Properties

Label 441.2.g.c.79.1
Level $441$
Weight $2$
Character 441.79
Analytic conductor $3.521$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{18})\)
Defining polynomial: \(x^{6} - x^{3} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.1
Root \(-0.766044 - 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 441.79
Dual form 441.2.g.c.67.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.26604 - 2.19285i) q^{2} +(1.70574 + 0.300767i) q^{3} +(-2.20574 + 3.82045i) q^{4} -0.879385 q^{5} +(-1.50000 - 4.12122i) q^{6} +6.10607 q^{8} +(2.81908 + 1.02606i) q^{9} +O(q^{10})\) \(q+(-1.26604 - 2.19285i) q^{2} +(1.70574 + 0.300767i) q^{3} +(-2.20574 + 3.82045i) q^{4} -0.879385 q^{5} +(-1.50000 - 4.12122i) q^{6} +6.10607 q^{8} +(2.81908 + 1.02606i) q^{9} +(1.11334 + 1.92836i) q^{10} +3.87939 q^{11} +(-4.91147 + 5.85327i) q^{12} +(2.72668 + 4.72275i) q^{13} +(-1.50000 - 0.264490i) q^{15} +(-3.31908 - 5.74881i) q^{16} +(-0.826352 - 1.43128i) q^{17} +(-1.31908 - 7.48086i) q^{18} +(-1.20574 + 2.08840i) q^{19} +(1.93969 - 3.35965i) q^{20} +(-4.91147 - 8.50692i) q^{22} +3.16250 q^{23} +(10.4153 + 1.83651i) q^{24} -4.22668 q^{25} +(6.90420 - 11.9584i) q^{26} +(4.50000 + 2.59808i) q^{27} +(3.02481 - 5.23913i) q^{29} +(1.31908 + 3.62414i) q^{30} +(2.27719 - 3.94421i) q^{31} +(-2.29813 + 3.98048i) q^{32} +(6.61721 + 1.16679i) q^{33} +(-2.09240 + 3.62414i) q^{34} +(-10.1382 + 8.50692i) q^{36} +(2.27719 - 3.94421i) q^{37} +6.10607 q^{38} +(3.23055 + 8.87587i) q^{39} -5.36959 q^{40} +(0.592396 + 1.02606i) q^{41} +(-0.0923963 + 0.160035i) q^{43} +(-8.55690 + 14.8210i) q^{44} +(-2.47906 - 0.902302i) q^{45} +(-4.00387 - 6.93491i) q^{46} +(0.511144 + 0.885328i) q^{47} +(-3.93242 - 10.8042i) q^{48} +(5.35117 + 9.26849i) q^{50} +(-0.979055 - 2.68993i) q^{51} -24.0574 q^{52} +(-3.64543 - 6.31407i) q^{53} -13.1571i q^{54} -3.41147 q^{55} +(-2.68479 + 3.19961i) q^{57} -15.3182 q^{58} +(-3.33022 + 5.76811i) q^{59} +(4.31908 - 5.14728i) q^{60} +(1.29813 + 2.24843i) q^{61} -11.5321 q^{62} -1.63816 q^{64} +(-2.39780 - 4.15312i) q^{65} +(-5.81908 - 15.9878i) q^{66} +(1.47906 - 2.56180i) q^{67} +7.29086 q^{68} +(5.39440 + 0.951178i) q^{69} -3.68004 q^{71} +(17.2135 + 6.26519i) q^{72} +(6.39053 + 11.0687i) q^{73} -11.5321 q^{74} +(-7.20961 - 1.27125i) q^{75} +(-5.31908 - 9.21291i) q^{76} +(15.3735 - 18.3214i) q^{78} +(2.97906 + 5.15988i) q^{79} +(2.91875 + 5.05542i) q^{80} +(6.89440 + 5.78509i) q^{81} +(1.50000 - 2.59808i) q^{82} +(0.109470 - 0.189608i) q^{83} +(0.726682 + 1.25865i) q^{85} +0.467911 q^{86} +(6.73530 - 8.02682i) q^{87} +23.6878 q^{88} +(-5.51367 + 9.54996i) q^{89} +(1.15998 + 6.57856i) q^{90} +(-6.97565 + 12.0822i) q^{92} +(5.07057 - 6.04288i) q^{93} +(1.29426 - 2.24173i) q^{94} +(1.06031 - 1.83651i) q^{95} +(-5.11721 + 6.09845i) q^{96} +(-6.25150 + 10.8279i) q^{97} +(10.9363 + 3.98048i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - 3q^{2} - 3q^{4} + 6q^{5} - 9q^{6} + 12q^{8} + O(q^{10}) \) \( 6q - 3q^{2} - 3q^{4} + 6q^{5} - 9q^{6} + 12q^{8} + 12q^{11} - 9q^{12} + 3q^{13} - 9q^{15} - 3q^{16} - 6q^{17} + 9q^{18} + 3q^{19} + 6q^{20} - 9q^{22} + 24q^{23} + 18q^{24} - 12q^{25} + 3q^{26} + 27q^{27} - 9q^{29} - 9q^{30} + 3q^{31} + 9q^{33} - 9q^{34} - 27q^{36} + 3q^{37} + 12q^{38} - 18q^{39} - 18q^{40} + 3q^{43} - 15q^{44} - 18q^{45} - 3q^{47} + 6q^{50} - 9q^{51} - 42q^{52} - 6q^{53} - 9q^{57} - 18q^{58} + 3q^{59} + 9q^{60} - 6q^{61} - 60q^{62} + 24q^{64} - 15q^{65} - 18q^{66} + 12q^{67} + 12q^{68} - 9q^{69} + 18q^{71} + 45q^{72} + 21q^{73} - 60q^{74} - 9q^{75} - 15q^{76} + 54q^{78} + 21q^{79} + 15q^{80} + 9q^{82} + 18q^{83} - 9q^{85} + 12q^{86} + 36q^{87} + 54q^{88} - 12q^{89} + 27q^{90} - 3q^{92} - 27q^{93} + 18q^{94} + 12q^{95} + 3q^{97} + 18q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.26604 2.19285i −0.895229 1.55058i −0.833521 0.552487i \(-0.813679\pi\)
−0.0617072 0.998094i \(-0.519654\pi\)
\(3\) 1.70574 + 0.300767i 0.984808 + 0.173648i
\(4\) −2.20574 + 3.82045i −1.10287 + 1.91022i
\(5\) −0.879385 −0.393273 −0.196637 0.980476i \(-0.563002\pi\)
−0.196637 + 0.980476i \(0.563002\pi\)
\(6\) −1.50000 4.12122i −0.612372 1.68248i
\(7\) 0 0
\(8\) 6.10607 2.15882
\(9\) 2.81908 + 1.02606i 0.939693 + 0.342020i
\(10\) 1.11334 + 1.92836i 0.352069 + 0.609802i
\(11\) 3.87939 1.16968 0.584839 0.811149i \(-0.301158\pi\)
0.584839 + 0.811149i \(0.301158\pi\)
\(12\) −4.91147 + 5.85327i −1.41782 + 1.68969i
\(13\) 2.72668 + 4.72275i 0.756245 + 1.30986i 0.944753 + 0.327784i \(0.106302\pi\)
−0.188507 + 0.982072i \(0.560365\pi\)
\(14\) 0 0
\(15\) −1.50000 0.264490i −0.387298 0.0682911i
\(16\) −3.31908 5.74881i −0.829769 1.43720i
\(17\) −0.826352 1.43128i −0.200420 0.347137i 0.748244 0.663424i \(-0.230897\pi\)
−0.948664 + 0.316286i \(0.897564\pi\)
\(18\) −1.31908 7.48086i −0.310910 1.76326i
\(19\) −1.20574 + 2.08840i −0.276615 + 0.479111i −0.970541 0.240935i \(-0.922546\pi\)
0.693926 + 0.720046i \(0.255879\pi\)
\(20\) 1.93969 3.35965i 0.433728 0.751240i
\(21\) 0 0
\(22\) −4.91147 8.50692i −1.04713 1.81368i
\(23\) 3.16250 0.659428 0.329714 0.944081i \(-0.393048\pi\)
0.329714 + 0.944081i \(0.393048\pi\)
\(24\) 10.4153 + 1.83651i 2.12602 + 0.374875i
\(25\) −4.22668 −0.845336
\(26\) 6.90420 11.9584i 1.35403 2.34524i
\(27\) 4.50000 + 2.59808i 0.866025 + 0.500000i
\(28\) 0 0
\(29\) 3.02481 5.23913i 0.561694 0.972883i −0.435655 0.900114i \(-0.643483\pi\)
0.997349 0.0727688i \(-0.0231835\pi\)
