427i
\(193\) −0.202385 −0.0145680 −0.00728401 0.999973i \(-0.502319\pi\)
−0.00728401 + 0.999973i \(0.502319\pi\)
\(194\) 14.2321 24.6506i 1.02180 1.76981i
\(195\) −6.72770 + 1.08871i −0.481780 + 0.0779644i
\(196\) 0 0
\(197\) −1.63136 −0.116229 −0.0581147 0.998310i \(-0.518509\pi\)
−0.0581147 + 0.998310i \(0.518509\pi\)
\(198\) −23.5862 20.9523i −1.67620 1.48901i
\(199\) 3.14605 5.44912i 0.223018 0.386278i −0.732705 0.680546i \(-0.761743\pi\)
0.955723 + 0.294268i \(0.0950759\pi\)
\(200\) −6.45266 11.1763i −0.456272 0.790287i
\(201\) −13.5298 + 2.18946i −0.954316 + 0.154433i
\(202\) 11.1918 + 19.3847i 0.787449 + 1.36390i
\(203\) 0 0
\(204\) 0.726835 1.91263i 0.0508886 0.133911i
\(205\) −11.8238 −0.825812
\(206\) −2.33249 + 4.04000i −0.162512 + 0.281480i
\(207\) 0.769166 3.74193i 0.0534607 0.260082i
\(208\) 2.80050 + 4.85061i 0.194180 + 0.336329i
\(209\) 6.71607 11.6326i 0.464560 0.804642i
\(210\) 0 0
\(211\) 8.14368 + 14.1053i 0.560634 + 0.971046i 0.997441 + 0.0714912i \(0.0227758\pi\)
−0.436807 + 0.899555i \(0.643891\pi\)
\(212\) 4.09069 7.08528i 0.280950 0.486619i
\(213\) −20.8686 + 3.37708i −1.42989 + 0.231393i
\(214\) −0.154083 0.266880i −0.0105329 0.0182435i
\(215\) 6.68308 + 11.5754i 0.455782 + 0.789438i
\(216\) 8.10210 4.23148i 0.551278 0.287916i
\(217\) 0 0
\(218\) 8.07927 13.9937i 0.547197 0.947773i
\(219\) −3.27006 + 8.60499i −0.220970 + 0.581471i
\(220\) 20.9897 1.41513
\(221\) −1.34877 −0.0907278
\(222\) 6.75932 + 8.29004i 0.453656 + 0.556391i
\(223\) 9.98472 17.2940i 0.668626 1.15809i −0.309662 0.950847i \(-0.600216\pi\)
0.978288 0.207248i \(-0.0664507\pi\)
\(224\) 0 0
\(225\) −16.4543 14.6168i −1.09695 0.974454i
\(226\) −7.26936 12.5909i −0.483551 0.837534i
\(227\) 1.80642 + 3.12880i 0.119896 + 0.207666i 0.919726 0.392560i \(-0.128411\pi\)
−0.799830 + 0.600226i \(0.795077\pi\)
\(228\) −2.36842 2.90477i −0.156852 0.192373i
\(229\) 6.85733 11.8772i 0.453145 0.784870i −0.545435 0.838153i \(-0.683635\pi\)
0.998579 + 0.0532835i \(0.0169687\pi\)
\(230\) 3.86117 + 6.68774i 0.254598 + 0.440976i
\(231\) 0 0
\(232\) −5.45781 + 9.45321i −0.358323 + 0.620634i
\(233\) 12.6271 + 21.8707i 0.827227 + 1.43280i 0.900205 + 0.435466i \(0.143417\pi\)
−0.0729776 + 0.997334i \(0.523250\pi\)
\(234\) 4.33832 + 3.85384i 0.283605 + 0.251934i
\(235\) 10.0464 17.4009i 0.655357 1.13511i
\(236\) 11.0565 0.719717
\(237\) 15.7595 2.55029i 1.02369 0.165659i
\(238\) 0 0
\(239\) −4.49495 7.78549i −0.290754 0.503601i 0.683234 0.730200i \(-0.260573\pi\)
−0.973988 + 0.226598i \(0.927240\pi\)
\(240\) −10.8046 + 28.4316i −0.697431 + 1.83525i
\(241\) 4.62862 + 8.01701i 0.298156 + 0.516421i 0.975714 0.219048i \(-0.0702952\pi\)
−0.677558 + 0.735469i \(0.736962\pi\)
\(242\) 22.5287 39.0209i 1.44820 2.50836i
\(243\) 10.8362 11.2061i 0.695146 0.718869i
\(244\) −11.7763 −0.753903
\(245\) 0 0
\(246\) 6.36188 + 7.80259i 0.405619 + 0.497475i
\(247\) −1.23532 + 2.13963i −0.0786013 + 0.136141i
\(248\) 0.331421 0.0210452
\(249\) −0.769042 + 2.02369i −0.0487361 + 0.128246i
\(250\) 14.1684 0.896091
\(251\) −20.6517 −1.30353 −0.651763 0.758422i \(-0.725970\pi\)
−0.651763 + 0.758422i \(0.725970\pi\)
\(252\) 0 0
\(253\) 7.75576 0.487600
\(254\) 17.1355 1.07518
\(255\) −4.62838 5.67653i −0.289841 0.355478i
\(256\) 18.8076 1.17548
\(257\) −1.22289 + 2.11811i −0.0762819 + 0.132124i −0.901643 0.432481i \(-0.857638\pi\)
0.825361 + 0.564605i \(0.190972\pi\)
\(258\) 4.04280 10.6384i 0.251694 0.662318i
\(259\) 0 0
\(260\) −3.86073 −0.239432
\(261\) −3.74815 + 18.2345i −0.232005 + 1.12869i
\(262\) 13.1626 22.7982i 0.813186 1.40848i
\(263\) 12.2814 + 21.2720i 0.757302 + 1.31169i 0.944222 + 0.329311i \(0.106816\pi\)
−0.186919 + 0.982375i \(0.559850\pi\)
