# Properties

 Label 441.2.g.g Level $441$ Weight $2$ Character orbit 441.g Analytic conductor $3.521$ Analytic rank $0$ Dimension $12$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$441 = 3^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 441.g (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.52140272914$$ Analytic rank: $$0$$ Dimension: $$12$$ Relative dimension: $$6$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{12} - \cdots)$$ Defining polynomial: $$x^{12} - 7 x^{10} + 37 x^{8} - 78 x^{6} + 123 x^{4} - 36 x^{2} + 9$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$3^{3}$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{11}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -\beta_{2} + \beta_{5} ) q^{2} + ( -\beta_{8} - \beta_{10} ) q^{3} + ( -1 - \beta_{3} - \beta_{5} + \beta_{7} ) q^{4} + ( \beta_{1} - 2 \beta_{8} - \beta_{9} - \beta_{10} ) q^{5} + ( 2 \beta_{1} - \beta_{6} - 2 \beta_{8} - \beta_{9} - \beta_{10} + \beta_{11} ) q^{6} + ( 2 + \beta_{2} + \beta_{4} ) q^{8} + ( -1 - \beta_{2} - \beta_{3} + \beta_{4} + \beta_{7} ) q^{9} +O(q^{10})$$ $$q + ( -\beta_{2} + \beta_{5} ) q^{2} + ( -\beta_{8} - \beta_{10} ) q^{3} + ( -1 - \beta_{3} - \beta_{5} + \beta_{7} ) q^{4} + ( \beta_{1} - 2 \beta_{8} - \beta_{9} - \beta_{10} ) q^{5} + ( 2 \beta_{1} - \beta_{6} - 2 \beta_{8} - \beta_{9} - \beta_{10} + \beta_{11} ) q^{6} + ( 2 + \beta_{2} + \beta_{4} ) q^{8} + ( -1 - \beta_{2} - \beta_{3} + \beta_{4} + \beta_{7} ) q^{9} + ( \beta_{1} + 2 \beta_{8} + \beta_{9} + \beta_{10} + \beta_{11} ) q^{10} + ( 1 - \beta_{4} ) q^{11} + ( -\beta_{1} + 3 \beta_{8} + 2 \beta_{9} + \beta_{10} ) q^{12} + ( -\beta_{1} + \beta_{6} + 2 \beta_{8} + 2 \beta_{10} - \beta_{11} ) q^{13} + ( 1 + \beta_{2} - \beta_{3} + \beta_{4} - 2 \beta_{5} + 2 \beta_{7} ) q^{15} + ( -2 \beta_{2} + \beta_{4} + 2 \beta_{5} + \beta_{7} ) q^{16} + ( -2 \beta_{1} + \beta_{6} + \beta_{8} + 2 \beta_{10} - 2 \beta_{11} ) q^{17} + ( -1 + 2 \beta_{2} - 4 \beta_{3} + \beta_{4} + \beta_{7} ) q^{18} + ( -\beta_{6} + \beta_{8} - \beta_{9} + \beta_{11} ) q^{19} + ( -4 \beta_{1} + \beta_{6} + 2 \beta_{8} + 2 \beta_{9} - 2 \beta_{10} - 2 \beta_{11} ) q^{20} + \beta_{3} q^{22} + ( 1 + \beta_{2} + 2 \beta_{4} ) q^{23} + ( -\beta_{1} - 2 \beta_{8} - \beta_{9} - 2 \beta_{10} ) q^{24} + ( 1 + 3 \beta_{2} ) q^{25} + ( -2 \beta_{1} + 2 \beta_{6} + \beta_{8} + \beta_{9} + 2 \beta_{10} - \beta_{11} ) q^{26} + ( \beta_{1} - \beta_{6} + \beta_{8} + 2 \beta_{11} ) q^{27} + ( -4 - 4 \beta_{3} - \beta_{5} + 2 \beta_{7} ) q^{29} + ( 4 + \beta_{2} + 2 \beta_{3} + \beta_{4} + 4 \beta_{5} - \beta_{7} ) q^{30} + ( 3 \beta_{1} - 2 \beta_{6} - \beta_{8} - 2 \beta_{9} + 2 \beta_{11} ) q^{31} + ( -3 - 3 \beta_{3} + \beta_{5} ) q^{32} + ( -\beta_{8} + \beta_{9} - \beta_{10} - \beta_{11} ) q^{33} + ( \beta_{1} + 2 \beta_{6} - \beta_{8} + 4 \beta_{10} ) q^{34} + ( -1 - \beta_{2} + 3 \beta_{3} + 4 \beta_{5} - 2 \beta_{7} ) q^{36} + ( 2 + 2 \beta_{3} - 2 \beta_{5} - \beta_{7} ) q^{37} + ( \beta_{1} - \beta_{6} - \beta_{8} - \beta_{9} - \beta_{11} ) q^{38} + ( 4 + \beta_{2} + 5 \beta_{3} - 2 \beta_{4} - 2 \beta_{5} - \beta_{7} ) q^{39} + ( 4 \beta_{1} - 2 \beta_{6} - 9 \beta_{8} - 4 \beta_{9} - 2 \beta_{10} + \beta_{11} ) q^{40} + ( -\beta_{1} - \beta_{6} - 3 \beta_{8} + \beta_{9} - \beta_{10} - \beta_{11} ) q^{41} + ( -2 - 2 \beta_{3} + 2 \beta_{5} + \beta_{7} ) q^{43} + ( 2 + 2 \beta_{3} - \beta_{5} + 2 \beta_{7} ) q^{44} + ( -3 \beta_{1} + 3 \beta_{8} + 3 \beta_{9} ) q^{45} + ( -4 \beta_{2} + \beta_{3} - \beta_{4} + 4 \beta_{5} - \beta_{7} ) q^{46} + ( -\beta_{1} + 2 \beta_{6} + 5 \beta_{8} + 4 \beta_{10} - \beta_{11} ) q^{47} + ( 4 \beta_{1} - 3 \beta_{6} - 4 \beta_{8} - 2 \beta_{9} - 2 \beta_{10} + 3 \beta_{11} ) q^{48} + ( -4 \beta_{2} + 9 \beta_{3} - 3 \beta_{4} + 4 \beta_{5} - 3 \beta_{7} ) q^{50} + ( 1 + \beta_{2} + 5 \beta_{3} - 2 \beta_{4} - 5 \beta_{5} - \beta_{7} ) q^{51} + ( \beta_{1} + \beta_{6} - 2 \beta_{8} - \beta_{9} - 2 \beta_{10} ) q^{52} + ( 3 \beta_{2} + 5 \beta_{3} + 2 \beta_{4} - 3 \beta_{5} + 2 \beta_{7} ) q^{53} + ( -2 \beta_{1} - \beta_{6} + \beta_{8} - 3 \beta_{10} - \beta_{11} ) q^{54} + ( \beta_{1} + \beta_{6} - \beta_{8} - \beta_{9} - 2 \beta_{10} - \beta_{11} ) q^{55} + ( -4 - \beta_{2} - 5 \beta_{3} - 4 \beta_{4} + 2 \beta_{5} - 2 \beta_{7} ) q^{57} + ( 1 + 7 \beta_{2} + \beta_{4} ) q^{58} + ( 2 \beta_{6} - \beta_{8} + \beta_{9} + 2 \beta_{10} - \beta_{11} ) q^{59} + ( -7 - 7 \beta_{2} + 4 \beta_{3} - \beta_{4} + 2 \beta_{5} + \beta_{7} ) q^{60} + ( 3 \beta_{1} - 2 \beta_{6} - 2 \beta_{8} + \beta_{9} - 3 \beta_{10} + 3 \beta_{11} ) q^{61} + ( -4 \beta_{1} + \beta_{6} + 