Properties

Label 441.2.c.b
Level $441$
Weight $2$
Character orbit 441.c
Analytic conductor $3.521$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Defining polynomial: \(x^{8} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 7^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{16}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -\zeta_{16}^{2} + \zeta_{16}^{4} - \zeta_{16}^{6} ) q^{2} + ( -1 + 2 \zeta_{16}^{2} - 2 \zeta_{16}^{6} ) q^{4} + ( 2 \zeta_{16} - \zeta_{16}^{3} + \zeta_{16}^{5} - 2 \zeta_{16}^{7} ) q^{5} + ( \zeta_{16}^{2} - 3 \zeta_{16}^{4} + \zeta_{16}^{6} ) q^{8} +O(q^{10})\) \( q + ( -\zeta_{16}^{2} + \zeta_{16}^{4} - \zeta_{16}^{6} ) q^{2} + ( -1 + 2 \zeta_{16}^{2} - 2 \zeta_{16}^{6} ) q^{4} + ( 2 \zeta_{16} - \zeta_{16}^{3} + \zeta_{16}^{5} - 2 \zeta_{16}^{7} ) q^{5} + ( \zeta_{16}^{2} - 3 \zeta_{16}^{4} + \zeta_{16}^{6} ) q^{8} + ( -4 \zeta_{16} + \zeta_{16}^{3} + \zeta_{16}^{5} - 4 \zeta_{16}^{7} ) q^{10} + ( -2 \zeta_{16}^{2} - 2 \zeta_{16}^{4} - 2 \zeta_{16}^{6} ) q^{11} + ( -\zeta_{16} + 2 \zeta_{16}^{3} + 2 \zeta_{16}^{5} - \zeta_{16}^{7} ) q^{13} + 3 q^{16} + ( -3 \zeta_{16} - 2 \zeta_{16}^{3} + 2 \zeta_{16}^{5} + 3 \zeta_{16}^{7} ) q^{17} + ( -2 \zeta_{16} + 4 \zeta_{16}^{3} + 4 \zeta_{16}^{5} - 2 \zeta_{16}^{7} ) q^{19} + ( 7 \zeta_{16}^{3} - 7 \zeta_{16}^{5} ) q^{20} -2 q^{22} + 2 \zeta_{16}^{4} q^{23} + ( 5 - \zeta_{16}^{2} + \zeta_{16}^{6} ) q^{25} + ( -\zeta_{16} + 4 \zeta_{16}^{3} - 4 \zeta_{16}^{5} + \zeta_{16}^{7} ) q^{26} + ( 2 \zeta_{16}^{2} - 2 \zeta_{16}^{4} + 2 \zeta_{16}^{6} ) q^{29} + ( 2 \zeta_{16} - 4 \zeta_{16}^{3} - 4 \zeta_{16}^{5} + 2 \zeta_{16}^{7} ) q^{31} + ( -\zeta_{16}^{2} - 3 \zeta_{16}^{4} - \zeta_{16}^{6} ) q^{32} + ( -\zeta_{16} + 2 \zeta_{16}^{3} + 2 \zeta_{16}^{5} - \zeta_{16}^{7} ) q^{34} + ( -4 - \zeta_{16}^{2} + \zeta_{16}^{6} ) q^{37} + ( -2 \zeta_{16} + 8 \zeta_{16}^{3} - 8 \zeta_{16}^{5} + 2 \zeta_{16}^{7} ) q^{38} + ( 6 \zeta_{16} - 5 \zeta_{16}^{3} - 5 \zeta_{16}^{5} + 6 \zeta_{16}^{7} ) q^{40} + ( \zeta_{16} - 4 \zeta_{16}^{3} + 4 \zeta_{16}^{5} - \zeta_{16}^{7} ) q^{41} + ( -4 + 6 \zeta_{16}^{2} - 6 \zeta_{16}^{6} ) q^{43} + ( -2 \zeta_{16}^{2} - 6 \zeta_{16}^{4} - 2 \zeta_{16}^{6} ) q^{44} + ( -2 + 2 \zeta_{16}^{2} - 2 \zeta_{16}^{6} ) q^{46} + ( 4 \zeta_{16} - 2 \zeta_{16}^{3} + 2 \zeta_{16}^{5} - 4 \zeta_{16}^{7} ) q^{47} + ( -6 \zeta_{16}^{2} + 7 \zeta_{16}^{4} - 6 \zeta_{16}^{6} ) q^{50} + ( 7 \zeta_{16} + 7 \zeta_{16}^{7} ) q^{52} + ( 5 \zeta_{16}^{2} + 5 \zeta_{16}^{6} ) q^{53} + ( -4 \zeta_{16} - 6 \zeta_{16}^{3} - 6 \zeta_{16}^{5} - 4 \zeta_{16}^{7} ) q^{55} + ( 6 - 4 \zeta_{16}^{2} + 4 \zeta_{16}^{6} ) q^{58} + ( 4 \zeta_{16} - 2 \zeta_{16}^{3} + 2 \zeta_{16}^{5} - 4 \zeta_{16}^{7} ) q^{59} + ( 4 \zeta_{16} - \zeta_{16}^{3} - \zeta_{16}^{5} + 4 \zeta_{16}^{7} ) q^{61} + ( 2 \zeta_{16} - 8 \zeta_{16}^{3} + 8 \zeta_{16}^{5} - 2 \zeta_{16}^{7} ) q^{62} + ( 7 - 2 \zeta_{16}^{2} + 2 \zeta_{16}^{6} ) q^{64} + ( -\zeta_{16}^{2} + 10 \zeta_{16}^{4} - \zeta_{16}^{6} ) q^{65} + ( -6 \zeta_{16}^{2} + 6 \zeta_{16}^{6} ) q^{67} + ( -7 \zeta_{16} + 7 \zeta_{16}^{7} ) q^{68} + ( -2 \zeta_{16}^{2} + 2 \zeta_{16}^{4} - 2 \zeta_{16}^{6} ) q^{71} + ( 2 \zeta_{16} + 3 \zeta_{16}^{3} + 3 \zeta_{16}^{5} + 2 \zeta_{16}^{7} ) q^{73} + ( 3 \zeta_{16}^{2} - 2 \zeta_{16}^{4} + 3 \zeta_{16}^{6} ) q^{74} + ( 14 \zeta_{16} + 14 \zeta_{16}^{7} ) q^{76} + ( -4 + 4 \zeta_{16}^{2} - 4 \zeta_{16}^{6} ) q^{79} + ( 6 \zeta_{16} - 3 \zeta_{16}^{3} + 3 \zeta_{16}^{5} - 6 \zeta_{16}^{7} ) q^{80} + ( -9 \zeta_{16} + 4 \zeta_{16}^{3} + 4 \zeta_{16}^{5} - 9 \zeta_{16}^{7} ) q^{82} + ( -8 \zeta_{16} + 4 \zeta_{16}^{3} - 4 \zeta_{16}^{5} + 8 \zeta_{16}^{7} ) q^{83} + ( -8 - 9 \zeta_{16}^{2} + 9 \zeta_{16}^{6} ) q^{85} + ( 10 \zeta_{16}^{2} - 16 \zeta_{16}^{4} + 10 \zeta_{16}^{6} ) q^{86} + ( -2 - 4 \zeta_{16}^{2} + 4 \zeta_{16}^{6} ) q^{88} + ( -4 \zeta_{16} - 5 \zeta_{16}^{3} + 5 \zeta_{16}^{5} + 4 \zeta_{16}^{7} ) q^{89} + ( 4 \zeta_{16}^{2} - 2 \zeta_{16}^{4} + 4 \zeta_{16}^{6} ) q^{92} + ( -8 \zeta_{16} + 2 \zeta_{16}^{3} + 2 \zeta_{16}^{5} - 8 \zeta_{16}^{7} ) q^{94} + ( -2 \zeta_{16}^{2} + 20 \zeta_{16}^{4} - 2 \zeta_{16}^{6} ) q^{95} + ( -2 \zeta_{16} - 3 \zeta_{16}^{3} - 3 \zeta_{16}^{5} - 2 \zeta_{16}^{7} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 8q^{4} + O(q^{10}) \) \( 8q - 8q^{4} + 24q^{16} - 16q^{22} + 40q^{25} - 32q^{37} - 32q^{43} - 16q^{46} + 48q^{58} + 56q^{64} - 32q^{79} - 64q^{85} - 16q^{88} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
440.1
−0.382683 0.923880i
0.382683 + 0.923880i
−0.923880 0.382683i
0.923880 + 0.382683i
−0.923880 + 0.382683i
0.923880 0.382683i
−0.382683 + 0.923880i
0.382683 0.923880i
2.41421i 0 −3.82843 −3.37849 0 0 4.41421i 0 8.15640i