\(264\) 11.7268 + 14.3824i 0.721733 + 0.885177i
\(265\) −14.6433 25.3629i −0.899531 1.55803i
\(266\) 0 0
\(267\) 6.06510 + 7.43861i 0.371178 + 0.455236i
\(268\) −7.76415 −0.474271
\(269\) −14.7851 + 25.6086i −0.901466 + 1.56139i −0.0758746 + 0.997117i \(0.524175\pi\)
−0.825592 + 0.564268i \(0.809158\pi\)
\(270\) −1.33237 + 31.4833i −0.0810852 + 1.91601i
\(271\) −12.3958 21.4701i −0.752989 1.30421i −0.946368 0.323090i \(-0.895278\pi\)
0.193380 0.981124i \(-0.438055\pi\)
\(272\) −3.00968 + 5.21291i −0.182488 + 0.316079i
\(273\) 0 0
\(274\) 5.30674 + 9.19154i 0.320592 + 0.555281i
\(275\) 22.3415 38.6966i 1.34724 2.33349i
\(276\) 0.768752 2.02293i 0.0462735 0.121766i
\(277\) −0.939249 1.62683i −0.0564340 0.0977466i 0.836428 0.548076i \(-0.184640\pi\)
−0.892862 + 0.450330i \(0.851306\pi\)
\(278\) 0.757442 + 1.31193i 0.0454284 + 0.0786842i
\(279\) 0.536364 0.178263i 0.0321113 0.0106723i
\(280\) 0 0
\(281\) 6.03965 10.4610i 0.360295 0.624049i −0.627714 0.778444i \(-0.716009\pi\)
0.988009 + 0.154395i \(0.0493427\pi\)
\(282\) −16.8885 + 2.73299i −1.00569 + 0.162747i
\(283\) 27.9719 1.66276 0.831378 0.555708i \(-0.187553\pi\)
0.831378 + 0.555708i \(0.187553\pi\)
\(284\) −11.9756 −0.710620
\(285\) −13.2441 + 2.14323i −0.784513 + 0.126954i
\(286\) −5.89052 + 10.2027i −0.348314 + 0.603297i
\(287\) 0 0
\(288\) 14.5597 4.83897i 0.857937 0.285139i
\(289\) 7.77524 + 13.4671i 0.457367 + 0.792183i
\(290\) −18.8155 32.5894i −1.10488 1.91372i
\(291\) −10.1433 + 26.6914i −0.594609 + 1.56468i
\(292\) −2.60736 + 4.51609i −0.152584 + 0.264284i
\(293\) 4.41163 + 7.64117i 0.257730 + 0.446402i 0.965634 0.259908i \(-0.0836921\pi\)
−0.707903 + 0.706309i \(0.750359\pi\)
\(294\) 0 0
\(295\) 19.7893 34.2761i 1.15218 1.99563i
\(296\) −3.14589 5.44883i −0.182851 0.316707i
\(297\) 26.7143 + 16.9687i 1.55012 + 0.984621i
\(298\) 4.98604 8.63608i 0.288834 0.500275i
\(299\) −1.42655 −0.0824996
\(300\) −7.87871 9.66293i −0.454878 0.557889i
\(301\) 0 0
\(302\) −1.74942 3.03009i −0.100668 0.174362i
\(303\) −14.1893 17.4026i −0.815151 0.999751i
\(304\) 5.51304 + 9.54887i 0.316195 + 0.547665i
\(305\) −21.0777 + 36.5076i −1.20691 + 2.09042i
\(306\) −1.25564 + 6.10857i −0.0717799 + 0.349204i
\(307\) −1.05532 −0.0602304 −0.0301152 0.999546i \(-0.509587\pi\)
−0.0301152 + 0.999546i \(0.509587\pi\)
\(308\) 0 0
\(309\) 1.66238 4.37446i 0.0945696 0.248855i
\(310\) −0.571277 + 0.989481i −0.0324464 + 0.0561988i
\(311\) −3.07215 −0.174206 −0.0871029 0.996199i \(-0.527761\pi\)
−0.0871029 + 0.996199i \(0.527761\pi\)
\(312\) −2.15696 2.64542i −0.122114 0.149768i
\(313\) −28.1621 −1.59181 −0.795907 0.605419i \(-0.793006\pi\)
−0.795907 + 0.605419i \(0.793006\pi\)
\(314\) −5.26196 −0.296949
\(315\) 0 0
\(316\) 9.04368 0.508747
\(317\) 12.8465 0.721530 0.360765 0.932657i \(-0.382516\pi\)
0.360765 + 0.932657i \(0.382516\pi\)
\(318\) −8.85819 + 23.3098i −0.496743 + 1.30715i
\(319\) −37.7939 −2.11605
\(320\) 2.05291 3.55575i 0.114761 0.198772i
\(321\) 0.195351 + 0.239591i 0.0109034 + 0.0133726i
\(322\) 0 0
\(323\) −2.65517 −0.147738
\(324\) 7.07385 5.28594i 0.392992 0.293663i
\(325\) −4.10937 + 7.11763i −0.227947 + 0.394815i
\(326\) −4.65227 8.05797i −0.257665 0.446290i
\(327\) −5.75814 + 15.1522i −0.318426 + 0.837920i
\(328\) −2.96091 5.12845i −0.163489 0.283171i
\(329\) 0 0
\(330\) −63.1535 + 10.2199i −3.47649 + 0.562585i
\(331\) −21.5560 −1.18483 −0.592413 0.805634i \(-0.701825\pi\)
−0.592413 + 0.805634i \(0.701825\pi\)
\(332\) −0.613191 + 1.06208i −0.0336532 + 0.0582891i
\(333\) −8.02202 7.12617i −0.439604 0.390512i
\(334\) −14.3392 24.8361i −0.784604 1.35897i
\(335\) −13.8965 + 24.0695i −0.759248 + 1.31506i
\(336\) 0 0
\(337\) 6.30340 + 10.9178i 0.343368 + 0.594731i 0.985056 0.172235i \(-0.0550989\pi\)