\(30\) 1.31908 + 3.62414i 0.240830 + 0.661674i
\(31\) 2.27719 3.94421i 0.408995 0.708400i −0.585782 0.810468i \(-0.699213\pi\)
0.994777 + 0.102068i \(0.0325459\pi\)
\(32\) −2.29813 + 3.98048i −0.406256 + 0.703657i
\(33\) 6.61721 + 1.16679i 1.15191 + 0.203113i
\(34\) −2.09240 + 3.62414i −0.358843 + 0.621534i
\(35\) 0 0
\(36\) −10.1382 + 8.50692i −1.68969 + 1.41782i
\(37\) 2.27719 3.94421i 0.374368 0.648424i −0.615865 0.787852i \(-0.711193\pi\)
0.990232 + 0.139428i \(0.0445265\pi\)
\(38\) 6.10607 0.990535
\(39\) 3.23055 + 8.87587i 0.517302 + 1.42128i
\(40\) −5.36959 −0.849006
\(41\) 0.592396 + 1.02606i 0.0925168 + 0.160244i 0.908570 0.417734i \(-0.137175\pi\)
−0.816053 + 0.577977i \(0.803842\pi\)
\(42\) 0 0
\(43\) −0.0923963 + 0.160035i −0.0140903 + 0.0244051i −0.872985 0.487748i \(-0.837819\pi\)
0.858894 + 0.512153i \(0.171152\pi\)
\(44\) −8.55690 + 14.8210i −1.29000 + 2.23435i
\(45\) −2.47906 0.902302i −0.369556 0.134507i
\(46\) −4.00387 6.93491i −0.590338 1.02250i
\(47\) 0.511144 + 0.885328i 0.0745581 + 0.129138i 0.900894 0.434039i \(-0.142912\pi\)
−0.826336 + 0.563178i \(0.809579\pi\)
\(48\) −3.93242 10.8042i −0.567596 1.55946i
\(49\) 0 0
\(50\) 5.35117 + 9.26849i 0.756769 + 1.31076i
\(51\) −0.979055 2.68993i −0.137095 0.376666i
\(52\) −24.0574 −3.33616
\(53\) −3.64543 6.31407i −0.500738 0.867304i −1.00000 0.000852699i \(-0.999729\pi\)
0.499261 0.866451i \(-0.333605\pi\)
\(54\) 13.1571i 1.79046i
\(55\) −3.41147 −0.460003
\(56\) 0 0
\(57\) −2.68479 + 3.19961i −0.355609 + 0.423799i
\(58\) −15.3182 −2.01138
\(59\) −3.33022 + 5.76811i −0.433558 + 0.750944i −0.997177 0.0750906i \(-0.976075\pi\)
0.563619 + 0.826035i \(0.309409\pi\)
\(60\) 4.31908 5.14728i 0.557591 0.664511i
\(61\) 1.29813 + 2.24843i 0.166209 + 0.287882i 0.937084 0.349104i \(-0.113514\pi\)
−0.770875 + 0.636986i \(0.780181\pi\)
\(62\) −11.5321 −1.46458
\(63\) 0 0
\(64\) −1.63816 −0.204769
\(65\) −2.39780 4.15312i −0.297411 0.515131i
\(66\) −5.81908 15.9878i −0.716279 1.96796i
\(67\) 1.47906 2.56180i 0.180695 0.312974i −0.761422 0.648256i \(-0.775499\pi\)
0.942118 + 0.335283i \(0.108832\pi\)
\(68\) 7.29086 0.884147
\(69\) 5.39440 + 0.951178i 0.649409 + 0.114508i
\(70\) 0 0
\(71\) −3.68004 −0.436741 −0.218370 0.975866i \(-0.570074\pi\)
−0.218370 + 0.975866i \(0.570074\pi\)
\(72\) 17.2135 + 6.26519i 2.02863 + 0.738360i
\(73\) 6.39053 + 11.0687i 0.747955 + 1.29550i 0.948801 + 0.315873i \(0.102297\pi\)
−0.200847 + 0.979623i \(0.564369\pi\)
\(74\) −11.5321 −1.34058
\(75\) −7.20961 1.27125i −0.832494 0.146791i
\(76\) −5.31908 9.21291i −0.610140 1.05679i
\(77\) 0 0
\(78\) 15.3735 18.3214i 1.74070 2.07449i
\(79\) 2.97906 + 5.15988i 0.335170 + 0.580531i 0.983517 0.180813i \(-0.0578729\pi\)
−0.648348 + 0.761345i \(0.724540\pi\)
\(80\) 2.91875 + 5.05542i 0.326326 + 0.565213i
\(81\) 6.89440 + 5.78509i 0.766044 + 0.642788i
\(82\) 1.50000 2.59808i 0.165647 0.286910i
\(83\) 0.109470 0.189608i 0.0120159 0.0208122i −0.859955 0.510370i \(-0.829508\pi\)
0.871971 + 0.489558i \(0.162842\pi\)
\(84\) 0 0
\(85\) 0.726682 + 1.25865i 0.0788197 + 0.136520i
\(86\) 0.467911 0.0504562
\(87\) 6.73530 8.02682i 0.722100 0.860565i
\(88\) 23.6878 2.52513
\(89\) −5.51367 + 9.54996i −0.584448 + 1.01229i 0.410496 + 0.911862i \(0.365356\pi\)
−0.994944 + 0.100431i \(0.967978\pi\)
\(90\) 1.15998 + 6.57856i 0.122272 + 0.693441i
\(91\) 0 0
\(92\) −6.97565 + 12.0822i −0.727262 + 1.25965i
\(93\) 5.07057 6.04288i 0.525794 0.626617i
\(94\) 1.29426 2.24173i 0.133493 0.231217i
\(95\) 1.06031 1.83651i 0.108785 0.188422i
\(96\) −5.11721 + 6.09845i −0.522273 + 0.622421i
\(97\) −6.25150 + 10.8279i −0.634743 + 1.09941i 0.351826 + 0.936065i \(0.385561\pi\)
−0.986569 + 0.163342i \(0.947773\pi\)
\(98\) 0 0
\(99\) 10.9363 + 3.98048i 1.09914 + 0.400054i
\(100\) 9.32295 16.1478i 0.932295 1.61478i
\(101\) −9.71688 −0.966866 −0.483433 0.875381i \(-0.660610\pi\)
−0.483433 + 0.875381i \(0.660610\pi\)
\(102\) −4.65910 + 5.55250i −0.461320 + 0.549779i
\(103\) 6.59627 0.649949 0.324975 0.945723i \(-0.394644\pi\)
0.324975 + 0.945723i \(0.394644\pi\)
\(104\) 16.6493 + 28.8374i 1.63260 + 2.82774i
\(105\) 0 0
\(106\) −9.23055 + 15.9878i −0.896550 + 1.55287i
\(107\) −1.19459 + 2.06910i −0.115486 + 0.200027i −0.917974 0.396641i \(-0.870176\pi\)
0.802488 + 0.596668i \(0.203509\pi\)
\(108\) −19.8516 + 11.4613i −1.91022 + 1.10287i
\(109\) −1.97906 3.42782i −0.189559 0.328326i 0.755544 0.655098i \(-0.227373\pi\)
−0.945103 + 0.326772i \(0.894039\pi\)
\(110\) 4.31908 + 7.48086i 0.411808 + 0.713272i
\(111\) 5.07057 6.04288i 0.481278 0.573564i
\(112\) 0 0
\(113\) −8.22668 14.2490i −0.773901 1.34044i −0.935410 0.353565i \(-0.884969\pi\)
0.161509 0.986871i \(-0.448364\pi\)
\(114\) 10.4153 + 1.83651i 0.975486 + 0.172005i
\(115\) −2.78106 −0.259335
\(116\) 13.3439 + 23.1123i 1.23895 + 2.14592i
\(117\) 2.84090 + 16.1115i 0.262641 + 1.48951i
\(118\) 16.8648 1.55253
\(119\) 0 0
\(120\) −9.15910 1.61500i −0.836108 0.147428i
\(121\) 4.04963 0.368148
\(122\) 3.28699 5.69323i 0.297590 0.515441i
\(123\) 0.701867 + 1.92836i 0.0632852 + 0.173875i
\(124\) 10.0458 + 17.3998i 0.902136 + 1.56255i
\(125\) 8.11381 0.725721
\(126\) 0 0
\(127\) 17.6536 1.56651 0.783253 0.621702i \(-0.213559\pi\)
0.783253 + 0.621702i \(0.213559\pi\)
\(128\) 6.67024 + 11.5532i 0.589572 + 1.02117i
\(129\) −0.205737 + 0.245188i −0.0181141 + 0.0215876i
\(130\) −6.07145 + 10.5161i −0.532502 + 0.922320i
\(131\) −19.1976 −1.67730 −0.838650 0.544670i \(-0.816655\pi\)
