Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [441,2,Mod(226,441)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(441, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("441.226");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 441 = 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 441.e (of order \(3\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.52140272914\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\Q(\sqrt{-3}, \sqrt{7})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} + 7x^{2} + 49 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{4}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{3}]$ |
Embedding invariants
Embedding label | 361.1 | ||
Root | \(-1.32288 - 2.29129i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 441.361 |
Dual form | 441.2.e.h.226.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).
\(n\) | \(199\) | \(344\) |
\(\chi(n)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | −1.32288 | − | 2.29129i | −0.935414 | − | 1.62019i | −0.773893 | − | 0.633316i | \(-0.781693\pi\) |
−0.161521 | − | 0.986869i | \(-0.551640\pi\) | |||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | −2.50000 | + | 4.33013i | −1.25000 | + | 2.16506i | ||||
\(5\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | ||||||||
\(8\) | 7.93725 | 2.80624 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 2.64575 | − | 4.58258i | 0.797724 | − | 1.38170i | −0.123371 | − | 0.992361i | \(-0.539370\pi\) |
0.921095 | − | 0.389338i | \(-0.127296\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | −5.50000 | − | 9.52628i | −1.37500 | − | 2.38157i | ||||
\(17\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | −14.0000 | −2.98481 | ||||||||
\(23\) | −2.64575 | − | 4.58258i | −0.551677 | − | 0.955533i | −0.998154 | − | 0.0607377i | \(-0.980655\pi\) |
0.446476 | − | 0.894795i | \(-0.352679\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 2.50000 | − | 4.33013i | 0.500000 | − | 0.866025i | ||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −10.5830 | −1.96521 | −0.982607 | − | 0.185695i | \(-0.940546\pi\) | ||||
−0.982607 | + | 0.185695i | \(0.940546\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(32\) | −6.61438 | + | 11.4564i | −1.16927 | + | 2.02523i | ||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −3.00000 | − | 5.19615i | −0.493197 | − | 0.854242i | 0.506772 | − | 0.862080i | \(-0.330838\pi\) |
−0.999969 | + | 0.00783774i | \(0.997505\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 12.0000 | 1.82998 | 0.914991 | − | 0.403473i | \(-0.132197\pi\) | ||||
0.914991 | + | 0.403473i | \(0.132197\pi\) | |||||||
\(44\) | 13.2288 | + | 22.9129i | 1.99431 | + | 3.45425i | ||||
\(45\) | 0 | 0 | ||||||||
\(46\) | −7.00000 | + | 12.1244i | −1.03209 | + | 1.78764i | ||||
\(47\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 0 | 0 | ||||||||
\(50\) | −13.2288 | −1.87083 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 5.29150 | − | 9.16515i | 0.726844 | − | 1.25893i | −0.231367 | − | 0.972867i | \(-0.574320\pi\) |
0.958211 | − | 0.286064i | \(-0.0923469\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 14.0000 | + | 24.2487i | 1.83829 | + | 3.18401i | ||||
\(59\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 13.0000 | 1.62500 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −2.00000 | + | 3.46410i | −0.244339 | + | 0.423207i | −0.961946 | − | 0.273241i | \(-0.911904\pi\) |
0.717607 | + | 0.696449i | \(0.245238\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −5.29150 | −0.627986 | −0.313993 | − | 0.949425i | \(-0.601667\pi\) | ||||
−0.313993 | + | 0.949425i | \(0.601667\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(74\) | −7.93725 | + | 13.7477i | −0.922687 | + | 1.59814i | ||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −4.00000 | − | 6.92820i | −0.450035 | − | 0.779484i | 0.548352 | − | 0.836247i | \(-0.315255\pi\) |