−0.641688 + 0.766966i \(0.721766\pi\)
\(338\) −10.1395 + 17.5621i −0.551516 + 0.955254i
\(339\) 9.21632 + 11.3034i 0.500562 + 0.613919i
\(340\) −2.07455 3.59323i −0.112508 0.194870i
\(341\) 0.573750 + 0.993764i 0.0310703 + 0.0538153i
\(342\) 8.54039 + 7.58665i 0.461811 + 0.410239i
\(343\) 0 0
\(344\) −3.34714 + 5.79741i −0.180466 + 0.312575i
\(345\) −4.89531 6.00390i −0.263554 0.323239i
\(346\) −30.4752 −1.63836
\(347\) 23.1366 1.24204 0.621020 0.783795i \(-0.286719\pi\)
0.621020 + 0.783795i \(0.286719\pi\)
\(348\) −3.74614 + 9.85776i −0.200814 + 0.528431i
\(349\) −8.24346 + 14.2781i −0.441262 + 0.764289i −0.997783 0.0665448i \(-0.978802\pi\)
0.556521 + 0.830833i \(0.312136\pi\)
\(350\) 0 0
\(351\) −4.91368 3.12112i −0.262273 0.166593i
\(352\) 15.5745 + 26.9759i 0.830124 + 1.43782i
\(353\) −12.2438 21.2068i −0.651669 1.12872i −0.982718 0.185110i \(-0.940736\pi\)
0.331049 0.943614i \(-0.392598\pi\)
\(354\) −33.2666 + 5.38339i −1.76810 + 0.286124i
\(355\) −21.4343 + 37.1253i −1.13761 + 1.97041i
\(356\) 2.71852 + 4.70862i 0.144081 + 0.249556i
\(357\) 0 0
\(358\) 2.26915 3.93028i 0.119928 0.207722i
\(359\) −10.2389 17.7342i −0.540386 0.935977i −0.998882 0.0472797i \(-0.984945\pi\)
0.458495 0.888697i \(-0.348389\pi\)
\(360\) 3.73200 18.1559i 0.196694 0.956900i
\(361\) 7.06816 12.2424i 0.372009 0.644338i
\(362\) 6.86139 0.360627
\(363\) −16.0564 + 42.2514i −0.842740 + 2.21762i
\(364\) 0 0
\(365\) 9.33349 + 16.1661i 0.488537 + 0.846172i
\(366\) 35.4325 5.73388i 1.85209 0.299715i
\(367\) 11.1269 + 19.2724i 0.580821 + 1.00601i 0.995382 + 0.0959900i \(0.0306017\pi\)
−0.414561 + 0.910021i \(0.636065\pi\)
\(368\) −3.18325 + 5.51355i −0.165938 + 0.287414i
\(369\) −7.55034 6.70716i −0.393055 0.349161i
\(370\) 21.6905 1.12764
\(371\) 0 0
\(372\) 0.316073 0.0511487i 0.0163876 0.00265194i
\(373\) 16.2684 28.1777i 0.842347 1.45899i −0.0455576 0.998962i \(-0.514506\pi\)
0.887905 0.460027i \(-0.152160\pi\)
\(374\) −12.6610 −0.654685
\(375\) −14.0306 + 2.27050i −0.724535 + 0.117248i
\(376\) 10.0633 0.518973
\(377\) 6.95160 0.358026
\(378\) 0 0
\(379\) 1.54440 0.0793306 0.0396653 0.999213i \(-0.487371\pi\)
0.0396653 + 0.999213i \(0.487371\pi\)
\(380\) −7.60021 −0.389883
\(381\) −16.9688 + 2.74598i −0.869337 + 0.140681i
\(382\) 31.4345 1.60833
\(383\) 15.8147 27.3919i 0.808093 1.39966i −0.106090 0.994357i \(-0.533833\pi\)
0.914183 0.405302i \(-0.132834\pi\)
\(384\) −20.9398 + 3.38859i −1.06858 + 0.172923i
\(385\) 0 0
\(386\) 0.349441 0.0177861
\(387\) −2.29865 + 11.1827i −0.116847 + 0.568451i
\(388\) −8.08767 + 14.0083i −0.410589 + 0.711162i
\(389\) 2.62313 + 4.54340i 0.132998 + 0.230359i 0.924831 0.380378i \(-0.124206\pi\)
−0.791833 + 0.610738i \(0.790873\pi\)
\(390\) 11.6161 1.87978i 0.588205 0.0951866i
\(391\) −0.766552 1.32771i −0.0387662 0.0671451i
\(392\) 0 0
\(393\) −9.38103 + 24.6857i −0.473210 + 1.24523i
\(394\) 2.81672 0.141904
\(395\) 16.1867 28.0362i 0.814440 1.41065i
\(396\) 13.4034 + 11.9066i 0.673546 + 0.598328i
\(397\) 0.0138175 + 0.0239325i 0.000693478 + 0.00120114i 0.866372 0.499399i \(-0.166446\pi\)
−0.865678 + 0.500600i \(0.833113\pi\)
\(398\) −5.43201 + 9.40851i −0.272282 + 0.471606i
\(399\) 0 0
\(400\) 18.3395 + 31.7650i 0.916977 + 1.58825i
\(401\) −6.06885 + 10.5115i −0.303064 + 0.524922i −0.976828 0.214024i \(-0.931343\pi\)
0.673765 + 0.738946i \(0.264676\pi\)
\(402\) 23.3606 3.78035i 1.16512 0.188547i
\(403\) −0.105532 0.182787i −0.00525694 0.00910529i
\(404\) −6.35996 11.0158i −0.316420 0.548055i
\(405\) −3.72583 31.3905i −0.185138 1.55980i
\(406\) 0 0
\(407\) 10.8922 18.8659i 0.539907 0.935146i
\(408\) 1.30309 3.42902i 0.0645127 0.169762i
\(409\) −31.3453 −1.54993 −0.774963 0.632007i \(-0.782231\pi\)