440.2 2.41421i 0 −3.82843 3.37849 0 0 4.41421i 0 8.15640i
440.3 0.414214i 0 1.82843 −2.93015 0 0 1.58579i 0 1.21371i
440.4 0.414214i 0 1.82843 2.93015 0 0 1.58579i 0 1.21371i
440.5 0.414214i 0 1.82843 −2.93015 0 0 1.58579i 0 1.21371i
440.6 0.414214i 0 1.82843 2.93015 0 0 1.58579i 0 1.21371i
440.7 2.41421i 0 −3.82843 −3.37849 0 0 4.41421i 0 8.15640i
440.8 2.41421i 0 −3.82843 3.37849 0 0 4.41421i 0 8.15640i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 440.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 441.2.c.b 8
3.b odd 2 1 inner 441.2.c.b 8
4.b odd 2 1 7056.2.k.g 8
7.b odd 2 1 inner 441.2.c.b 8
7.c even 3 2 441.2.p.c 16
7.d odd 6 2 441.2.p.c 16
12.b even 2 1 7056.2.k.g 8
21.c even 2 1 inner 441.2.c.b 8
21.g even 6 2 441.2.p.c 16
21.h odd 6 2 441.2.p.c 16
28.d even 2 1 7056.2.k.g 8
84.h odd 2 1 7056.2.k.g 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
441.2.c.b 8 1.a even 1 1 trivial
441.2.c.b 8 3.b odd 2 1 inner
441.2.c.b 8 7.b odd 2 1 inner
441.2.c.b 8 21.c even 2 1 inner
441.2.p.c 16 7.c even 3 2
441.2.p.c 16 7.d odd 6 2
441.2.p.c 16 21.g even 6 2
441.2.p.c 16 21.h odd 6 2
7056.2.k.g 8 4.b odd 2 1
7056.2.k.g 8 12.b even 2 1
7056.2.k.g 8 28.d even 2 1
7056.2.k.g 8 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 6 T_{2}^{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(441, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + 6 T^{2} + T^{4} )^{2} \)
$3$ \( T^{8} \)
$5$ \( ( 98 - 20 T^{2} + T^{4} )^{2} \)
$7$ \( T^{8} \)
$11$ \( ( 16 + 24 T^{2} + T^{4} )^{2} \)
$13$ \( ( 98 + 20 T^{2} + T^{4} )^{2} \)
$17$ \( ( 98 - 52 T^{2} + T^{4} )^{2} \)
$19$ \( ( 1568 + 80 T^{2} + T^{4} )^{2} \)
$23$ \( ( 4 + T^{2} )^{4} \)
$29$ \( ( 16 + 24 T^{2} + T^{4} )^{2} \)
$31$ \( ( 1568 + 80 T^{2} + T^{4} )^{2} \)
$37$ \( ( 14 + 8 T + T^{2} )^{4} \)
$41$ \( ( 98 - 68 T^{2} + T^{4} )^{2} \)
$43$ \( ( -56 + 8 T + T^{2} )^{4} \)
$47$ \( ( 1568 - 80 T^{2} + T^{4} )^{2} \)
$53$ \( ( 50 + T^{2} )^{4} \)
$59$ \( ( 1568 - 80 T^{2} + T^{4} )^{2} \)
$61$ \( ( 98 + 68 T^{2} + T^{4} )^{2} \)
$67$ \( ( -72 + T^{2} )^{4} \)
$71$ \( ( 16 + 24 T^{2} + T^{4} )^{2} \)
$73$ \( ( 98 + 52 T^{2} + T^{4} )^{2} \)
$79$ \( ( -16 + 8 T + T^{2} )^{4} \)
$83$ \( ( 25088 - 320 T^{2} + T^{4} )^{2} \)
$89$ \( ( 4802 - 164 T^{2} + T^{4} )^{2} \)
$97$ \( ( 98 + 52 T^{2} + T^{4} )^{2} \)
show more
show less