−0.838650 + 0.544670i \(0.816655\pi\)
\(132\) −19.0535 + 22.7071i −1.65839 + 1.97640i
\(133\) 0 0
\(134\) −7.49020 −0.647055
\(135\) −3.95723 2.28471i −0.340584 0.196637i
\(136\) −5.04576 8.73951i −0.432670 0.749407i
\(137\) 18.1557 1.55115 0.775573 0.631258i \(-0.217461\pi\)
0.775573 + 0.631258i \(0.217461\pi\)
\(138\) −4.74376 13.0334i −0.403815 1.10947i
\(139\) −11.0287 19.1022i −0.935441 1.62023i −0.773846 0.633374i \(-0.781670\pi\)
−0.161595 0.986857i \(-0.551664\pi\)
\(140\) 0 0
\(141\) 0.605600 + 1.66387i 0.0510007 + 0.140123i
\(142\) 4.65910 + 8.06980i 0.390983 + 0.677202i
\(143\) 10.5778 + 18.3214i 0.884564 + 1.53211i
\(144\) −3.45811 19.6119i −0.288176 1.63433i
\(145\) −2.65998 + 4.60722i −0.220899 + 0.382608i
\(146\) 16.1814 28.0270i 1.33918 2.31953i
\(147\) 0 0
\(148\) 10.0458 + 17.3998i 0.825756 + 1.43025i
\(149\) −15.1557 −1.24160 −0.620802 0.783968i \(-0.713193\pi\)
−0.620802 + 0.783968i \(0.713193\pi\)
\(150\) 6.34002 + 17.4191i 0.517661 + 1.42226i
\(151\) −18.9564 −1.54265 −0.771323 0.636444i \(-0.780405\pi\)
−0.771323 + 0.636444i \(0.780405\pi\)
\(152\) −7.36231 + 12.7519i −0.597162 + 1.03432i
\(153\) −0.860967 4.88279i −0.0696051 0.394750i
\(154\) 0 0
\(155\) −2.00253 + 3.46848i −0.160847 + 0.278595i
\(156\) −41.0355 7.23567i −3.28547 0.579318i
\(157\) 9.02869 15.6381i 0.720568 1.24806i −0.240205 0.970722i \(-0.577215\pi\)
0.960773 0.277337i \(-0.0894520\pi\)
\(158\) 7.54323 13.0653i 0.600107 1.03942i
\(159\) −4.31908 11.8666i −0.342525 0.941080i
\(160\) 2.02094 3.50038i 0.159770 0.276729i
\(161\) 0 0
\(162\) 3.95723 22.4426i 0.310910 1.76326i
\(163\) −0.479055 + 0.829748i −0.0375225 + 0.0649909i −0.884177 0.467152i \(-0.845280\pi\)
0.846654 + 0.532143i \(0.178613\pi\)
\(164\) −5.22668 −0.408135
\(165\) −5.81908 1.02606i −0.453015 0.0798787i
\(166\) −0.554378 −0.0430280
\(167\) −9.91921 17.1806i −0.767572 1.32947i −0.938876 0.344255i \(-0.888131\pi\)
0.171304 0.985218i \(-0.445202\pi\)
\(168\) 0 0
\(169\) −8.36959 + 14.4965i −0.643814 + 1.11512i
\(170\) 1.84002 3.18701i 0.141123 0.244433i
\(171\) −5.54189 + 4.65020i −0.423799 + 0.355609i
\(172\) −0.407604 0.705990i −0.0310795 0.0538313i
\(173\) −11.3414 19.6438i −0.862268 1.49349i −0.869734 0.493520i \(-0.835710\pi\)
0.00746626 0.999972i \(-0.497623\pi\)
\(174\) −26.1288 4.60722i −1.98082 0.349272i
\(175\) 0 0
\(176\) −12.8760 22.3019i −0.970564 1.68107i
\(177\) −7.41534 + 8.83726i −0.557371 + 0.664249i
\(178\) 27.9222 2.09286
\(179\) 3.67365 + 6.36295i 0.274581 + 0.475589i 0.970029 0.242988i \(-0.0781274\pi\)
−0.695448 + 0.718576i \(0.744794\pi\)
\(180\) 8.91534 7.48086i 0.664511 0.557591i
\(181\) −3.44562 −0.256111 −0.128056 0.991767i \(-0.540874\pi\)
−0.128056 + 0.991767i \(0.540874\pi\)
\(182\) 0 0
\(183\) 1.53802 + 4.22567i 0.113694 + 0.312371i
\(184\) 19.3105 1.42359
\(185\) −2.00253 + 3.46848i −0.147229 + 0.255008i
\(186\) −19.6707 3.46848i −1.44233 0.254321i
\(187\) −3.20574 5.55250i −0.234427 0.406039i
\(188\) −4.50980 −0.328911
\(189\) 0 0
\(190\) −5.36959 −0.389551
\(191\) −2.82888 4.89976i −0.204690 0.354534i 0.745344 0.666680i \(-0.232285\pi\)
−0.950034 + 0.312146i \(0.898952\pi\)
\(192\) −2.79426 0.492704i −0.201659 0.0355578i
\(193\) −4.79813 + 8.31061i −0.345377 + 0.598211i −0.985422 0.170127i \(-0.945582\pi\)
0.640045 + 0.768337i \(0.278916\pi\)
\(194\) 31.6587 2.27296
\(195\) −2.84090 7.80531i −0.203441 0.558950i
\(196\) 0 0
\(197\) 8.31996 0.592772 0.296386 0.955068i \(-0.404218\pi\)
0.296386 + 0.955068i \(0.404218\pi\)
\(198\) −5.11721 29.0211i −0.363664 2.06244i
\(199\) −3.29813 5.71253i −0.233798 0.404951i 0.725124 0.688618i \(-0.241782\pi\)
−0.958923 + 0.283667i \(0.908449\pi\)
\(200\) −25.8084 −1.82493
\(201\) 3.29339 3.92490i 0.232298 0.276841i
\(202\) 12.3020 + 21.3077i 0.865566 + 1.49920i
\(203\) 0 0
\(204\) 12.4363 + 2.19285i 0.870714 + 0.153530i
\(205\) −0.520945 0.902302i −0.0363843 0.0630195i
\(206\) −8.35117 14.4646i −0.581853 1.00780i
\(207\) 8.91534 + 3.24492i 0.619659 + 0.225538i
\(208\) 18.1001 31.3504i 1.25502 2.17376i
\(209\) −4.67752 + 8.10170i −0.323551 + 0.560406i
\(210\) 0 0
\(211\) 1.68479 + 2.91815i 0.115986 + 0.200893i 0.918173 0.396179i \(-0.129664\pi\)
−0.802188 + 0.597072i \(0.796331\pi\)
\(212\) 32.1634 2.20899
\(213\) −6.27719 1.10684i −0.430106 0.0758393i
\(214\) 6.04963 0.413544
\(215\) 0.0812519 0.140732i 0.00554133 0.00959787i
\(216\) 27.4773 + 15.8640i 1.86959 + 1.07941i
\(217\) 0 0
\(218\) −5.01114 + 8.67956i −0.339398 + 0.587854i
\(219\) 7.57145 + 20.8024i 0.511631 + 1.40570i
\(220\) 7.52481 13.0334i 0.507323 0.878709i
\(221\) 4.50640 7.80531i 0.303133 0.525042i
\(222\) −19.6707 3.46848i −1.32021 0.232789i
\(223\) 3.13816 5.43545i 0.210146 0.363984i −0.741614 0.670827i \(-0.765939\pi\)
0.951760 + 0.306843i \(0.0992726\pi\)
\(224\) 0 0
\(225\) −11.9153 4.33683i −0.794356 0.289122i
\(226\) −20.8307 + 36.0798i −1.38564 + 2.39999i
\(227\) −6.16250 −0.409020 −0.204510 0.978865i \(-0.565560\pi\)
−0.204510 + 0.978865i \(0.565560\pi\)
\(228\) −6.30200 17.3146i −0.417360 1.14669i
\(229\) 23.3851 1.54533 0.772664 0.634815i \(-0.218924\pi\)
0.772664 + 0.634815i \(0.218924\pi\)
\(230\) 3.52094 + 6.09845i 0.232164 + 0.402120i
\(231\) 0 0
\(232\) 18.4697 31.9905i 1.21260 2.10028i
\(233\) 4.26264 7.38311i 0.279255 0.483684i −0.691945 0.721950i \(-0.743246\pi\)
0.971200 + 0.238267i \(0.0765792\pi\)
\(234\) 31.7335 26.6276i 2.07449 1.74070i
\(235\) −0.449493 0.778544i −0.0293217 0.0507866i