−0.774963 + 0.632007i \(0.782231\pi\)
\(410\) 20.4152 1.00823
\(411\) −6.72805 8.25168i −0.331870 0.407025i
\(412\) 1.32549 2.29582i 0.0653022 0.113107i
\(413\) 0 0
\(414\) −1.32805 + 6.46086i −0.0652701 + 0.317534i
\(415\) 2.19502 + 3.80189i 0.107749 + 0.186627i
\(416\) −2.86469 4.96179i −0.140453 0.243272i
\(417\) −0.960308 1.17778i −0.0470265 0.0576762i
\(418\) −11.5960 + 20.0849i −0.567181 + 0.982385i
\(419\) −7.44319 12.8920i −0.363623 0.629814i 0.624931 0.780680i \(-0.285127\pi\)
−0.988554 + 0.150866i \(0.951794\pi\)
\(420\) 0 0
\(421\) −4.54213 + 7.86721i −0.221370 + 0.383424i −0.955224 0.295883i \(-0.904386\pi\)
0.733854 + 0.679307i \(0.237720\pi\)
\(422\) −14.0610 24.3543i −0.684477 1.18555i
\(423\) 16.2862 5.41278i 0.791860 0.263179i
\(424\) 7.33392 12.7027i 0.356166 0.616898i
\(425\) −8.83262 −0.428445
\(426\) 36.0320 5.83089i 1.74575 0.282508i
\(427\) 0 0
\(428\) 0.0875611 + 0.151660i 0.00423243 + 0.00733078i
\(429\) 4.19821 11.0473i 0.202691 0.533371i
\(430\) −11.5391 19.9863i −0.556463 0.963823i
\(431\) 8.31776 14.4068i 0.400652 0.693950i −0.593152 0.805090i \(-0.702117\pi\)
0.993805 + 0.111140i \(0.0354502\pi\)
\(432\) −23.0275 + 12.0266i −1.10791 + 0.578629i
\(433\) −19.7423 −0.948756 −0.474378 0.880321i \(-0.657327\pi\)
−0.474378 + 0.880321i \(0.657327\pi\)
\(434\) 0 0
\(435\) 23.8549 + 29.2571i 1.14375 + 1.40277i
\(436\) −4.59122 + 7.95223i −0.219880 + 0.380843i
\(437\) −2.80830 −0.134339
\(438\) 5.64612 14.8575i 0.269782 0.709917i
\(439\) 6.73514 0.321451 0.160725 0.986999i \(-0.448617\pi\)
0.160725 + 0.986999i \(0.448617\pi\)
\(440\) 37.6310 1.79399
\(441\) 0 0
\(442\) 2.32879 0.110769
\(443\) 28.6403 1.36074 0.680372 0.732867i \(-0.261818\pi\)
0.680372 + 0.732867i \(0.261818\pi\)
\(444\) −3.84113 4.71100i −0.182292 0.223574i
\(445\) 19.4628 0.922626
\(446\) −17.2397 + 29.8601i −0.816324 + 1.41392i
\(447\) −3.55358 + 9.35105i −0.168079 + 0.442290i
\(448\) 0 0
\(449\) −6.66872 −0.314716 −0.157358 0.987542i \(-0.550298\pi\)
−0.157358 + 0.987542i \(0.550298\pi\)
\(450\) 28.4102 + 25.2375i 1.33927 + 1.18971i
\(451\) 10.2518 17.7566i 0.482736 0.836124i
\(452\) 4.13097 + 7.15505i 0.194305 + 0.336545i
\(453\) 2.21797 + 2.72026i 0.104210 + 0.127809i
\(454\) −3.11898 5.40223i −0.146381 0.253539i
\(455\) 0 0
\(456\) −4.24617 5.20776i −0.198845 0.243876i
\(457\) −28.6573 −1.34053 −0.670266 0.742121i \(-0.733820\pi\)
−0.670266 + 0.742121i \(0.733820\pi\)
\(458\) −11.8399 + 20.5074i −0.553244 + 0.958246i
\(459\) 0.264513 6.25034i 0.0123464 0.291741i
\(460\) −2.19419 3.80045i −0.102305 0.177197i
\(461\) 10.0087 17.3355i 0.466150 0.807395i −0.533103 0.846050i \(-0.678974\pi\)
0.999253 + 0.0386554i \(0.0123075\pi\)
\(462\) 0 0
\(463\) −4.95789 8.58731i −0.230413 0.399086i 0.727517 0.686090i \(-0.240674\pi\)
−0.957930 + 0.287003i \(0.907341\pi\)
\(464\) 15.5120 26.8676i 0.720127 1.24730i
\(465\) 0.407153 1.07140i 0.0188813 0.0496850i
\(466\) −21.8020 37.7623i −1.00996 1.74930i
\(467\) −8.04035 13.9263i −0.372063 0.644432i 0.617820 0.786320i \(-0.288016\pi\)
−0.989883 + 0.141888i \(0.954683\pi\)
\(468\) −2.46535 2.19003i −0.113961 0.101234i
\(469\) 0 0
\(470\) −17.3463 + 30.0446i −0.800124 + 1.38586i
\(471\) 5.21075 0.843232i 0.240099 0.0388541i
\(472\) 19.8225 0.912402
\(473\) −23.1780 −1.06573
\(474\) −27.2105 + 4.40335i −1.24982 + 0.202253i
\(475\) −8.08967 + 14.0117i −0.371180 + 0.642902i
\(476\) 0 0
\(477\) 5.03657 24.5025i 0.230609 1.12189i
\(478\) 7.76103 + 13.4425i 0.354981 + 0.614846i
\(479\) 4.10128 + 7.10362i 0.187392 + 0.324573i 0.944380 0.328856i \(-0.106663\pi\)
−0.756988 + 0.653429i \(0.773330\pi\)
\(480\) 11.0522 29.0833i 0.504462 1.32746i
\(481\) −2.00345 + 3.47008i −0.0913496 + 0.158222i
\(482\) −7.99183 13.8423i −0.364018 0.630497i