10 \beta_{8} + 4 \beta_{9} + 3 \beta_{10} - 2 \beta_{11} ) q^{62} + ( -3 - 2 \beta_{2} + \beta_{4} ) q^{64} + ( -3 \beta_{4} - 3 \beta_{7} ) q^{65} + \beta_{10} q^{66} + ( 2 + 2 \beta_{3} - 3 \beta_{5} - 3 \beta_{7} ) q^{67} + ( -4 \beta_{1} + 3 \beta_{6} + 8 \beta_{8} + 4 \beta_{9} + \beta_{10} ) q^{68} + ( -\beta_{1} - \beta_{8} - 2 \beta_{9} - \beta_{10} + \beta_{11} ) q^{69} + ( 6 + \beta_{2} ) q^{71} + ( -4 - 4 \beta_{2} - 5 \beta_{3} - \beta_{4} - \beta_{5} + \beta_{7} ) q^{72} + ( \beta_{1} - \beta_{8} - 2 \beta_{9} - 2 \beta_{10} + \beta_{11} ) q^{73} + ( 7 - \beta_{2} + 2 \beta_{4} ) q^{74} + ( -3 \beta_{1} - \beta_{8} - \beta_{10} - 3 \beta_{11} ) q^{75} + ( 2 \beta_{6} + 5 \beta_{8} - \beta_{9} + 3 \beta_{10} ) q^{76} + ( 7 - 2 \beta_{2} + 5 \beta_{3} + \beta_{4} - 2 \beta_{5} - \beta_{7} ) q^{78} + ( -3 \beta_{2} - \beta_{3} - 3 \beta_{4} + 3 \beta_{5} - 3 \beta_{7} ) q^{79} + ( 2 \beta_{1} - \beta_{6} + 2 \beta_{8} + 3 \beta_{9} + \beta_{10} + 2 \beta_{11} ) q^{80} + ( -1 - \beta_{2} - 5 \beta_{3} - \beta_{4} + 5 \beta_{5} - 2 \beta_{7} ) q^{81} + ( 5 \beta_{1} - \beta_{6} - 3 \beta_{8} - 2 \beta_{9} + 2 \beta_{10} + 2 \beta_{11} ) q^{82} + ( 5 \beta_{1} - 2 \beta_{6} - 4 \beta_{8} - \beta_{9} - 2 \beta_{10} + \beta_{11} ) q^{83} + ( 6 \beta_{2} - 3 \beta_{3} - 6 \beta_{5} ) q^{85} + ( -7 + \beta_{2} - 2 \beta_{4} ) q^{86} + ( -\beta_{1} - \beta_{6} + 6 \beta_{8} + 3 \beta_{9} + \beta_{10} ) q^{87} + ( -1 + \beta_{2} + \beta_{4} ) q^{88} + ( 4 \beta_{1} - \beta_{6} - 2 \beta_{8} - 2 \beta_{9} + 2 \beta_{10} + 2 \beta_{11} ) q^{89} + ( 3 \beta_{1} - 3 \beta_{6} - 12 \beta_{8} - 6 \beta_{9} - 6 \beta_{10} ) q^{90} + ( -9 - 9 \beta_{3} - 4 \beta_{5} ) q^{92} + ( -2 + 4 \beta_{2} - 7 \beta_{3} - 2 \beta_{4} + \beta_{5} - \beta_{7} ) q^{93} + ( -7 \beta_{1} + 4 \beta_{6} + 4 \beta_{8} + 3 \beta_{9} + 2 \beta_{10} - 3 \beta_{11} ) q^{94} + ( -9 - 9 \beta_{3} - 3 \beta_{7} ) q^{95} + ( \beta_{1} - \beta_{6} + \beta_{8} - \beta_{9} - \beta_{10} ) q^{96} + ( -2 \beta_{1} + \beta_{8} + \beta_{9} - 2 \beta_{10} - \beta_{11} ) q^{97} + ( -2 + \beta_{2} + 3 \beta_{3} + 3 \beta_{4} - \beta_{5} + 2 \beta_{7} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$12q - 2q^{2} - 6q^{4} + 24q^{8} - 12q^{9} + O(q^{10})$$ $$12q - 2q^{2} - 6q^{4} + 24q^{8} - 12q^{9} + 16q^{11} + 