\(236\) −14.6912 25.4459i −0.956315 1.65639i
\(237\) 3.52956 + 9.69739i 0.229270 + 0.629913i
\(238\) 0 0
\(239\) −7.28106 12.6112i −0.470973 0.815748i 0.528476 0.848948i \(-0.322764\pi\)
−0.999449 + 0.0331997i \(0.989430\pi\)
\(240\) 3.45811 + 9.50108i 0.223220 + 0.613292i
\(241\) −5.40373 −0.348085 −0.174043 0.984738i \(-0.555683\pi\)
−0.174043 + 0.984738i \(0.555683\pi\)
\(242\) −5.12701 8.88024i −0.329577 0.570844i
\(243\) 10.0201 + 11.9415i 0.642788 + 0.766044i
\(244\) −11.4534 −0.733226
\(245\) 0 0
\(246\) 3.34002 3.98048i 0.212952 0.253786i
\(247\) −13.1506 −0.836755
\(248\) 13.9047 24.0836i 0.882947 1.52931i
\(249\) 0.243756 0.290497i 0.0154474 0.0184095i
\(250\) −10.2724 17.7924i −0.649686 1.12529i
\(251\) −12.0669 −0.761654 −0.380827 0.924646i \(-0.624361\pi\)
−0.380827 + 0.924646i \(0.624361\pi\)
\(252\) 0 0
\(253\) 12.2686 0.771318
\(254\) −22.3503 38.7118i −1.40238 2.42900i
\(255\) 0.860967 + 2.36549i 0.0539158 + 0.148133i
\(256\) 15.2515 26.4164i 0.953219 1.65102i
\(257\) 10.5662 0.659104 0.329552 0.944137i \(-0.393102\pi\)
0.329552 + 0.944137i \(0.393102\pi\)
\(258\) 0.798133 + 0.140732i 0.0496896 + 0.00876162i
\(259\) 0 0
\(260\) 21.1557 1.31202
\(261\) 13.9029 11.6659i 0.860565 0.722100i
\(262\) 24.3050 + 42.0975i 1.50157 + 2.60079i
\(263\) −28.3533 −1.74834 −0.874169 0.485622i \(-0.838593\pi\)
−0.874169 + 0.485622i \(0.838593\pi\)
\(264\) 40.4051 + 7.12452i 2.48676 + 0.438484i
\(265\) 3.20574 + 5.55250i 0.196927 + 0.341087i
\(266\) 0 0
\(267\) −12.2772 + 14.6314i −0.751352 + 0.895426i
\(268\) 6.52481 + 11.3013i 0.398567 + 0.690337i
\(269\) −3.74170 6.48081i −0.228135 0.395142i 0.729120 0.684386i \(-0.239930\pi\)
−0.957255 + 0.289244i \(0.906596\pi\)
\(270\) 11.5702i 0.704139i
\(271\) −6.81908 + 11.8110i −0.414229 + 0.717467i −0.995347 0.0963530i \(-0.969282\pi\)
0.581118 + 0.813819i \(0.302616\pi\)
\(272\) −5.48545 + 9.50108i −0.332604 + 0.576088i
\(273\) 0 0
\(274\) −22.9859 39.8128i −1.38863 2.40518i
\(275\) −16.3969 −0.988772
\(276\) −15.5326 + 18.5110i −0.934950 + 1.11423i
\(277\) −6.15064 −0.369556 −0.184778 0.982780i \(-0.559157\pi\)
−0.184778 + 0.982780i \(0.559157\pi\)
\(278\) −27.9256 + 48.3686i −1.67487 + 2.90095i
\(279\) 10.4666 8.78249i 0.626617 0.525794i
\(280\) 0 0
\(281\) −1.65611 + 2.86846i −0.0987951 + 0.171118i −0.911186 0.411995i \(-0.864832\pi\)
0.812391 + 0.583113i \(0.198165\pi\)
\(282\) 2.88191 3.43453i 0.171615 0.204523i
\(283\) −14.5116 + 25.1348i −0.862626 + 1.49411i 0.00675974 + 0.999977i \(0.497848\pi\)
−0.869385 + 0.494134i \(0.835485\pi\)
\(284\) 8.11721 14.0594i 0.481668 0.834273i
\(285\) 2.36097 2.81369i 0.139852 0.166669i
\(286\) 26.7841 46.3913i 1.58377 2.74318i
\(287\) 0 0
\(288\) −10.5628 + 8.86327i −0.622421 + 0.522273i
\(289\) 7.13429 12.3569i 0.419664 0.726879i
\(290\) 13.4706 0.791021
\(291\) −13.9201 + 16.5893i −0.816010 + 0.972483i
\(292\) −56.3833 −3.29958
\(293\) 4.20961 + 7.29125i 0.245928 + 0.425960i 0.962392 0.271664i \(-0.0875740\pi\)
−0.716464 + 0.697624i \(0.754241\pi\)
\(294\) 0 0
\(295\) 2.92855 5.07239i 0.170507 0.295326i
\(296\) 13.9047 24.0836i 0.808192 1.39983i
\(297\) 17.4572 + 10.0789i 1.01297 + 0.584839i
\(298\) 19.1878 + 33.2342i 1.11152 + 1.92521i
\(299\) 8.62314 + 14.9357i 0.498689 + 0.863755i
\(300\) 20.7592 24.7399i 1.19854 1.42836i
\(301\) 0 0
\(302\) 23.9996 + 41.5685i 1.38102 + 2.39200i
\(303\) −16.5744 2.92252i −0.952177 0.167894i
\(304\) 16.0077 0.918107
\(305\) −1.14156 1.97724i −0.0653655 0.113216i
\(306\) −9.61721 + 8.06980i −0.549779 + 0.461320i
\(307\) −12.6878 −0.724130 −0.362065 0.932153i \(-0.617928\pi\)
−0.362065 + 0.932153i \(0.617928\pi\)
\(308\) 0 0
\(309\) 11.2515 + 1.98394i 0.640075 + 0.112863i
\(310\) 10.1411 0.575979
\(311\) 8.24510 14.2809i 0.467537 0.809797i −0.531775 0.846886i \(-0.678475\pi\)
0.999312 + 0.0370881i \(0.0118082\pi\)
\(312\) 19.7260 + 54.1966i 1.11676 + 3.06828i
\(313\) −14.2592 24.6977i −0.805980 1.39600i −0.915628 0.402027i \(-0.868306\pi\)
0.109648 0.993970i \(-0.465028\pi\)
\(314\) −45.7229 −2.58029
\(315\) 0 0
\(316\) −26.2841 −1.47859
\(317\) 12.9474 + 22.4256i 0.727200 + 1.25955i 0.958062 + 0.286561i \(0.0925122\pi\)
−0.230862 + 0.972987i \(0.574154\pi\)
\(318\) −20.5535 + 24.4947i −1.15258 + 1.37360i
\(319\) 11.7344 20.3246i 0.657002 1.13796i
\(320\) 1.44057 0.0805303
\(321\) −2.65998 + 3.17004i −0.148465 + 0.176934i
\(322\) 0 0
\(323\) 3.98545 0.221756
\(324\) −37.3089 + 13.5793i −2.07271 + 0.754407i
\(325\) −11.5248 19.9616i −0.639282 1.10727i
\(326\) 2.42602 0.134365
\(327\) −2.34477 6.44220i −0.129666 0.356255i
\(328\) 3.61721 + 6.26519i 0.199727 + 0.345937i
\(329\) 0 0
\(330\) 5.11721 + 14.0594i 0.281693 + 0.773946i
\(331\) −4.10947 7.11781i −0.225877 0.391230i 0.730705 0.682693i \(-0.239191\pi\)
−0.956582 + 0.291463i \(0.905858\pi\)
\(332\) 0.482926 + 0.836452i 0.0265040 + 0.0459063i
\(333\) 10.4666 8.78249i 0.573564 0.481278i
\(334\) −25.1163 + 43.5028i −1.37430 + 2.38037i
\(335\) −1.30066 + 2.25281i −0.0710626 + 0.123084i
\(336\) 0 0
\(337\) −2.28564 3.95885i −0.124507 0.215652i 0.797033 0.603936i \(-0.206402\pi\)
−0.921540 + 0.388283i \(0.873068\pi\)
\(338\) 42.3851 2.30544
\(339\) −9.74691 26.7794i −0.529380 1.45446i
\(340\) −6.41147 −0.347711
\(341\) 8.83409 15.3011i 0.478393 0.828601i
\(342\) 17.2135 + 6.26519i 0.930798 + 0.338783i
\(343\) 0 0
\(344\) −0.564178 + 0.977185i −0.0304184 + 0.0526863i
\(345\) −4.74376 0.836452i −0.255395 0.0450331i