\(483\) 0 0
\(484\) −12.8024 + 22.1745i −0.581929 + 1.00793i
\(485\) 28.9512 + 50.1449i 1.31460 + 2.27696i
\(486\) −18.7100 + 19.3485i −0.848702 + 0.877666i
\(487\) −1.36840 + 2.37014i −0.0620081 + 0.107401i −0.895363 0.445337i \(-0.853084\pi\)
0.833355 + 0.552738i \(0.186417\pi\)
\(488\) −21.1130 −0.955741
\(489\) 5.89829 + 7.23402i 0.266730 + 0.327134i
\(490\) 0 0
\(491\) 9.85482 + 17.0690i 0.444742 + 0.770315i 0.998034 0.0626719i \(-0.0199622\pi\)
−0.553293 + 0.832987i \(0.686629\pi\)
\(492\) −3.61528 4.43399i −0.162989 0.199900i
\(493\) 3.73542 + 6.46993i 0.168235 + 0.291391i
\(494\) 2.13291 3.69431i 0.0959642 0.166215i
\(495\) 60.9012 20.2408i 2.73731 0.909756i
\(496\) −0.941952 −0.0422949
\(497\) 0 0
\(498\) 1.32784 3.49413i 0.0595018 0.156576i
\(499\) 16.5480 28.6619i 0.740789 1.28309i −0.211347 0.977411i \(-0.567785\pi\)
0.952136 0.305674i \(-0.0988817\pi\)
\(500\) −8.05153 −0.360075
\(501\) 18.1796 + 22.2966i 0.812205 + 0.996138i
\(502\) 35.6575 1.59147
\(503\) 12.1860 0.543346 0.271673 0.962390i \(-0.412423\pi\)
0.271673 + 0.962390i \(0.412423\pi\)
\(504\) 0 0
\(505\) −45.5331 −2.02619
\(506\) −13.3912 −0.595310
\(507\) 7.22648 19.0161i 0.320939 0.844534i
\(508\) −9.73765 −0.432038
\(509\) −6.81965 + 11.8120i −0.302276 + 0.523557i −0.976651 0.214832i \(-0.931080\pi\)
0.674375 + 0.738389i \(0.264413\pi\)
\(510\) 7.99142 + 9.80116i 0.353866 + 0.434002i
\(511\) 0 0
\(512\) −7.97968 −0.352656
\(513\) −9.67304 6.14422i −0.427075 0.271274i
\(514\) 2.11146 3.65715i 0.0931325 0.161310i
\(515\) −4.74481 8.21826i −0.209081 0.362140i
\(516\) −2.29741 + 6.04551i −0.101138 + 0.266139i
\(517\) 17.4214 + 30.1747i 0.766190 + 1.32708i
\(518\) 0 0
\(519\) 30.1787 4.88368i 1.32470 0.214370i
\(520\) −6.92164 −0.303534
\(521\) 17.7745 30.7863i 0.778714 1.34877i −0.153969 0.988076i \(-0.549206\pi\)
0.932683 0.360697i \(-0.117461\pi\)
\(522\) 6.47160 31.4839i 0.283254 1.37801i
\(523\) −13.3593 23.1391i −0.584163 1.01180i −0.994979 0.100082i \(-0.968089\pi\)
0.410816 0.911718i \(-0.365244\pi\)
\(524\) −7.47991 + 12.9556i −0.326761 + 0.565967i
\(525\) 0 0
\(526\) −21.2052 36.7284i −0.924589 1.60143i
\(527\) 0.113415 0.196440i 0.00494043 0.00855708i
\(528\) −33.3294 40.8772i −1.45048 1.77895i
\(529\) 10.6892 + 18.5143i 0.464750 + 0.804970i
\(530\) 25.2833 + 43.7919i 1.09824 + 1.90220i
\(531\) 32.0802 10.6620i 1.39216 0.462692i
\(532\) 0 0
\(533\) −1.88565 + 3.26604i −0.0816766 + 0.141468i
\(534\) −10.4721 12.8436i −0.453171 0.555796i
\(535\) 0.626879 0.0271023
\(536\) −13.9198 −0.601244
\(537\) −1.61723 + 4.25566i −0.0697888 + 0.183645i
\(538\) 25.5282 44.2161i 1.10060 1.90629i
\(539\) 0 0
\(540\) 0.757146 17.8911i 0.0325824 0.769910i
\(541\) −18.7927 32.5500i −0.807963 1.39943i −0.914272 0.405100i \(-0.867237\pi\)
0.106309 0.994333i \(-0.466097\pi\)
\(542\) 21.4026 + 37.0705i 0.919322 + 1.59231i
\(543\) −6.79462 + 1.09954i −0.291585 + 0.0471859i
\(544\) 3.07866 5.33240i 0.131997 0.228625i
\(545\) 16.4350 + 28.4663i 0.704000 + 1.21936i
\(546\) 0 0
\(547\) −9.13381 + 15.8202i −0.390533 + 0.676424i −0.992520 0.122082i \(-0.961043\pi\)
0.601986 + 0.798506i \(0.294376\pi\)
\(548\) −3.01567 5.22329i −0.128823 0.223128i
\(549\) −34.1688 + 11.3562i −1.45829 + 0.484669i
\(550\) −38.5750 + 66.8139i −1.64485 + 2.84896i
\(551\) 13.6849 0.582995
\(552\) 1.37824 3.62677i 0.0586619 0.154366i
\(553\) 0 0
\(554\) 1.62172 + 2.80890i 0.0689002 + 0.119339i
\(555\) −21.4794 + 3.47592i −0.911752 + 0.147545i
\(556\) −0.430433 0.745532i −0.0182544 0.0316176i
\(557\) 1.94636 3.37119i 0.0824698 0.142842i −0.821840 0.569718i \(-0.807053\pi\)
0.904310 + 0.426876i \(0.140386\pi\)
\(558\) −0.926091 + 0.307791i −0.0392046 + 0.0130298i