−0.998388 | + | 0.0567635i | \(0.981922\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | −15.8745 | − | 27.4955i | −1.71179 | − | 2.96491i | ||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 21.0000 | − | 36.3731i | 2.23861 | − | 3.87738i | ||||
\(89\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 26.4575 | 2.75839 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 12.5000 | + | 21.6506i | 1.25000 | + | 2.16506i | ||||
\(101\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | −28.0000 | −2.71960 | ||||||||
\(107\) | 2.64575 | + | 4.58258i | 0.255774 | + | 0.443014i | 0.965106 | − | 0.261861i | \(-0.0843362\pi\) |
−0.709331 | + | 0.704875i | \(0.751003\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 9.00000 | − | 15.5885i | 0.862044 | − | 1.49310i | −0.00790932 | − | 0.999969i | \(-0.502518\pi\) |
0.869953 | − | 0.493135i | \(-0.164149\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 21.1660 | 1.99113 | 0.995565 | − | 0.0940721i | \(-0.0299884\pi\) | ||||
0.995565 | + | 0.0940721i | \(0.0299884\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 26.4575 | − | 45.8258i | 2.45652 | − | 4.25481i | ||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −8.50000 | − | 14.7224i | −0.772727 | − | 1.33840i | ||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 16.0000 | 1.41977 | 0.709885 | − | 0.704317i | \(-0.248747\pi\) | ||||
0.709885 | + | 0.704317i | \(0.248747\pi\) | |||||||
\(128\) | −3.96863 | − | 6.87386i | −0.350780 | − | 0.607569i | ||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 10.5830 | 0.914232 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −10.5830 | + | 18.3303i | −0.904167 | + | 1.56606i | −0.0821359 | + | 0.996621i | \(0.526174\pi\) |
−0.822031 | + | 0.569442i | \(0.807159\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 7.00000 | + | 12.1244i | 0.587427 | + | 1.01745i | ||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 30.0000 | 2.46598 | ||||||||
\(149\) | −5.29150 | − | 9.16515i | −0.433497 | − | 0.750838i | 0.563675 | − | 0.825997i | \(-0.309387\pi\) |
−0.997172 | + | 0.0751583i | \(0.976054\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −12.0000 | + | 20.7846i | −0.976546 | + | 1.69143i | −0.301811 | + | 0.953368i | \(0.597591\pi\) |
−0.674735 | + | 0.738060i | \(0.735742\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(158\) | −10.5830 | + | 18.3303i | −0.841939 | + | 1.45828i | ||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 10.0000 | + | 17.3205i | 0.783260 | + | 1.35665i | 0.930033 | + | 0.367477i | \(0.119778\pi\) |
−0.146772 | + | 0.989170i | \(0.546888\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −13.0000 | −1.00000 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | −30.0000 | + | 51.9615i | −2.28748 | + | 3.96203i | ||||
\(173\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | −58.2065 | −4.38748 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −13.2288 | + | 22.9129i | −0.988764 | + | 1.71259i | −0.364922 | + | 0.931038i | \(0.618904\pi\) |
−0.623841 | + | 0.781551i | \(0.714429\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | −21.0000 | − | 36.3731i | −1.54814 | − | 2.68146i | ||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 13.2288 | + | 22.9129i | 0.957199 | + | 1.65792i | 0.729253 | + | 0.684244i | \(0.239868\pi\) |
0.227946 | + | 0.973674i | \(0.426799\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 9.00000 | − | 15.5885i | 0.647834 | − | 1.12208i | −0.335805 | − | 0.941932i | \(-0.609008\pi\) |
0.983639 | − | 0.180150i | \(-0.0576584\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 10.5830 | 0.754008 | 0.377004 | − | 0.926212i | \(-0.376954\pi\) | ||||
0.377004 | + | 0.926212i | \(0.376954\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(200\) | 19.8431 | − | 34.3693i | 1.40312 | − | 2.43028i | ||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 12.0000 | 0.826114 | 0.413057 | − | 0.910705i | \(-0.364461\pi\) | ||||
0.413057 | + | 0.910705i | \(0.364461\pi\) | |||||||