\(346\) −28.7173 + 49.7399i −1.54385 + 2.67403i
\(347\) −11.2331 + 19.4563i −0.603023 + 1.04447i 0.389337 + 0.921095i \(0.372704\pi\)
−0.992361 + 0.123372i \(0.960629\pi\)
\(348\) 15.8097 + 43.4369i 0.847491 + 2.32846i
\(349\) −13.0496 + 22.6026i −0.698531 + 1.20989i 0.270445 + 0.962735i \(0.412829\pi\)
−0.968976 + 0.247155i \(0.920504\pi\)
\(350\) 0 0
\(351\) 28.3365i 1.51249i
\(352\) −8.91534 + 15.4418i −0.475189 + 0.823052i
\(353\) −0.355037 −0.0188967 −0.00944836 0.999955i \(-0.503008\pi\)
−0.00944836 + 0.999955i \(0.503008\pi\)
\(354\) 28.7670 + 5.07239i 1.52895 + 0.269595i
\(355\) 3.23618 0.171758
\(356\) −24.3234 42.1294i −1.28914 2.23285i
\(357\) 0 0
\(358\) 9.30200 16.1115i 0.491626 0.851522i
\(359\) −2.72803 + 4.72508i −0.143980 + 0.249380i −0.928992 0.370100i \(-0.879323\pi\)
0.785012 + 0.619480i \(0.212657\pi\)
\(360\) −15.1373 5.50952i −0.797805 0.290377i
\(361\) 6.59240 + 11.4184i 0.346968 + 0.600967i
\(362\) 4.36231 + 7.55574i 0.229278 + 0.397121i
\(363\) 6.90760 + 1.21800i 0.362555 + 0.0639283i
\(364\) 0 0
\(365\) −5.61974 9.73367i −0.294150 0.509484i
\(366\) 7.31908 8.72254i 0.382574 0.455934i
\(367\) 10.9240 0.570226 0.285113 0.958494i \(-0.407969\pi\)
0.285113 + 0.958494i \(0.407969\pi\)
\(368\) −10.4966 18.1806i −0.547173 0.947731i
\(369\) 0.617211 + 3.50038i 0.0321307 + 0.182222i
\(370\) 10.1411 0.527213
\(371\) 0 0
\(372\) 11.9021 + 32.7009i 0.617097 + 1.69546i
\(373\) 1.73143 0.0896500 0.0448250 0.998995i \(-0.485727\pi\)
0.0448250 + 0.998995i \(0.485727\pi\)
\(374\) −8.11721 + 14.0594i −0.419731 + 0.726995i
\(375\) 13.8400 + 2.44037i 0.714696 + 0.126020i
\(376\) 3.12108 + 5.40587i 0.160957 + 0.278787i
\(377\) 32.9908 1.69911
\(378\) 0 0
\(379\) −12.1334 −0.623251 −0.311626 0.950205i \(-0.600873\pi\)
−0.311626 + 0.950205i \(0.600873\pi\)
\(380\) 4.67752 + 8.10170i 0.239952 + 0.415608i
\(381\) 30.1125 + 5.30964i 1.54271 + 0.272021i
\(382\) −7.16297 + 12.4066i −0.366489 + 0.634778i
\(383\) −8.71183 −0.445154 −0.222577 0.974915i \(-0.571447\pi\)
−0.222577 + 0.974915i \(0.571447\pi\)
\(384\) 7.90286 + 21.7129i 0.403291 + 1.10803i
\(385\) 0 0
\(386\) 24.2986 1.23677
\(387\) −0.424678 + 0.356347i −0.0215876 + 0.0181141i
\(388\) −27.5783 47.7670i −1.40008 2.42500i
\(389\) 3.64321 0.184718 0.0923590 0.995726i \(-0.470559\pi\)
0.0923590 + 0.995726i \(0.470559\pi\)
\(390\) −13.5192 + 16.1115i −0.684571 + 0.815840i
\(391\) −2.61334 4.52644i −0.132162 0.228912i
\(392\) 0 0
\(393\) −32.7460 5.77401i −1.65182 0.291260i
\(394\) −10.5334 18.2444i −0.530667 0.919142i
\(395\) −2.61974 4.53752i −0.131813 0.228307i
\(396\) −39.3298 + 33.0016i −1.97640 + 1.65839i
\(397\) 7.72281 13.3763i 0.387597 0.671337i −0.604529 0.796583i \(-0.706639\pi\)
0.992126 + 0.125246i \(0.0399720\pi\)
\(398\) −8.35117 + 14.4646i −0.418606 + 0.725047i
\(399\) 0 0
\(400\) 14.0287 + 24.2984i 0.701434 + 1.21492i
\(401\) 18.4219 0.919946 0.459973 0.887933i \(-0.347859\pi\)
0.459973 + 0.887933i \(0.347859\pi\)
\(402\) −12.7763 2.25281i −0.637224 0.112360i
\(403\) 24.8367 1.23720
\(404\) 21.4329 37.1228i 1.06633 1.84693i
\(405\) −6.06283 5.08732i −0.301265 0.252791i
\(406\) 0 0
\(407\) 8.83409 15.3011i 0.437890 0.758447i
\(408\) −5.97818 16.4249i −0.295964 0.813154i
\(409\) 14.3182 24.7999i 0.707989 1.22627i −0.257612 0.966248i \(-0.582936\pi\)
0.965602 0.260025i \(-0.0837309\pi\)
\(410\) −1.31908 + 2.28471i −0.0651446 + 0.112834i
\(411\) 30.9688 + 5.46064i 1.52758 + 0.269354i
\(412\) −14.5496 + 25.2007i −0.716809 + 1.24155i
\(413\) 0 0
\(414\) −4.17159 23.6583i −0.205022 1.16274i
\(415\) −0.0962667 + 0.166739i −0.00472554 + 0.00818488i
\(416\) −25.0651 −1.22892
\(417\) −13.0667 35.9005i −0.639879 1.75805i
\(418\) 23.6878 1.15861
\(419\) 17.3478 + 30.0472i 0.847494 + 1.46790i 0.883438 + 0.468548i \(0.155223\pi\)
−0.0359442 + 0.999354i \(0.511444\pi\)
\(420\) 0 0
\(421\) 13.7010 23.7308i 0.667745 1.15657i −0.310788 0.950479i \(-0.600593\pi\)
0.978533 0.206090i \(-0.0660738\pi\)
\(422\) 4.26604 7.38901i 0.207668 0.359691i
\(423\) 0.532556 + 3.02027i 0.0258937 + 0.146851i
\(424\) −22.2592 38.5541i −1.08100 1.87235i
\(425\) 3.49273 + 6.04958i 0.169422 + 0.293448i
\(426\) 5.52007 + 15.1663i 0.267448 + 0.734808i
\(427\) 0 0
\(428\) −5.26991 9.12776i −0.254731 0.441207i
\(429\) 12.5326 + 34.4329i 0.605077 + 1.66244i
\(430\) −0.411474 −0.0198430
\(431\) −13.2961 23.0295i −0.640449 1.10929i −0.985333 0.170645i \(-0.945415\pi\)
0.344883 0.938646i \(-0.387919\pi\)
\(432\) 34.4929i 1.65954i
\(433\) 37.1830 1.78690 0.893451 0.449160i \(-0.148277\pi\)
0.893451 + 0.449160i \(0.148277\pi\)
\(434\) 0 0
\(435\) −5.92292 + 7.05866i −0.283982 + 0.338437i
\(436\) 17.4611 0.836235
\(437\) −3.81315 + 6.60457i −0.182408 + 0.315939i
\(438\) 36.0308 42.9398i 1.72162 2.05174i
\(439\) −12.5373 21.7152i −0.598373 1.03641i −0.993061 0.117597i \(-0.962481\pi\)
0.394689 0.918815i \(-0.370853\pi\)
\(440\) −20.8307 −0.993064
\(441\) 0 0
\(442\) −22.8212 −1.08549
\(443\) −1.02229 1.77066i −0.0485704 0.0841264i 0.840718 0.541473i \(-0.182133\pi\)
−0.889288 + 0.457347i \(0.848800\pi\)
\(444\) 11.9021 + 32.7009i 0.564851 + 1.55191i
\(445\) 4.84864 8.39809i 0.229848 0.398108i
\(446\) −15.8922 −0.752516
\(447\) −25.8516 4.55834i −1.22274 0.215602i
\(448\) 0 0
\(449\) −10.2344 −0.482992 −0.241496 0.970402i \(-0.577638\pi\)
−0.241496 + 0.970402i \(0.577638\pi\)
\(450\) 5.57532 + 31.6192i 0.262823 + 1.49054i
\(451\) 2.29813 + 3.98048i 0.108215 + 0.187434i