\(559\) 4.26324 0.180316
\(560\) 0 0
\(561\) 12.5378 2.02893i 0.529346 0.0856617i
\(562\) −10.4281 + 18.0620i −0.439884 + 0.761901i
\(563\) −3.32855 −0.140282 −0.0701409 0.997537i \(-0.522345\pi\)
−0.0701409 + 0.997537i \(0.522345\pi\)
\(564\) 9.59725 1.55308i 0.404117 0.0653965i
\(565\) 29.5750 1.24423
\(566\) −48.2965 −2.03006
\(567\) 0 0
\(568\) −21.4702 −0.900870
\(569\) −36.6244 −1.53538 −0.767688 0.640824i \(-0.778593\pi\)
−0.767688 + 0.640824i \(0.778593\pi\)
\(570\) 22.8674 3.70053i 0.957810 0.154998i
\(571\) −22.5824 −0.945044 −0.472522 0.881319i \(-0.656656\pi\)
−0.472522 + 0.881319i \(0.656656\pi\)
\(572\) 3.34742 5.79789i 0.139962 0.242422i
\(573\) −31.1286 + 5.03740i −1.30042 + 0.210441i
\(574\) 0 0
\(575\) −9.34201 −0.389589
\(576\) 3.32795 1.10606i 0.138665 0.0460859i
\(577\) 11.2725 19.5245i 0.469279 0.812815i −0.530104 0.847932i \(-0.677847\pi\)
0.999383 + 0.0351177i \(0.0111806\pi\)
\(578\) −13.4248 23.2525i −0.558399 0.967175i
\(579\) −0.346040 + 0.0559981i −0.0143809 + 0.00232720i
\(580\) 10.6923 + 18.5197i 0.443975 + 0.768987i
\(581\) 0 0
\(582\) 17.5135 46.0857i 0.725957 1.91031i
\(583\) 50.7854 2.10332
\(584\) −4.67457 + 8.09659i −0.193435 + 0.335039i
\(585\) −11.2018 + 3.72298i −0.463139 + 0.153926i
\(586\) −7.61717 13.1933i −0.314662 0.545011i
\(587\) 12.1198 20.9921i 0.500237 0.866436i −0.499763 0.866162i \(-0.666579\pi\)
1.00000 0.000273884i \(-8.71801e-5\pi\)
\(588\) 0 0
\(589\) −0.207750 0.359834i −0.00856020 0.0148267i
\(590\) −34.1684 + 59.1814i −1.40669 + 2.43646i
\(591\) −2.78931 + 0.451381i −0.114737 + 0.0185673i
\(592\) 8.94112 + 15.4865i 0.367478 + 0.636490i
\(593\) −22.8663 39.6056i −0.939007 1.62641i −0.767328 0.641255i \(-0.778414\pi\)
−0.171680 0.985153i \(-0.554919\pi\)
\(594\) −46.1252 29.2983i −1.89254 1.20212i
\(595\) 0 0
\(596\) −2.83343 + 4.90764i −0.116062 + 0.201025i
\(597\) 3.87142 10.1874i 0.158447 0.416944i
\(598\) 2.46310 0.100724
\(599\) −30.1668 −1.23258 −0.616290 0.787519i \(-0.711365\pi\)
−0.616290 + 0.787519i \(0.711365\pi\)
\(600\) −14.1252 17.3240i −0.576659 0.707249i
\(601\) −7.36933 + 12.7641i −0.300601 + 0.520657i −0.976272 0.216547i \(-0.930521\pi\)
0.675671 + 0.737203i \(0.263854\pi\)
\(602\) 0 0
\(603\) −22.5275 + 7.48712i −0.917391 + 0.304899i
\(604\) 0.994149 + 1.72192i 0.0404513 + 0.0700638i
\(605\) 45.8285 + 79.3772i 1.86319 + 3.22714i
\(606\) 24.4993 + 30.0474i 0.995217 + 1.22059i
\(607\) −3.03918 + 5.26401i −0.123356 + 0.213660i −0.921089 0.389351i \(-0.872699\pi\)
0.797733 + 0.603011i \(0.206033\pi\)
\(608\) −5.63941 9.76774i −0.228708 0.396134i
\(609\) 0 0
\(610\) 36.3930 63.0345i 1.47351 2.55219i
\(611\) −3.20439 5.55016i −0.129636 0.224535i
\(612\) 0.713543 3.47133i 0.0288432 0.140320i
\(613\) −5.88668 + 10.1960i −0.237761 + 0.411814i −0.960071 0.279755i \(-0.909747\pi\)
0.722311 + 0.691569i \(0.243080\pi\)
\(614\) 1.82213 0.0735352
\(615\) −20.2165 + 3.27154i −0.815207 + 0.131921i
\(616\) 0 0
\(617\) −16.0319 27.7680i −0.645418 1.11790i −0.984205 0.177034i \(-0.943350\pi\)
0.338786 0.940863i \(-0.389984\pi\)
\(618\) −2.87029 + 7.55300i −0.115460 + 0.303826i
\(619\) −6.27588 10.8701i −0.252249 0.436908i 0.711896 0.702285i \(-0.247837\pi\)
−0.964145 + 0.265377i \(0.914504\pi\)
\(620\) 0.324641 0.562294i 0.0130379 0.0225823i
\(621\) 0.279767 6.61081i 0.0112267 0.265283i
\(622\) 5.30441 0.212688
\(623\) 0 0
\(624\) 6.13043 + 7.51873i 0.245414 + 0.300990i
\(625\) 3.92995 6.80687i 0.157198 0.272275i
\(626\) 48.6249 1.94344
\(627\) 8.26456 21.7477i 0.330055 0.868521i
\(628\) 2.99022 0.119323
\(629\) −4.30619 −0.171699
\(630\) 0 0
\(631\) 33.4642 1.33219 0.666095 0.745867i \(-0.267964\pi\)
0.666095 + 0.745867i \(0.267964\pi\)
\(632\) 16.2138 0.644950