\(212\) | 26.4575 | + | 45.8258i | 1.81711 | + | 3.14733i | ||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 7.00000 | − | 12.1244i | 0.478510 | − | 0.828804i | ||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | −47.6235 | −3.22547 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | −28.0000 | − | 48.4974i | −1.86253 | − | 3.22600i | ||||
\(227\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | −84.0000 | −5.51487 | ||||||||
\(233\) | 10.5830 | + | 18.3303i | 0.693316 | + | 1.20086i | 0.970745 | + | 0.240112i | \(0.0771842\pi\) |
−0.277429 | + | 0.960746i | \(0.589482\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 26.4575 | 1.71139 | 0.855697 | − | 0.517477i | \(-0.173129\pi\) | ||||
0.855697 | + | 0.517477i | \(0.173129\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(242\) | −22.4889 | + | 38.9519i | −1.44564 | + | 2.50392i | ||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | −28.0000 | −1.76034 | ||||||||
\(254\) | −21.1660 | − | 36.6606i | −1.32807 | − | 2.30029i | ||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 2.50000 | − | 4.33013i | 0.156250 | − | 0.270633i | ||||
\(257\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −2.64575 | + | 4.58258i | −0.163144 | + | 0.282574i | −0.935995 | − | 0.352014i | \(-0.885497\pi\) |
0.772851 | + | 0.634588i | \(0.218830\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | −10.0000 | − | 17.3205i | −0.610847 | − | 1.05802i | ||||
\(269\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 56.0000 | 3.38308 | ||||||||
\(275\) | −13.2288 | − | 22.9129i | −0.797724 | − | 1.38170i | ||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 5.00000 | − | 8.66025i | 0.300421 | − | 0.520344i | −0.675810 | − | 0.737075i | \(-0.736206\pi\) |
0.976231 | + | 0.216731i | \(0.0695395\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −21.1660 | −1.26266 | −0.631329 | − | 0.775515i | \(-0.717490\pi\) | ||||
−0.631329 | + | 0.775515i | \(0.717490\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(284\) | 13.2288 | − | 22.9129i | 0.784982 | − | 1.35963i | ||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 8.50000 | + | 14.7224i | 0.500000 | + | 0.866025i | ||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | −23.8118 | − | 41.2432i | −1.38403 | − | 2.39721i | ||||
\(297\) | 0 | 0 | ||||||||
\(298\) | −14.0000 | + | 24.2487i | −0.810998 | + | 1.40469i | ||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 63.4980 | 3.65390 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 40.0000 | 2.25018 | ||||||||
\(317\) | 5.29150 | + | 9.16515i | 0.297200 | + | 0.514766i | 0.975494 | − | 0.220024i | \(-0.0706137\pi\) |
−0.678294 | + | 0.734791i | \(0.737280\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −28.0000 | + | 48.4974i | −1.56770 | + | 2.71533i | ||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 26.4575 | − | 45.8258i | 1.46535 | − | 2.53805i | ||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 18.0000 | + | 31.1769i | 0.989369 | + | 1.71364i | 0.620625 | + | 0.784107i | \(0.286879\pi\) |
0.368744 | + | 0.929531i | \(0.379788\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −30.0000 | −1.63420 | −0.817102 | − | 0.576493i | \(-0.804421\pi\) | ||||
−0.817102 | + | 0.576493i | \(0.804421\pi\) | |||||||
\(338\) | 17.1974 | + | 29.7867i | 0.935414 | + | 1.62019i | ||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 95.2470 | 5.13538 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 18.5203 | − | 32.0780i | 0.994220 | − | 1.72204i | 0.404128 | − | 0.914702i | \(-0.367575\pi\) |
0.590091 | − | 0.807337i | \(-0.299092\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 35.0000 | + | 60.6218i | 1.86551 | + | 3.23115i | ||||
\(353\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 70.0000 | 3.69961 | ||||||||
\(359\) | −18.5203 | − | 32.0780i | −0.977462 | − | 1.69301i | −0.671559 | − | 0.740951i | \(-0.734375\pi\) |