18q^{15} - 6q^{16} + 18q^{18} - 6q^{22} + 8q^{23} + 24q^{25} - 22q^{29} + 42q^{30} - 16q^{32} - 30q^{36} + 6q^{37} + 24q^{39} - 6q^{43} + 14q^{44} - 12q^{46} - 56q^{50} - 18q^{51} - 28q^{53} - 6q^{57} + 36q^{58} - 126q^{60} - 48q^{64} + 6q^{65} + 76q^{71} - 30q^{72} + 72q^{74} + 36q^{78} + 6q^{79} + 24q^{81} + 30q^{85} - 72q^{86} - 12q^{88} - 62q^{92} + 42q^{93} - 60q^{95} - 48q^{99} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{12} - 7 x^{10} + 37 x^{8} - 78 x^{6} + 123 x^{4} - 36 x^{2} + 9$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$($$$$11 \nu^{11} + 556 \nu^{9} - 3553 \nu^{7} + 18231 \nu^{5} - 32493 \nu^{3} + 26811 \nu$$$$)/12897$$ $$\beta_{2}$$ $$=$$ $$($$$$-49 \nu^{10} + 259 \nu^{8} - 1369 \nu^{6} + 861 \nu^{4} - 252 \nu^{2} - 7266$$$$)/4299$$ $$\beta_{3}$$ $$=$$ $$($$$$148 \nu^{10} - 987 \nu^{8} + 5217 \nu^{6} - 10175 \nu^{4} + 17343 \nu^{2} - 5076$$$$)/4299$$ $$\beta_{4}$$ $$=$$ $$($$$$161 \nu^{10} - 851 \nu^{8} + 3884 \nu^{6} - 2829 \nu^{4} + 828 \nu^{2} + 6678$$$$)/4299$$ $$\beta_{5}$$ $$=$$ $$($$$$-296 \nu^{10} + 1974 \nu^{8} - 10434 \nu^{6} + 20350 \nu^{4} - 30387 \nu^{2} + 1554$$$$)/4299$$ $$\beta_{6}$$ $$=$$ $$($$$$-322 \nu^{11} + 1702 \nu^{9} - 7768 \nu^{7} + 1359 \nu^{5} + 15540 \nu^{3} - 90738 \nu$$$$)/12897$$ $$\beta_{7}$$ $$=$$ $$($$$$-120 \nu^{10} + 839 \nu^{8} - 4230 \nu^{6} + 8250 \nu^{4} - 10034 \nu^{2} + 630$$$$)/1433$$ $$\beta_{8}$$ $$=$$ $$($$$$455 \nu^{11} - 2405 \nu^{9} + 12098 \nu^{7} - 12294 \nu^{5} + 19536 \nu^{3} + 37377 \nu$$$$)/12897$$ $$\beta_{9}$$ $$=$$ $$($$$$461 \nu^{11} - 3665 \nu^{9} + 18758 \nu^{7} - 44949 \nu^{5} + 54573 \nu^{3} - 33588 \nu$$$$)/12897$$ $$\beta_{10}$$ $$=$$ $$($$$$-1804 \nu^{11} + 11992 \nu^{9} - 62158 \nu^{7} + 118293 \nu^{5} - 178167 \nu^{3} + 13770 \nu$$$$)/12897$$ $$\beta_{11}$$ $$=$$ $$($$$$2051 \nu^{11} - 15140 \nu^{9} + 81254 \nu^{7} - 186504 \nu^{5} + 298581 \nu^{3} - 112869 \nu$$$$)/12897$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{10} + \beta_{9} + 3 \beta_{8} - 2 \beta_{1}$$$$)/3$$ $$\nu^{2}$$ $$=$$ $$\beta_{5} + 2 \beta_{3} + 2$$ $$\nu^{3}$$ $$=$$ $$($$$$-2 \beta_{11} - 3 \beta_{10} - 2 \beta_{9} + \beta_{6} - 6 \beta_{1}$$$$)/3$$ $$\nu^{4}$$ $$=$$ $$-\beta_{7} + 5 \beta_{5} - \beta_{4} + 7 \beta_{3} - 5 \beta_{2}$$ $$\nu^{5}$$ $$=$$ $$($$$$-4 \beta_{11} - 24 \beta_{10} - 28 \beta_{9} - 54 \beta_{8} - 7 \beta_{6} + 12 \beta_{1}$$$$)/3$$ $$\nu^{6}$$ $$=$$ $$-7 \beta_{4} - 23 \beta_{2} - 28$$ $$\nu^{7}$$ $$=$$ $$($$$$37 \beta_{11} - 30 \beta_{10} - 104 \beta_{9} - 222 \beta_{8} - 53 \beta_{6} + 171 \beta_{1}$$$$)/3$$ $$\nu^{8}$$ $$=$$ $$37 \beta_{7} - 104 \beta_{5} - 118 \beta_{3} - 118$$ $$\nu^{9}$$ $$=$$ $$($$$$245 \beta_{11} + 333 \beta_{10} + 44 \beta_{9} + 111 \beta_{8} - 67 \beta_{6} + 534 \beta_{1}$$$$)/3$$ $$\nu^{10}$$ $$=$$ $$178 \beta_{7} - 467 \beta_{5} + 178 \beta_{4} - 511 \beta_{3} + 467 \beta_{2}$$ $$\nu^{11}$$ $$=$$ $$($$$$289 \beta_{11} + 1956 \beta_{10} + 2245 \beta_{9} + 4869 \beta_{8} + 823 \beta_{6} - 978 \beta_{1}$$$$)/3$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/441\mathbb{Z}\right)^\times$$.

 $$n$$ $$199$$ $$344$$ $$\chi(n)$$ $$-1 - \beta_{3}$$ $$\beta_{3}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
67.1
 1.82904 + 1.05600i −1.82904 − 1.05600i 1.29589 + 0.748185i −1.29589 − 0.748185i 0.474636 + 0.274031i −0.474636 − 0.274031i 1.82904 − 1.05600i −1.82904 + 1.05600i 1.29589 − 0.748185i −1.29589 + 0.748185i 0.474636 − 0.274031i −0.474636 + 0.274031i
−1.23025 + 2.13086i −0.410052 + 1.68281i −2.02704 3.51094i −3.65808 −3.08137 2.94405i 0 5.05408 −2.66372 1.38008i 4.50036 7.79485i
67.2 −1.23025 + 2.13086i 0.410052 1.68281i −2.02704 3.51094i 3.65808 3.08137 + 2.94405i 0 5.05408 −2.66372 1.38008i −4.50036 + 7.79485i
67.3 −0.119562 + 0.207087i −0.578751 1.63250i 0.971410 + 1.68253i −2.59179 0.407265 + 0.0753324i 0 −0.942820 −2.33009 + 1.88962i 0.309879 0.536725i
67.4 −0.119562 + 0.207087i 0.578751 + 1.63250i 0.971410 + 1.68253i 2.59179 −0.407265 0.0753324i 0 −0.942820 −2.33009 + 1.88962i −0.309879 + 0.536725i
67.5 0.849814 1.47192i −1.58016 + 0.709292i −0.444368 0.769668i −0.949271 −0.298820 + 2.92864i 0 1.88874 1.99381 2.24159i −0.806704 + 1.39725i
67.6 0.849814 1.47192i 1.58016 0.709292i −0.444368 0.769668i 0.949271 0.298820 2.92864i 0 1.88874 1.99381 2.24159i 0.806704 1.39725i
79.1 −1.23025 2.13086i −0.410052 1.68281i −2.02704 + 3.51094i −3.65808 −3.08137 + 2.94405i 0 5.05408 −2.66372 + 1.38008i 4.50036 + 7.79485i
79.2 −1.23025 2.13086i 0.410052 + 1.68281i −2.02704 + 3.51094i 3.65808 3.08137 2.94405i 0 5.05408 −2.66372 + 1.38008i −4.50036 7.79485i