\(633\) 17.8269 + 21.8640i 0.708556 + 0.869016i
\(634\) −22.1809 −0.880915
\(635\) −17.4288 + 30.1875i −0.691639 + 1.19795i
\(636\) 5.03386 13.2463i 0.199606 0.525251i
\(637\) 0 0
\(638\) 65.2553 2.58348
\(639\) −34.7469 + 11.5483i −1.37457 + 0.456844i
\(640\) −21.5074 + 37.2519i −0.850155 + 1.47251i
\(641\) 9.49183 + 16.4403i 0.374905 + 0.649354i 0.990313 0.138855i \(-0.0443421\pi\)
−0.615408 + 0.788209i \(0.711009\pi\)
\(642\) −0.337296 0.413680i −0.0133120 0.0163266i
\(643\) −4.81347 8.33718i −0.189825 0.328786i 0.755367 0.655302i \(-0.227459\pi\)
−0.945192 + 0.326516i \(0.894125\pi\)
\(644\) 0 0
\(645\) 14.6296 + 17.9426i 0.576039 + 0.706490i
\(646\) 4.58445 0.180373
\(647\) −3.90607 + 6.76551i −0.153564 + 0.265980i −0.932535 0.361079i \(-0.882408\pi\)
0.778972 + 0.627059i \(0.215742\pi\)
\(648\) 12.6822 9.47680i 0.498205 0.372284i
\(649\) 34.3163 + 59.4375i 1.34703 + 2.33313i
\(650\) 7.09528 12.2894i 0.278300 0.482029i
\(651\) 0 0
\(652\) 2.64376 + 4.57912i 0.103537 + 0.179332i
\(653\) −15.8714 + 27.4901i −0.621097 + 1.07577i 0.368185 + 0.929753i \(0.379979\pi\)
−0.989282 + 0.146019i \(0.953354\pi\)
\(654\) 9.94207 26.1620i 0.388766 1.02302i
\(655\) 26.7756 + 46.3767i 1.04621 + 1.81209i
\(656\) 8.41540 + 14.5759i 0.328566 + 0.569093i
\(657\) −3.21026 + 15.6177i −0.125244 + 0.609303i
\(658\) 0 0
\(659\) 3.10685 5.38122i 0.121026 0.209623i −0.799147 0.601136i \(-0.794715\pi\)
0.920172 + 0.391513i \(0.128048\pi\)
\(660\) 35.8884 5.80766i 1.39695 0.226063i
\(661\) −27.5263 −1.07065 −0.535324 0.844647i \(-0.679810\pi\)
−0.535324 + 0.844647i \(0.679810\pi\)
\(662\) 37.2189 1.44655
\(663\) −2.30613 + 0.373191i −0.0895627 + 0.0144935i
\(664\) −1.09935 + 1.90413i −0.0426630 + 0.0738945i
\(665\) 0 0
\(666\) 13.8509 + 12.3041i 0.536712 + 0.476775i
\(667\) 3.95084 + 6.84306i 0.152977 + 0.264964i
\(668\) 8.14854 + 14.1137i 0.315276 + 0.546075i
\(669\) 12.2868 32.3322i 0.475037 1.25003i
\(670\) 23.9939 41.5586i 0.926965 1.60555i
\(671\) −36.5505 63.3073i −1.41102 2.44395i
\(672\) 0 0
\(673\) −8.10894 + 14.0451i −0.312577 + 0.541399i −0.978919 0.204247i \(-0.934526\pi\)
0.666343 + 0.745646i \(0.267859\pi\)
\(674\) −10.8835 18.8508i −0.419217 0.726106i
\(675\) −32.1781 20.4392i −1.23853 0.786704i
\(676\) 5.76199 9.98006i 0.221615 0.383849i
\(677\) 20.5090 0.788225 0.394112 0.919062i \(-0.371052\pi\)
0.394112 + 0.919062i \(0.371052\pi\)
\(678\) −15.9130 19.5167i −0.611135 0.749532i
\(679\) 0 0
\(680\) −3.71932 6.44205i −0.142629 0.247041i
\(681\) 3.95433 + 4.84983i 0.151530 + 0.185846i
\(682\) −0.990642 1.71584i −0.0379337 0.0657030i
\(683\) 0.0561542 0.0972618i 0.00214868 0.00372162i −0.864949 0.501860i \(-0.832649\pi\)
0.867098 + 0.498138i \(0.165983\pi\)
\(684\) −4.85326 4.31128i −0.185569 0.164846i
\(685\) −21.5902 −0.824918
\(686\) 0 0
\(687\) 8.43839 22.2052i 0.321945 0.847179i
\(688\) 9.51311 16.4772i 0.362684 0.628187i
\(689\) −9.34118 −0.355871
\(690\) 8.45229 + 10.3664i 0.321773 + 0.394642i
\(691\) −18.8670 −0.717735 −0.358868 0.933388i \(-0.616837\pi\)
−0.358868 + 0.933388i \(0.616837\pi\)
\(692\) 17.3182 0.658340
\(693\) 0 0
\(694\) −39.9480 −1.51640
\(695\) −3.08161 −0.116892
\(696\) −6.71620 + 17.6733i −0.254577 + 0.669905i
\(697\) −4.05299 −0.153518
\(698\) 14.2332 24.6527i 0.538736 0.933118i
\(699\) 27.6413 + 33.9010i 1.04549 + 1.28225i
\(700\) 0 0
\(701\) −3.16006 −0.119354 −0.0596770 0.998218i \(-0.519007\pi\)
−0.0596770 + 0.998218i \(0.519007\pi\)
\(702\) 8.48402 + 5.38896i 0.320209 + 0.203393i
\(703\) −3.94398 + 6.83118i −0.148750 + 0.257643i
\(704\) 3.55992 + 6.16596i 0.134170 + 0.232388i
\(705\) 12.3628 32.5320i 0.465610 1.22523i
\(706\) 21.1402 + 36.6159i 0.795622 + 1.37806i
\(707\) 0 0
\(708\) 18.9045 3.05923i 0.710475 0.114973i