−0.305903 | − | 0.952063i | \(-0.598958\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 9.50000 | − | 16.4545i | 0.500000 | − | 0.866025i | ||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(368\) | −29.1033 | + | 50.4083i | −1.51711 | + | 2.62772i | ||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −11.0000 | − | 19.0526i | −0.569558 | − | 0.986504i | −0.996610 | − | 0.0822766i | \(-0.973781\pi\) |
0.427051 | − | 0.904227i | \(-0.359552\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 12.0000 | 0.616399 | 0.308199 | − | 0.951322i | \(-0.400274\pi\) | ||||
0.308199 | + | 0.951322i | \(0.400274\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 35.0000 | − | 60.6218i | 1.79076 | − | 3.10168i | ||||
\(383\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | −47.6235 | −2.42397 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −5.29150 | + | 9.16515i | −0.268290 | + | 0.464692i | −0.968420 | − | 0.249323i | \(-0.919792\pi\) |
0.700130 | + | 0.714015i | \(0.253125\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | −14.0000 | − | 24.2487i | −0.705310 | − | 1.22163i | ||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | −55.0000 | −2.75000 | ||||||||
\(401\) | −10.5830 | − | 18.3303i | −0.528490 | − | 0.915372i | −0.999448 | − | 0.0332161i | \(-0.989425\pi\) |
0.470958 | − | 0.882156i | \(-0.343908\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −31.7490 | −1.57374 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −26.0000 | −1.26716 | −0.633581 | − | 0.773676i | \(-0.718416\pi\) | ||||
−0.633581 | + | 0.773676i | \(0.718416\pi\) | |||||||
\(422\) | −15.8745 | − | 27.4955i | −0.772759 | − | 1.33846i | ||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 42.0000 | − | 72.7461i | 2.03970 | − | 3.53286i | ||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | −26.4575 | −1.27887 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 13.2288 | − | 22.9129i | 0.637207 | − | 1.10367i | −0.348836 | − | 0.937184i | \(-0.613423\pi\) |
0.986043 | − | 0.166491i | \(-0.0532436\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 45.0000 | + | 77.9423i | 2.15511 | + | 3.73276i | ||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 18.5203 | + | 32.0780i | 0.879924 | + | 1.52407i | 0.851423 | + | 0.524479i | \(0.175740\pi\) |
0.0285009 | + | 0.999594i | \(0.490927\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −42.3320 | −1.99777 | −0.998886 | − | 0.0471929i | \(-0.984972\pi\) | ||||
−0.998886 | + | 0.0471929i | \(0.984972\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | −52.9150 | + | 91.6515i | −2.48891 | + | 4.31092i | ||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −3.00000 | − | 5.19615i | −0.140334 | − | 0.243066i | 0.787288 | − | 0.616585i | \(-0.211484\pi\) |
−0.927622 | + | 0.373519i | \(0.878151\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −40.0000 | −1.85896 | −0.929479 | − | 0.368875i | \(-0.879743\pi\) | ||||
−0.929479 | + | 0.368875i | \(0.879743\pi\) | |||||||
\(464\) | 58.2065 | + | 100.817i | 2.70217 | + | 4.68030i | ||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 28.0000 | − | 48.4974i | 1.29707 | − | 2.24660i | ||||
\(467\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 31.7490 | − | 54.9909i | 1.45982 | − | 2.52848i | ||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | −35.0000 | − | 60.6218i | −1.60086 | − | 2.77278i | ||||
\(479\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 85.0000 | 3.86364 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −12.0000 | + | 20.7846i | −0.543772 | + | 0.941841i | 0.454911 | + | 0.890537i | \(0.349671\pi\) |
−0.998683 | + | 0.0513038i | \(0.983662\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 5.29150 | 0.238802 | 0.119401 | − | 0.992846i | \(-0.461903\pi\) | ||||
0.119401 | + | 0.992846i | \(0.461903\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 18.0000 | + | 31.1769i | 0.805791 | + | 1.39567i | 0.915756 | + | 0.401735i | \(0.131593\pi\) |