\(452\) 72.5836 3.41404
\(453\) −32.3346 5.70146i −1.51921 0.267878i
\(454\) 7.80200 + 13.5135i 0.366166 + 0.634218i
\(455\) 0 0
\(456\) −16.3935 + 19.5370i −0.767697 + 0.914906i
\(457\) 21.2973 + 36.8879i 0.996244 + 1.72554i 0.573115 + 0.819475i \(0.305735\pi\)
0.423129 + 0.906070i \(0.360932\pi\)
\(458\) −29.6065 51.2800i −1.38342 2.39616i
\(459\) 8.58770i 0.400840i
\(460\) 6.13429 10.6249i 0.286013 0.495388i
\(461\) −0.252374 + 0.437124i −0.0117542 + 0.0203589i −0.871843 0.489786i \(-0.837075\pi\)
0.860088 + 0.510145i \(0.170408\pi\)
\(462\) 0 0
\(463\) −1.34002 2.32099i −0.0622761 0.107865i 0.833206 0.552962i \(-0.186503\pi\)
−0.895482 + 0.445097i \(0.853169\pi\)
\(464\) −40.1584 −1.86431
\(465\) −4.45899 + 5.31402i −0.206781 + 0.246432i
\(466\) −21.5868 −0.999988
\(467\) 15.7083 27.2075i 0.726892 1.25901i −0.231299 0.972883i \(-0.574298\pi\)
0.958191 0.286131i \(-0.0923691\pi\)
\(468\) −67.8196 24.6843i −3.13496 1.14103i
\(469\) 0 0
\(470\) −1.13816 + 1.97134i −0.0524992 + 0.0909313i
\(471\) 20.1040 23.9590i 0.926344 1.10397i
\(472\) −20.3346 + 35.2205i −0.935974 + 1.62115i
\(473\) −0.358441 + 0.620838i −0.0164811 + 0.0285461i
\(474\) 16.7964 20.0171i 0.771483 0.919418i
\(475\) 5.09627 8.82699i 0.233833 0.405010i
\(476\) 0 0
\(477\) −3.79813 21.5403i −0.173905 0.986262i
\(478\) −18.4363 + 31.9326i −0.843256 + 1.46056i
\(479\) −16.4406 −0.751189 −0.375594 0.926784i \(-0.622561\pi\)
−0.375594 + 0.926784i \(0.622561\pi\)
\(480\) 4.50000 5.36289i 0.205396 0.244781i
\(481\) 24.8367 1.13245
\(482\) 6.84137 + 11.8496i 0.311616 + 0.539734i
\(483\) 0 0
\(484\) −8.93242 + 15.4714i −0.406019 + 0.703246i
\(485\) 5.49747 9.52190i 0.249627 0.432367i
\(486\) 13.5000 37.0909i 0.612372 1.68248i
\(487\) 1.48767 + 2.57673i 0.0674129 + 0.116763i 0.897762 0.440481i \(-0.145192\pi\)
−0.830349 + 0.557244i \(0.811859\pi\)
\(488\) 7.92649 + 13.7291i 0.358815 + 0.621486i
\(489\) −1.06670 + 1.27125i −0.0482380 + 0.0574878i
\(490\) 0 0
\(491\) 13.2430 + 22.9376i 0.597650 + 1.03516i 0.993167 + 0.116702i \(0.0372321\pi\)
−0.395517 + 0.918459i \(0.629435\pi\)
\(492\) −8.91534 1.57202i −0.401935 0.0708719i
\(493\) −9.99825 −0.450298
\(494\) 16.6493 + 28.8374i 0.749087 + 1.29746i
\(495\) −9.61721 3.50038i −0.432261 0.157330i
\(496\) −30.2327 −1.35749
\(497\) 0 0
\(498\) −0.945622 0.166739i −0.0423744 0.00747174i
\(499\) −13.4439 −0.601830 −0.300915 0.953651i \(-0.597292\pi\)
−0.300915 + 0.953651i \(0.597292\pi\)
\(500\) −17.8969 + 30.9984i −0.800375 + 1.38629i
\(501\) −11.7522 32.2889i −0.525050 1.44256i
\(502\) 15.2772 + 26.4609i 0.681854 + 1.18101i
\(503\) −22.6631 −1.01050 −0.505250 0.862973i \(-0.668600\pi\)
−0.505250 + 0.862973i \(0.668600\pi\)
\(504\) 0 0
\(505\) 8.54488 0.380242
\(506\) −15.5326 26.9032i −0.690506 1.19599i
\(507\) −18.6364 + 22.2100i −0.827672 + 0.986381i
\(508\) −38.9393 + 67.4448i −1.72765 + 2.99238i
\(509\) 9.54757 0.423189 0.211594 0.977358i \(-0.432134\pi\)
0.211594 + 0.977358i \(0.432134\pi\)
\(510\) 4.09714 4.88279i 0.181425 0.216213i
\(511\) 0 0
\(512\) −50.5553 −2.23425
\(513\) −10.8516 + 6.26519i −0.479111 + 0.276615i
\(514\) −13.3773 23.1702i −0.590049 1.02199i
\(515\) −5.80066 −0.255608
\(516\) −0.482926 1.32683i −0.0212596 0.0584103i
\(517\) 1.98293 + 3.43453i 0.0872090 + 0.151050i
\(518\) 0 0
\(519\) −13.4372 36.9183i −0.589826 1.62053i
\(520\) −14.6411 25.3592i −0.642057 1.11208i
\(521\) 1.55644 + 2.69583i 0.0681887 + 0.118106i 0.898104 0.439783i \(-0.144945\pi\)
−0.829915 + 0.557889i \(0.811611\pi\)
\(522\) −43.1832 15.7174i −1.89008 0.687932i
\(523\) 8.07444 13.9853i 0.353071 0.611537i −0.633715 0.773567i \(-0.718471\pi\)
0.986786 + 0.162030i \(0.0518041\pi\)
\(524\) 42.3448 73.3434i 1.84984 3.20402i
\(525\) 0 0
\(526\) 35.8965 + 62.1746i 1.56516 + 2.71094i
\(527\) −7.52704 −0.327883
\(528\) −15.2554 41.9138i −0.663905 1.82406i
\(529\) −12.9986 −0.565155
\(530\) 8.11721 14.0594i 0.352589 0.610702i
\(531\) −15.3066 + 12.8438i −0.664249 + 0.557371i
\(532\) 0 0
\(533\) −3.23055 + 5.59548i −0.139931 + 0.242367i
\(534\) 47.6279 + 8.39809i 2.06106 + 0.363421i
\(535\) 1.05051 1.81953i 0.0454174 0.0786652i
\(536\) 9.03121 15.6425i 0.390089 0.675654i
\(537\) 4.35251 + 11.9584i 0.187825 + 0.516044i
\(538\) −9.47431 + 16.4100i −0.408466 + 0.707485i
\(539\) 0 0
\(540\) 17.4572 10.0789i 0.751240 0.433728i
\(541\) 2.50774 4.34353i 0.107816 0.186743i −0.807069 0.590457i \(-0.798948\pi\)
0.914885 + 0.403714i \(0.132281\pi\)
\(542\) 34.5330 1.48332
\(543\) −5.87733 1.03633i −0.252220 0.0444732i
\(544\) 7.59627 0.325687
\(545\) 1.74035 + 3.01438i 0.0745485 + 0.129122i
\(546\) 0 0
\(547\) −8.23901 + 14.2704i −0.352275 + 0.610157i −0.986648 0.162870i \(-0.947925\pi\)
0.634373 + 0.773027i \(0.281258\pi\)
\(548\) −40.0467 + 69.3629i −1.71071 + 2.96304i
\(549\) 1.35251 + 7.67047i 0.0577238 + 0.327368i
\(550\) 20.7592 + 35.9561i 0.885177 + 1.53317i
\(551\) 7.29426 + 12.6340i 0.310746 + 0.538228i
\(552\) 32.9386 + 5.80796i 1.40196 + 0.247203i
\(553\) 0 0
\(554\) 7.78699 + 13.4875i 0.330837 + 0.573027i
\(555\) −4.45899 + 5.31402i −0.189274 + 0.225567i
\(556\) 97.3055 4.12667
\(557\) 17.2815 + 29.9325i 0.732242 + 1.26828i 0.955923 + 0.293618i \(0.0948592\pi\)
−0.223681 + 0.974662i \(0.571807\pi\)
\(558\) −32.5099 11.8326i −1.37625 0.500915i
\(559\) −1.00774 −0.0426229
\(560\) 0 0
\(561\) −3.79813 10.4353i −0.160357 0.440578i
\(562\) 8.38682 0.353777