\(709\) −21.5211 −0.808243 −0.404121 0.914705i \(-0.632423\pi\)
−0.404121 + 0.914705i \(0.632423\pi\)
\(710\) 37.0087 64.1009i 1.38891 2.40567i
\(711\) 26.2400 8.72100i 0.984079 0.327063i
\(712\) 4.87385 + 8.44176i 0.182655 + 0.316368i
\(713\) 0.119956 0.207769i 0.00449237 0.00778102i
\(714\) 0 0
\(715\) −11.9826 20.7545i −0.448125 0.776175i
\(716\) −1.28949 + 2.23347i −0.0481906 + 0.0834685i
\(717\) −9.83968 12.0680i −0.367469 0.450687i
\(718\) 17.6785 + 30.6201i 0.659757 + 1.14273i
\(719\) −9.41508 16.3074i −0.351123 0.608163i 0.635323 0.772246i \(-0.280867\pi\)
−0.986447 + 0.164083i \(0.947533\pi\)
\(720\) −10.6070 + 51.6021i −0.395298 + 1.92310i
\(721\) 0 0
\(722\) −12.2040 + 21.1379i −0.454185 + 0.786671i
\(723\) 10.1323 + 12.4268i 0.376824 + 0.462159i
\(724\) −3.89914 −0.144910
\(725\) 45.5237 1.69071
\(726\) 27.7231 72.9517i 1.02890 2.70749i
\(727\) 19.5426 33.8489i 0.724797 1.25538i −0.234261 0.972174i \(-0.575267\pi\)
0.959058 0.283211i \(-0.0913996\pi\)
\(728\) 0 0
\(729\) 15.4273 22.1585i 0.571381 0.820685i
\(730\) −16.1153 27.9125i −0.596454 1.03309i
\(731\) 2.29084 + 3.96784i 0.0847296 + 0.146756i
\(732\) −20.1353 + 3.25841i −0.744222 + 0.120434i
\(733\) 9.29924 16.1068i 0.343475 0.594917i −0.641600 0.767039i \(-0.721729\pi\)
0.985076 + 0.172123i \(0.0550625\pi\)
\(734\) −19.2119 33.2759i −0.709123 1.22824i
\(735\) 0 0
\(736\) 3.25621 5.63993i 0.120026 0.207890i
\(737\) −24.0977 41.7385i −0.887651 1.53746i
\(738\) 13.0365 + 11.5807i 0.479880 + 0.426290i
\(739\) −2.75068 + 4.76432i −0.101185 + 0.175258i −0.912173 0.409805i \(-0.865597\pi\)
0.810988 + 0.585063i \(0.198930\pi\)
\(740\) −12.3261 −0.453117
\(741\) −1.52014 + 4.00016i −0.0558436 + 0.146949i
\(742\) 0 0
\(743\) 10.2326 + 17.7234i 0.375399 + 0.650210i 0.990387 0.138327i \(-0.0441725\pi\)
−0.614988 + 0.788537i \(0.710839\pi\)
\(744\) 0.566666 0.0917010i 0.0207750 0.00336192i
\(745\) 10.1427 + 17.5677i 0.371601 + 0.643631i
\(746\) −28.0892 + 48.6520i −1.02842 + 1.78128i
\(747\) −0.754977 + 3.67291i −0.0276232 + 0.134385i
\(748\) 7.19489 0.263071
\(749\) 0 0
\(750\) 24.2253 3.92027i 0.884583 0.143148i
\(751\) −19.0230 + 32.9488i −0.694159 + 1.20232i 0.276305 + 0.961070i \(0.410890\pi\)
−0.970463 + 0.241248i \(0.922443\pi\)
\(752\) −28.6015 −1.04299
\(753\) −35.3105 + 5.71414i −1.28679 + 0.208235i
\(754\) −12.0027 −0.437113
\(755\) 7.11744 0.259030
\(756\) 0 0
\(757\) −51.0780 −1.85646 −0.928230 0.372006i \(-0.878670\pi\)
−0.928230 + 0.372006i \(0.878670\pi\)
\(758\) −2.66658 −0.0968546
\(759\) 13.2609 2.14595i 0.481338 0.0778929i
\(760\) −13.6259 −0.494263
\(761\) −20.0375 + 34.7059i −0.726357 + 1.25809i 0.232055 + 0.972703i \(0.425455\pi\)
−0.958413 + 0.285385i \(0.907878\pi\)
\(762\) 29.2985 4.74124i 1.06137 0.171757i
\(763\) 0 0
\(764\) −17.8633 −0.646273
\(765\) −9.48429 8.42514i −0.342905 0.304612i
\(766\) −27.3058 + 47.2951i −0.986599 + 1.70884i
\(767\) −6.31195 10.9326i −0.227911 0.394754i
\(768\) 32.1574 5.20389i 1.16038 0.187779i
\(769\) −22.4828 38.9414i −0.810751 1.40426i −0.912339 0.409436i \(-0.865726\pi\)
0.101587 0.994827i \(-0.467608\pi\)
\(770\) 0 0
\(771\) −1.50485 + 3.95993i −0.0541958 + 0.142613i
\(772\) −0.198577 −0.00714695
\(773\) −12.1781 + 21.0930i −0.438014 + 0.758663i −0.997536 0.0701524i \(-0.977651\pi\)
0.559522 + 0.828816i \(0.310985\pi\)
\(774\) 3.96887 19.3082i 0.142658 0.694020i
\(775\) −0.691096 1.19701i −0.0248249 0.0429980i
\(776\) −14.4998 + 25.1145i −0.520514 + 0.901556i
\(777\) 0 0
\(778\) −4.52913 7.84468i −0.162377 0.281245i
\(779\) −3.71208 + 6.42951i −0.132999 + 0.230361i
\(780\) −6.60111 + 1.06823i −0.236358 + 0.0382487i
\(781\) −37.1689 64.3784i −1.33001 2.30364i
\(782\) 1.32354 + 2.29243i 0.0473296