−0.109965 | + | 0.993935i | \(0.535074\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 37.0405 | + | 64.1561i | 1.64665 | + | 2.85208i | ||||
\(507\) | 0 | 0 | ||||||||
\(508\) | −40.0000 | + | 69.2820i | −1.77471 | + | 3.07389i | ||||
\(509\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | −29.1033 | −1.28619 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 14.0000 | 0.610429 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −2.50000 | + | 4.33013i | −0.108696 | + | 0.188266i | ||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | −15.8745 | + | 27.4955i | −0.685674 | + | 1.18762i | ||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 17.0000 | + | 29.4449i | 0.730887 | + | 1.26593i | 0.956504 | + | 0.291718i | \(0.0942267\pi\) |
−0.225617 | + | 0.974216i | \(0.572440\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 44.0000 | 1.88130 | 0.940652 | − | 0.339372i | \(-0.110215\pi\) | ||||
0.940652 | + | 0.339372i | \(0.110215\pi\) | |||||||
\(548\) | −52.9150 | − | 91.6515i | −2.26042 | − | 3.91516i | ||||
\(549\) | 0 | 0 | ||||||||
\(550\) | −35.0000 | + | 60.6218i | −1.49241 | + | 2.58492i | ||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | −26.4575 | −1.12407 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | −5.29150 | + | 9.16515i | −0.224208 | + | 0.388340i | −0.956082 | − | 0.293101i | \(-0.905313\pi\) |
0.731873 | + | 0.681441i | \(0.238646\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 28.0000 | + | 48.4974i | 1.18111 | + | 2.04574i | ||||
\(563\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | −42.0000 | −1.76228 | ||||||||
\(569\) | −21.1660 | − | 36.6606i | −0.887325 | − | 1.53689i | −0.843025 | − | 0.537874i | \(-0.819228\pi\) |
−0.0443003 | − | 0.999018i | \(-0.514106\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −2.00000 | + | 3.46410i | −0.0836974 | + | 0.144968i | −0.904835 | − | 0.425762i | \(-0.860006\pi\) |
0.821138 | + | 0.570730i | \(0.193340\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | −26.4575 | −1.10335 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(578\) | 22.4889 | − | 38.9519i | 0.935414 | − | 1.62019i | ||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −28.0000 | − | 48.4974i | −1.15964 | − | 2.00856i | ||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | −33.0000 | + | 57.1577i | −1.35629 | + | 2.34917i | ||||
\(593\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 52.9150 | 2.16748 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −18.5203 | + | 32.0780i | −0.756717 | + | 1.31067i | 0.187799 | + | 0.982208i | \(0.439865\pi\) |
−0.944516 | + | 0.328465i | \(0.893469\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | −60.0000 | − | 103.923i | −2.44137 | − | 4.22857i | ||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 19.0000 | − | 32.9090i | 0.767403 | − | 1.32918i | −0.171564 | − | 0.985173i | \(-0.554882\pi\) |
0.938967 | − | 0.344008i | \(-0.111785\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 42.3320 | 1.70422 | 0.852111 | − | 0.523360i | \(-0.175322\pi\) | ||||
0.852111 | + | 0.523360i | \(0.175322\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −12.5000 | − | 21.6506i | −0.500000 | − | 0.866025i | ||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 16.0000 | 0.636950 | 0.318475 | − | 0.947931i | \(-0.396829\pi\) | ||||
0.318475 | + | 0.947931i | \(0.396829\pi\) | |||||||
\(632\) | −31.7490 | − | 54.9909i | −1.26291 | − | 2.18742i | ||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 14.0000 | − | 24.2487i | 0.556011 | − | 0.963039i | ||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 148.162 | 5.86579 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 10.5830 | − | 18.3303i | 0.418004 | − | 0.724003i | −0.577735 | − | 0.816224i | \(-0.696063\pi\) |
0.995739 | + | 0.0922210i | \(0.0293966\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | −100.000 | −3.91630 | ||||||||
\(653\) | 5.29150 | + | 9.16515i | 0.207072 | + | 0.358660i | 0.950791 | − | 0.309833i | \(-0.100273\pi\) |