\(563\) 18.6052 32.2251i 0.784115 1.35813i −0.145411 0.989371i \(-0.546450\pi\)
0.929526 0.368756i \(-0.120216\pi\)
\(564\) −7.69253 1.35640i −0.323914 0.0571148i
\(565\) 7.23442 + 12.5304i 0.304354 + 0.527157i
\(566\) 73.4894 3.08899
\(567\) 0 0
\(568\) −22.4706 −0.942845
\(569\) −0.202333 0.350452i −0.00848226 0.0146917i 0.861753 0.507328i \(-0.169367\pi\)
−0.870235 + 0.492636i \(0.836033\pi\)
\(570\) −9.15910 1.61500i −0.383632 0.0676448i
\(571\) 18.8897 32.7178i 0.790507 1.36920i −0.135146 0.990826i \(-0.543150\pi\)
0.925653 0.378373i \(-0.123516\pi\)
\(572\) −93.3278 −3.90223
\(573\) −3.35163 9.20854i −0.140017 0.384692i
\(574\) 0 0
\(575\) −13.3669 −0.557438
\(576\) −4.61809 1.68085i −0.192420 0.0700353i
\(577\) 1.10560 + 1.91496i 0.0460267 + 0.0797206i 0.888121 0.459610i \(-0.152011\pi\)
−0.842094 + 0.539330i \(0.818677\pi\)
\(578\) −36.1293 −1.50278
\(579\) −10.6839 + 12.7326i −0.444008 + 0.529149i
\(580\) −11.7344 20.3246i −0.487245 0.843934i
\(581\) 0 0
\(582\) 54.0014 + 9.52190i 2.23843 + 0.394696i
\(583\) −14.1420 24.4947i −0.585703 1.01447i
\(584\) 39.0210 + 67.5864i 1.61470 + 2.79674i
\(585\) −2.49825 14.1683i −0.103290 0.585785i
\(586\) 10.6591 18.4621i 0.440323 0.762662i
\(587\) −12.1049 + 20.9663i −0.499622 + 0.865371i −1.00000 0.000436347i \(-0.999861\pi\)
0.500378 + 0.865807i \(0.333194\pi\)
\(588\) 0 0
\(589\) 5.49138 + 9.51135i 0.226268 + 0.391908i
\(590\) −14.8307 −0.610570
\(591\) 14.1917 + 2.50237i 0.583767 + 0.102934i
\(592\) −30.2327 −1.24255
\(593\) −6.11927 + 10.5989i −0.251288 + 0.435244i −0.963881 0.266334i \(-0.914188\pi\)
0.712592 + 0.701578i \(0.247521\pi\)
\(594\) 51.0415i 2.09426i
\(595\) 0 0
\(596\) 33.4295 57.9016i 1.36932 2.37174i
\(597\) −3.90760 10.7361i −0.159928 0.439397i
\(598\) 21.8346 37.8186i 0.892882 1.54652i
\(599\) −19.8084 + 34.3092i −0.809349 + 1.40183i 0.103966 + 0.994581i \(0.466847\pi\)
−0.913315 + 0.407253i \(0.866487\pi\)
\(600\) −44.0223 7.76233i −1.79720 0.316896i
\(601\) 15.0039 25.9875i 0.612021 1.06005i −0.378879 0.925446i \(-0.623690\pi\)
0.990899 0.134605i \(-0.0429764\pi\)
\(602\) 0 0
\(603\) 6.79813 5.70431i 0.276841 0.232298i
\(604\) 41.8127 72.4218i 1.70134 2.94680i
\(605\) −3.56118 −0.144783
\(606\) 14.5753 + 40.0454i 0.592082 + 1.62673i
\(607\) −19.4843 −0.790844 −0.395422 0.918499i \(-0.629402\pi\)
−0.395422 + 0.918499i \(0.629402\pi\)
\(608\) −5.54189 9.59883i −0.224753 0.389284i
\(609\) 0 0
\(610\) −2.89053 + 5.00654i −0.117034 + 0.202709i
\(611\) −2.78746 + 4.82802i −0.112768 + 0.195321i
\(612\) 20.5535 + 7.48086i 0.830826 + 0.302396i
\(613\) 9.26382 + 16.0454i 0.374162 + 0.648068i 0.990201 0.139648i \(-0.0445970\pi\)
−0.616039 + 0.787716i \(0.711264\pi\)
\(614\) 16.0633 + 27.8225i 0.648262 + 1.12282i
\(615\) −0.617211 1.69577i −0.0248884 0.0683802i
\(616\) 0 0
\(617\) −13.9201 24.1103i −0.560402 0.970644i −0.997461 0.0712118i \(-0.977313\pi\)
0.437059 0.899433i \(-0.356020\pi\)
\(618\) −9.89440 27.1846i −0.398011 1.09353i
\(619\) −44.9813 −1.80795 −0.903976 0.427583i \(-0.859365\pi\)
−0.903976 + 0.427583i \(0.859365\pi\)
\(620\) −8.83409 15.3011i −0.354786 0.614507i
\(621\) 14.2313 + 8.21643i 0.571081 + 0.329714i
\(622\) −41.7547 −1.67421
\(623\) 0 0
\(624\) 40.3032 48.0315i 1.61342 1.92280i
\(625\) 13.9982 0.559930
\(626\) −36.1057 + 62.5368i −1.44307 + 2.49947i
\(627\) −10.4153 + 12.4125i −0.415949 + 0.495708i
\(628\) 39.8298 + 68.9873i 1.58938 + 2.75289i
\(629\) −7.52704 −0.300123
\(630\) 0 0
\(631\) 9.43613 0.375646 0.187823 0.982203i \(-0.439857\pi\)
0.187823 + 0.982203i \(0.439857\pi\)
\(632\) 18.1903 + 31.5065i 0.723572 + 1.25326i
\(633\) 1.99613 + 5.48432i 0.0793390 + 0.217982i
\(634\) 32.7841 56.7836i 1.30202 2.25517i
\(635\) −15.5243 −0.616065
\(636\) 54.8624 + 9.67372i 2.17543 + 0.383588i
\(637\) 0 0
\(638\) −59.4252 −2.35267
\(639\) −10.3743 3.77595i −0.410402 0.149374i
\(640\) −5.86571 10.1597i −0.231863 0.401598i
\(641\) 37.3901 1.47682 0.738410 0.674352i \(-0.235577\pi\)
0.738410 + 0.674352i \(0.235577\pi\)
\(642\) 10.3191 + 1.81953i 0.407262 + 0.0718112i
\(643\) −0.805874 1.39581i −0.0317806 0.0550456i 0.849698 0.527270i \(-0.176784\pi\)
−0.881478 + 0.472225i \(0.843451\pi\)
\(644\) 0 0
\(645\) 0.180922 0.215615i 0.00712380 0.00848982i
\(646\) −5.04576 8.73951i −0.198523 0.343851i
\(647\) 20.5881 + 35.6597i 0.809402 + 1.40193i 0.913278 + 0.407336i \(0.133542\pi\)
−0.103876 + 0.994590i \(0.533125\pi\)
\(648\) 42.0977 + 35.3241i 1.65375 + 1.38766i
\(649\) −12.9192 + 22.3767i −0.507124 + 0.878364i
\(650\) −29.1819 + 50.5445i −1.14461 + 1.98252i
\(651\) 0 0
\(652\) −2.11334 3.66041i −0.0827648 0.143353i
\(653\) 3.05199 0.119434 0.0597169 0.998215i \(-0.480980\pi\)
0.0597169 + 0.998215i \(0.480980\pi\)
\(654\) −11.1582 + 13.2979i −0.436321 + 0.519987i
\(655\) 16.8821 0.659637
\(656\) 3.93242 6.81115i 0.153535 0.265931i
\(657\) 6.65822 + 37.7607i 0.259762 + 1.47318i
\(658\) 0 0
\(659\) −20.8175 + 36.0569i −0.810934 + 1.40458i 0.101277 + 0.994858i \(0.467707\pi\)
−0.912211 + 0.409721i \(0.865626\pi\)
\(660\) 16.7554 19.9683i 0.652202 0.777264i
\(661\) −10.1505 + 17.5812i −0.394808 + 0.683828i −0.993077 0.117468i \(-0.962522\pi\)
0.598269 + 0.801296i \(0.295856\pi\)
\(662\) −10.4055 + 18.0229i −0.404423 + 0.700481i
\(663\) 10.0343 11.9584i 0.389700 0.464427i
\(664\) 0.668434 1.15776i 0.0259403 0.0449298i
\(665\) 0 0
\(666\) −32.5099 11.8326i −1.25973 0.458505i
\(667\) 9.56599 16.5688i 0.370397 0.641546i
\(668\) 87.5167 3.38612