79.3 −0.119562 0.207087i −0.578751 + 1.63250i 0.971410 1.68253i −2.59179 0.407265 0.0753324i 0 −0.942820 −2.33009 1.88962i 0.309879 + 0.536725i
79.4 −0.119562 0.207087i 0.578751 1.63250i 0.971410 1.68253i 2.59179 −0.407265 + 0.0753324i 0 −0.942820 −2.33009 1.88962i −0.309879 0.536725i
79.5 0.849814 + 1.47192i −1.58016 0.709292i −0.444368 + 0.769668i −0.949271 −0.298820 2.92864i 0 1.88874 1.99381 + 2.24159i −0.806704 1.39725i
79.6 0.849814 + 1.47192i 1.58016 + 0.709292i −0.444368 + 0.769668i 0.949271 0.298820 + 2.92864i 0 1.88874 1.99381 + 2.24159i 0.806704 + 1.39725i
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 79.6 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
63.g even 3 1 inner
63.k odd 6 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 441.2.g.g 12
3.b odd 2 1 1323.2.g.g 12
7.b odd 2 1 inner 441.2.g.g 12
7.c even 3 1 441.2.f.g 12
7.c even 3 1 441.2.h.g 12
7.d odd 6 1 441.2.f.g 12
7.d odd 6 1 441.2.h.g 12
9.c even 3 1 441.2.h.g 12
9.d odd 6 1 1323.2.h.g 12
21.c even 2 1 1323.2.g.g 12
21.g even 6 1 1323.2.f.g 12
21.g even 6 1 1323.2.h.g 12
21.h odd 6 1 1323.2.f.g 12
21.h odd 6 1 1323.2.h.g 12
63.g even 3 1 inner 441.2.g.g 12
63.g even 3 1 3969.2.a.be 6
63.h even 3 1 441.2.f.g 12
63.i even 6 1 1323.2.f.g 12
63.j odd 6 1 1323.2.f.g 12
63.k odd 6 1 inner 441.2.g.g 12
63.k odd 6 1 3969.2.a.be 6
63.l odd 6 1 441.2.h.g 12
63.n odd 6 1 1323.2.g.g 12
63.n odd 6 1 3969.2.a.bd 6
63.o even 6 1 1323.2.h.g 12
63.s even 6 1 1323.2.g.g 12
63.s even 6 1 3969.2.a.bd 6
63.t odd 6 1 441.2.f.g 12

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
441.2.f.g 12 7.c even 3 1
441.2.f.g 12 7.d odd 6 1
441.2.f.g 12 63.h even 3 1
441.2.f.g 12 63.t odd 6 1
441.2.g.g 12 1.a even 1 1 trivial
441.2.g.g 12 7.b odd 2 1 inner
441.2.g.g 12 63.g even 3 1 inner
441.2.g.g 12 63.k odd 6 1 inner
441.2.h.g 12 7.c even 3 1
441.2.h.g 12 7.d odd 6 1
441.2.h.g 12 9.c even 3 1
441.2.h.g 12 63.l odd 6 1
1323.2.f.g 12 21.g even 6 1
1323.2.f.g 12 21.h odd 6 1
1323.2.f.g 12 63.i even 6 1
1323.2.f.g 12 63.j odd 6 1
1323.2.g.g 12 3.b odd 2 1
1323.2.g.g 12 21.c even 2 1
1323.2.g.g 12 63.n odd 6 1
1323.2.g.g 12 63.s even 6 1
1323.2.h.g 12 9.d odd 6 1
1323.2.h.g 12 21.g even 6 1
1323.2.h.g 12 21.h odd 6 1
1323.2.h.g 12 63.o even 6 1
3969.2.a.bd 6 63.n odd 6 1
3969.2.a.bd 6 63.s even 6 1
3969.2.a.be 6 63.g even 3 1
3969.2.a.be 6 63.k odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(441, [\chi])$$:

 $$T_{2}^{6} + T_{2}^{5} + 5 T_{2}^{4} - 2 T_{2}^{3} + 17 T_{2}^{2} + 4 T_{2} + 1$$ $$T_{5}^{6} - 21 T_{5}^{4} + 108 T_{5}^{2} - 81$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$( 1 + 4 T + 17 T^{2} - 2 T^{3} + 5 T^{4} + T^{5} + T^{6} )^{2}$$
$3$ $$729 + 486 T^{2} + 108 T^{4} + 9 T^{6} + 12 T^{8} + 6 T^{10} + T^{12}$$
$5$ $$( -81 + 108 T^{2} - 21 T^{4} + T^{6} )^{2}$$
$7$ $$T^{12}$$
$11$ $$( 1 - T - 4 T^{2} + T^{3} )^{4}$$
$13$ $$6561 + 28431 T^{2} + 120042 T^{4} + 13527 T^{6} + 1170 T^{8} + 39 T^{10} + T^{12}$$
$17$ $$15752961 + 6322617 T^{2} + 2204253 T^{4} + 125874 T^{6} + 5463 T^{8} + 84 T^{10} + T^{12}$$
$19$ $$15752961 + 5143824 T^{2} + 1381941 T^{4} + 89262 T^{6} + 4329 T^{8} + 75 T^{10} + T^{12}$$
$23$ $$( 59 - 25 T - 2 T^{2} + T^{3} )^{4}$$
$29$ $$( 7921 - 1246 T + 1175 T^{2} + 332 T^{3} + 107 T^{4} + 11 T^{5} + T^{6} )^{2}$$
$31$ $$6059221281 + 428748228 T^{2} + 20296575 T^{4} + 554850 T^{6} + 11133 T^{8} + 129 T^{10} + T^{12}$$
$37$ $$( 729 + 648 T + 495 T^{2} + 126 T^{3} + 33 T^{4} - 3 T^{5} + T^{6} )^{2}$$
$41$ $$43046721 + 39858075 T^{2} + 35842743 T^{4} + 971028 T^{6} + 20169 T^{8} + 162 T^{10} + T^{12}$$
$43$ $$( 729 - 648 T + 495 T^{2} - 126 T^{3} + 33 T^{4} + 3 T^{5} + T^{6} )^{2}$$
$47$ $$37822859361 + 2058386904 T^{2} + 76431033 T^{4} + 1547910 T^{6} + 22905 T^{8} + 183 T^{10} + T^{12}$$
$53$ $$( 69169 - 2893 T + 3803 T^{2} + 680 T^{3} + 185 T^{4} + 14 T^{5} + T^{6} )^{2}$$
$59$ $$22430753361 + 1415317050 T^{2} + 61894773 T^{4} + 1429812 T^{6} + 24039 T^{8} + 183 T^{10} + T^{12}$$
$61$ $$311374044081 + 12007795671 T^{2} + 315752985 T^{4} + 4564998 T^{6} + 48177 T^{8} + 264 T^{10} + T^{12}$$
$67$ $$( 124609 + 39183 T + 12321 T^{2} + 706 T^{3} + 111 T^{4} + T^{6} )^{2}$$
$71$ $$( -227 + 116 T - 19 T^{2} + T^{3} )^{4}$$
$73$ $$15752961 + 5143824 T^{2} + 1381941 T^{4} + 89262 T^{6} + 4329 T^{8} + 75 T^{10} + T^{12}$$
$79$ $$( 11449 - 8346 T + 6405 T^{2} + 20 T^{3} + 87 T^{4} - 3 T^{5} + T^{6} )^{2}$$
$83$ $$51769445841 + 3040925085 T^{2} + 126746613 T^{4} + 2592162 T^{6} + 38619 T^{8} + 228 T^{10} + T^{12}$$
$89$ $$15752961 + 22825719 T^{2} + 32097627 T^{4} + 1406808 T^{6} + 54765 T^{8} + 246 T^{10} + T^{12}$$
$97$ $$96059601 + 19582398 T^{2} + 2904093 T^{4} + 202176 T^{6} + 10323 T^{8} + 111 T^{10} + T^{12}$$