−0.743719 | + | 0.668493i | \(0.766940\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −26.4575 | −1.03064 | −0.515319 | − | 0.856998i | \(-0.672327\pi\) | ||||
−0.515319 | + | 0.856998i | \(0.672327\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(662\) | 47.6235 | − | 82.4864i | 1.85094 | − | 3.20592i | ||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 28.0000 | + | 48.4974i | 1.08416 | + | 1.87783i | ||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −30.0000 | −1.15642 | −0.578208 | − | 0.815890i | \(-0.696248\pi\) | ||||
−0.578208 | + | 0.815890i | \(0.696248\pi\) | |||||||
\(674\) | 39.6863 | + | 68.7386i | 1.52866 | + | 2.64771i | ||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 32.5000 | − | 56.2917i | 1.25000 | − | 2.16506i | ||||
\(677\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −2.64575 | + | 4.58258i | −0.101237 | + | 0.175347i | −0.912194 | − | 0.409757i | \(-0.865613\pi\) |
0.810958 | + | 0.585105i | \(0.198947\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | −66.0000 | − | 114.315i | −2.51623 | − | 4.35823i | ||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | −98.0000 | −3.72003 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 52.9150 | 1.99857 | 0.999286 | − | 0.0377695i | \(-0.0120253\pi\) | ||||
0.999286 | + | 0.0377695i | \(0.0120253\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 0 | 0 | ||||||||
\(704\) | 34.3948 | − | 59.5735i | 1.29630 | − | 2.24526i | ||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −3.00000 | − | 5.19615i | −0.112667 | − | 0.195146i | 0.804178 | − | 0.594389i | \(-0.202606\pi\) |
−0.916845 | + | 0.399244i | \(0.869273\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | −66.1438 | − | 114.564i | −2.47191 | − | 4.28147i | ||||
\(717\) | 0 | 0 | ||||||||
\(718\) | −49.0000 | + | 84.8705i | −1.82866 | + | 3.16734i | ||||
\(719\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | −50.2693 | −1.87083 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | −26.4575 | + | 45.8258i | −0.982607 | + | 1.70193i | ||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 70.0000 | 2.58023 | ||||||||
\(737\) | 10.5830 | + | 18.3303i | 0.389830 | + | 0.675205i | ||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 26.0000 | − | 45.0333i | 0.956425 | − | 1.65658i | 0.225354 | − | 0.974277i | \(-0.427646\pi\) |
0.731072 | − | 0.682300i | \(-0.239020\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 37.0405 | 1.35888 | 0.679442 | − | 0.733729i | \(-0.262222\pi\) | ||||
0.679442 | + | 0.733729i | \(0.262222\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | −29.1033 | + | 50.4083i | −1.06555 | + | 1.84558i | ||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −24.0000 | − | 41.5692i | −0.875772 | − | 1.51688i | −0.855938 | − | 0.517079i | \(-0.827019\pi\) |
−0.0198348 | − | 0.999803i | \(-0.506314\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 54.0000 | 1.96266 | 0.981332 | − | 0.192323i | \(-0.0616021\pi\) | ||||
0.981332 | + | 0.192323i | \(0.0616021\pi\) | |||||||
\(758\) | −15.8745 | − | 27.4955i | −0.576588 | − | 0.998680i | ||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 0 | 0 | 0.866025 | − | 0.500000i | \(-0.166667\pi\) | ||||
−0.866025 | + | 0.500000i | \(0.833333\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | −132.288 | −4.78600 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 45.0000 | + | 77.9423i | 1.61959 | + | 2.80520i | ||||
\(773\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 28.0000 | 1.00385 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −14.0000 | + | 24.2487i | −0.500959 | + | 0.867687i | ||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 0 | 0 | −0.866025 | − | 0.500000i | \(-0.833333\pi\) | ||||
0.866025 | + | 0.500000i | \(0.166667\pi\) | |||||||
\(788\) | −26.4575 | + | 45.8258i | −0.942510 | + | 1.63247i | ||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 33.0719 | + | 57.2822i | 1.16927 | + |