\(669\) 6.98767 8.32759i 0.270159 0.321963i
\(670\) 6.58677 0.254469
\(671\) 5.03596 + 8.72254i 0.194411 + 0.336730i
\(672\) 0 0
\(673\) 0.415345 0.719398i 0.0160104 0.0277307i −0.857909 0.513801i \(-0.828237\pi\)
0.873920 + 0.486071i \(0.161570\pi\)
\(674\) −5.78746 + 10.0242i −0.222924 + 0.386117i
\(675\) −19.0201 10.9812i −0.732083 0.422668i
\(676\) −36.9222 63.9511i −1.42008 2.45966i
\(677\) −5.43360 9.41127i −0.208830 0.361705i 0.742516 0.669828i \(-0.233632\pi\)
−0.951346 + 0.308124i \(0.900299\pi\)
\(678\) −46.3833 + 55.2775i −1.78134 + 2.12292i
\(679\) 0 0
\(680\) 4.43717 + 7.68540i 0.170158 + 0.294722i
\(681\) −10.5116 1.85348i −0.402806 0.0710255i
\(682\) −44.7374 −1.71308
\(683\) −16.3473 28.3143i −0.625512 1.08342i −0.988442 0.151602i \(-0.951557\pi\)
0.362930 0.931817i \(-0.381777\pi\)
\(684\) −5.54189 31.4296i −0.211899 1.20174i
\(685\) −15.9659 −0.610024
\(686\) 0 0
\(687\) 39.8888 + 7.03347i 1.52185 + 0.268344i
\(688\) 1.22668 0.0467668
\(689\) 19.8799 34.4329i 0.757362 1.31179i
\(690\) 4.17159 + 11.4613i 0.158810 + 0.436326i
\(691\) −7.49912 12.9889i −0.285280 0.494120i 0.687397 0.726282i \(-0.258753\pi\)
−0.972677 + 0.232162i \(0.925420\pi\)
\(692\) 100.064 3.80387
\(693\) 0 0
\(694\) 56.8863 2.15937
\(695\) 9.69846 + 16.7982i 0.367884 + 0.637193i
\(696\) 41.1262 49.0123i 1.55888 1.85781i
\(697\) 0.979055 1.69577i 0.0370844 0.0642320i
\(698\) 66.0856 2.50138
\(699\) 9.49154 11.3116i 0.359003 0.427843i
\(700\) 0 0
\(701\) 26.4688 0.999714 0.499857 0.866108i \(-0.333386\pi\)
0.499857 + 0.866108i \(0.333386\pi\)
\(702\) 62.1378 35.8753i 2.34524 1.35403i
\(703\) 5.49138 + 9.51135i 0.207111 + 0.358727i
\(704\) −6.35504 −0.239514
\(705\) −0.532556 1.46318i −0.0200572 0.0551067i
\(706\) 0.449493 + 0.778544i 0.0169169 + 0.0293009i
\(707\) 0 0
\(708\) −17.4060 47.8226i −0.654158 1.79728i
\(709\) −7.68004 13.3022i −0.288430 0.499576i 0.685005 0.728538i \(-0.259800\pi\)
−0.973435 + 0.228963i \(0.926467\pi\)
\(710\) −4.09714 7.09646i −0.153763 0.266325i
\(711\) 3.10385 + 17.6028i 0.116403 + 0.660156i
\(712\) −33.6668 + 58.3127i −1.26172 + 2.18536i
\(713\) 7.20162 12.4736i 0.269703 0.467139i
\(714\) 0 0
\(715\) −9.30200 16.1115i −0.347875 0.602538i
\(716\) −32.4124 −1.21131
\(717\) −8.62654 23.7012i −0.322164 0.885139i
\(718\) 13.8152 0.515579
\(719\) −13.3653 + 23.1494i −0.498442 + 0.863326i −0.999998 0.00179839i \(-0.999428\pi\)
0.501557 + 0.865125i \(0.332761\pi\)
\(720\) 3.04101 + 17.2464i 0.113332 + 0.642737i
\(721\) 0 0
\(722\) 16.6925 28.9123i 0.621232 1.07600i
\(723\) −9.21735 1.62527i −0.342797 0.0604443i
\(724\) 7.60014 13.1638i 0.282457 0.489230i
\(725\) −12.7849 + 22.1441i −0.474820 + 0.822413i
\(726\) −6.07444 16.6894i −0.225444 0.619402i
\(727\) 22.8221 39.5290i 0.846424 1.46605i −0.0379552 0.999279i \(-0.512084\pi\)
0.884379 0.466770i \(-0.154582\pi\)
\(728\) 0 0
\(729\) 13.5000 + 23.3827i 0.500000 + 0.866025i
\(730\) −14.2297 + 24.6465i −0.526664 + 0.912209i
\(731\) 0.305407 0.0112959
\(732\) −19.5364 3.44480i −0.722087 0.127323i
\(733\) 5.97502 0.220693 0.110346 0.993893i \(-0.464804\pi\)
0.110346 + 0.993893i \(0.464804\pi\)
\(734\) −13.8302 23.9546i −0.510483 0.884182i
\(735\) 0 0
\(736\) −7.26786 + 12.5883i −0.267897 + 0.464011i
\(737\) 5.73783 9.93821i 0.211356 0.366079i
\(738\) 6.89440 5.78509i 0.253786 0.212952i
\(739\) 17.7981 + 30.8273i 0.654715 + 1.13400i 0.981965 + 0.189062i \(0.0605447\pi\)
−0.327250 + 0.944938i \(0.606122\pi\)
\(740\) −8.83409 15.3011i −0.324748 0.562480i
\(741\) −22.4315 3.95529i −0.824043 0.145301i
\(742\) 0 0
\(743\) 14.6544 + 25.3821i 0.537616 + 0.931178i 0.999032 + 0.0439943i \(0.0140083\pi\)
−0.461416 + 0.887184i \(0.652658\pi\)
\(744\) 30.9613 36.8982i 1.13510 1.35275i
\(745\) 13.3277 0.488289
\(746\) −2.19207 3.79677i −0.0802573 0.139010i
\(747\) 0.503155 0.422197i 0.0184095 0.0154474i
\(748\) 28.2841 1.03417
\(749\) 0 0
\(750\) −12.1707 33.4388i −0.444412 1.22101i
\(751\) −17.3337 −0.632515 −0.316258 0.948673i \(-0.602426\pi\)
−0.316258 + 0.948673i \(0.602426\pi\)
\(752\) 3.39306 5.87695i 0.123732 0.214310i
\(753\) −20.5829 3.62932i −0.750083 0.132260i
\(754\) −41.7679 72.3440i −1.52110 2.63461i
\(755\) 16.6699 0.606681
\(756\) 0 0
\(757\) −2.77156 −0.100734 −0.0503671 0.998731i \(-0.516039\pi\)
−0.0503671 + 0.998731i \(0.516039\pi\)
\(758\) 15.3614 + 26.6068i 0.557952 + 0.966402i
\(759\) 20.9270 + 3.68999i 0.759600 + 0.133938i
\(760\) 6.47431 11.2138i 0.234848 0.406768i
\(761\) 7.50744 0.272144 0.136072 0.990699i \(-0.456552\pi\)
0.136072 + 0.990699i \(0.456552\pi\)
\(762\) −26.4805 72.7545i −0.959286 2.63562i
\(763\) 0 0
\(764\) 24.9590 0.902987
\(765\) 0.757122 + 4.29385i 0.0273738 + 0.155244i
\(766\) 11.0296 + 19.1038i 0.398514 + 0.690247i
\(767\) −36.3218 −1.31150
\(768\) 33.9602 40.4722i 1.22543 1.46042i
\(769\) −1.02182 1.76985i −0.0368478 0.0638223i 0.847013 0.531572i \(-0.178398\pi\)
−0.883861 + 0.467749i \(0.845065\pi\)
\(770\) 0 0
\(771\) 18.0232 + 3.17798i 0.649090 + 0.114452i
\(772\) −21.1668 36.6620i −0.761811 1.31950i
\(773\) 12.4709 + 21.6002i 0.448547 + 0.776907i 0.998292 0.0584263i \(-0.0186083\pi\)
−0.549744 + 0.835333i \(0.685275\pi\)
\(774\) 1.31908 + 0.480105i 0.0474133 + 0.0172570i
\(775\) −9.62495 + 16.6709i −0.345738 + 0.598837i
\(776\) −38.1721 + 66.1159i −1.37030 + 2.37342i
\(777\) 0 0
\(778\) −4.61246 7.98902i −0.165365 0.286420i
\(779\) −2.85710 −0.102366
\(780\) 36.0861 + 6.36295i 1.29209 + 0.227830i