# Properties

 Label 441.2.bn.a.5.2 Level $441$ Weight $2$ Character 441.5 Analytic conductor $3.521$ Analytic rank $0$ Dimension $648$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$441 = 3^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 441.bn (of order $$42$$, degree $$12$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.52140272914$$ Analytic rank: $$0$$ Dimension: $$648$$ Relative dimension: $$54$$ over $$\Q(\zeta_{42})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{42}]$

## Embedding invariants

 Embedding label 5.2 Character $$\chi$$ $$=$$ 441.5 Dual form 441.2.bn.a.353.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-2.15589 + 1.71927i) q^{2} +(-1.44111 - 0.960829i) q^{3} +(1.24695 - 5.46324i) q^{4} +(-1.16954 - 0.797380i) q^{5} +(4.75880 - 0.406215i) q^{6} +(1.71430 - 2.01524i) q^{7} +(4.31162 + 8.95316i) q^{8} +(1.15362 + 2.76933i) q^{9} +O(q^{10})$$ $$q+(-2.15589 + 1.71927i) q^{2} +(-1.44111 - 0.960829i) q^{3} +(1.24695 - 5.46324i) q^{4} +(-1.16954 - 0.797380i) q^{5} +(4.75880 - 0.406215i) q^{6} +(1.71430 - 2.01524i) q^{7} +(4.31162 + 8.95316i) q^{8} +(1.15362 + 2.76933i) q^{9} +(3.89231 - 0.291689i) q^{10} +(0.0494234 + 0.327903i) q^{11} +(-7.04623 + 6.67505i) q^{12} +(-0.0685054 - 0.454504i) q^{13} +(-0.231119 + 7.29196i) q^{14} +(0.919297 + 2.27285i) q^{15} +(-14.5906 - 7.02649i) q^{16} +(1.77059 - 1.64287i) q^{17} +(-7.24828 - 3.98699i) q^{18} +(4.18608 + 2.41683i) q^{19} +(-5.81464 + 5.39520i) q^{20} +(-4.40680 + 1.25704i) q^{21} +(-0.670303 - 0.621950i) q^{22} +(-2.02294 - 6.55820i) q^{23} +(2.38893 - 17.0452i) q^{24} +(-1.09469 - 2.78923i) q^{25} +(0.929102 + 0.862081i) q^{26} +(0.998355 - 5.09934i) q^{27} +(-8.87207 - 11.8785i) q^{28} +(-1.43127 - 1.54255i) q^{29} +(-5.88953 - 3.31949i) q^{30} +8.28618i q^{31} +(24.1600 - 5.51436i) q^{32} +(0.243833 - 0.520032i) q^{33} +(-0.992675 + 6.58597i) q^{34} +(-3.61186 + 0.989954i) q^{35} +(16.5680 - 2.84928i) q^{36} +(-8.11144 - 2.50205i) q^{37} +(-13.1799 + 1.98655i) q^{38} +(-0.337976 + 0.720813i) q^{39} +(2.09646 - 13.9091i) q^{40} +(-0.100337 + 1.33890i) q^{41} +(7.33940 - 10.2865i) q^{42} +(-0.468804 - 6.25575i) q^{43} +(1.85304 + 0.138866i) q^{44} +(0.859003 - 4.15872i) q^{45} +(15.6365 + 10.6608i) q^{46} +(5.40906 + 6.78275i) q^{47} +(14.2755 + 24.1451i) q^{48} +(-1.12235 - 6.90944i) q^{49} +(7.15546 + 4.13121i) q^{50} +(-4.13014 + 0.666326i) q^{51} +(-2.56848 - 0.192481i) q^{52} +(-2.76079 - 8.95026i) q^{53} +(6.61478 + 12.7101i) q^{54} +(0.203660 - 0.422905i) q^{55} +(25.4341 + 6.65949i) q^{56} +(-3.71045 - 7.50504i) q^{57} +(5.73771 + 0.864821i) q^{58} +(-8.56762 - 4.12595i) q^{59} +(13.5634 - 2.18822i) q^{60} +(10.0052 - 2.28363i) q^{61} +(-14.2461 - 17.8641i) q^{62} +(7.55849 + 2.42265i) q^{63} +(-22.4116 + 28.1032i) q^{64} +(-0.282292 + 0.586186i) q^{65} +(0.368395 + 1.54035i) q^{66} -14.6741 q^{67} +(-6.76755 - 11.7217i) q^{68} +(-3.38602 + 11.3948i) q^{69} +(6.08477 - 8.34397i) q^{70} +(-6.85811 - 1.56532i) q^{71} +(-19.8203 + 22.2688i) q^{72} +(0.873201 - 5.79331i) q^{73} +(21.7891 - 8.55158i) q^{74} +(-1.10240 + 5.07141i) q^{75} +(18.4236 - 19.8559i) q^{76} +(0.745527 + 0.462524i) q^{77} +(-0.510630 - 2.13506i) q^{78} +0.748846 q^{79} +(11.4616 + 19.8521i) q^{80} +(-6.33834 + 6.38948i) q^{81} +(-2.08562 - 3.05904i) q^{82} +(-2.02882 - 0.305796i) q^{83} +(1.37243 + 25.6428i) q^{84} +(-3.38078 + 0.509570i) q^{85} +(11.7660 + 12.6807i) q^{86} +(0.580505 + 3.59819i) q^{87} +(-2.72267 + 1.85629i) q^{88} +(-4.01175 - 10.2218i) q^{89} +(5.29802 + 10.4426i) q^{90} +(-1.03337 - 0.641101i) q^{91} +(-38.3515 + 2.87405i) q^{92} +(7.96159 - 11.9413i) q^{93} +(-23.3227 - 5.32325i) q^{94} +(-2.96866 - 6.16449i) q^{95} +(-40.1157 - 15.2668i) q^{96} +(-7.31521 + 4.22344i) q^{97} +(14.2988 + 12.9664i) q^{98} +(-0.851054 + 0.515143i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$648 q - 21 q^{2} - 11 q^{3} + 99 q^{4} - 18 q^{5} - 34 q^{6} - 5 q^{7} - 23 q^{9}+O(q^{10})$$ 648 * q - 21 * q^2 - 11 * q^3 + 99 * q^4 - 18 * q^5 - 34 * q^6 - 5 * q^7 - 23 * q^9 $$648 q - 21 q^{2} - 11 q^{3} + 99 q^{4} - 18 q^{5} - 34 q^{6} - 5 q^{7} - 23 q^{9} - 22 q^{10} - 18 q^{11} - 72 q^{12} - 4 q^{13} + 66 q^{14} - 10 q^{15} - 105 q^{16} - 9 q^{17} - 27 q^{18} - 36 q^{19} - 27 q^{20} - 11 q^{21} - 9 q^{22} - 27 q^{23} - 8 q^{24} + 38 q^{25} + 6 q^{26} - 29 q^{27} - 26 q^{28} + 3 q^{29} - 16 q^{30} - 21 q^{32} - 11 q^{33} - 13 q^{34} + 28 q^{36} - 13 q^{37} - 90 q^{38} - 15 q^{39} - 31 q^{40} - 27 q^{41} - 4 q^{42} - 9 q^{43} + 51 q^{44} - 11 q^{45} - 108 q^{46} + 75 q^{47} - 15 q^{48} - 13 q^{49} - 45 q^{50} - 38 q^{51} + 64 q^{52} - 12 q^{53} - 41 q^{54} + 14 q^{55} + 3 q^{56} - 7 q^{57} - 90 q^{58} + 15 q^{59} - 69 q^{60} - 56 q^{61} + 66 q^{62} + 13 q^{63} + 64 q^{64} - 21 q^{65} - 204 q^{66} - 26 q^{67} + 3 q^{68} + 58 q^{69} - 22 q^{70} - 63 q^{71} - 18 q^{72} - 22 q^{73} - 12 q^{74} + 118 q^{75} - 63 q^{76} - 69 q^{77} - 147 q^{78} - 2 q^{79} - 45 q^{80} + 29 q^{81} - 28 q^{82} - 51 q^{83} - 31 q^{84} - 10 q^{85} - 72 q^{86} - 67 q^{87} + 4 q^{88} + 132 q^{89} + 58 q^{90} - 13 q^{91} - 15 q^{92} + 217 q^{93} - 7 q^{94} - 21 q^{95} - 44 q^{96} + 3 q^{97} + 21 q^{98} - 148 q^{99}+O(q^{100})$$ 648 * q - 21 * q^2 - 11 * q^3 + 99 * q^4 - 18 * q^5 - 34 * q^6 - 5 * q^7 - 23 * q^9 - 22 * q^10 - 18 * q^11 - 72 * q^12 - 4 * q^13 + 66 * q^14 - 10 * q^15 - 105 * q^16 - 9 * q^17 - 27 * q^18 - 36 * q^19 - 27 * q^20 - 11 * q^21 - 9 * q^22 - 27 * q^23 - 8 * q^24 + 38 * q^25 + 6 * q^26 - 29 * q^27 - 26 * q^28 + 3 * q^29 - 16 * q^30 - 21 * q^32 - 11 * q^33 - 13 * q^34 + 28 * q^36 - 13 * q^37 - 90 * q^38 - 15 * q^39 - 31 * q^40 - 27 * q^41 - 4 * q^42 - 9 * q^43 + 51 * q^44 - 11 * q^45 - 108 * q^46 + 75 * q^47 - 15 * q^48 - 13 * q^49 - 45 * q^50 - 38 * q^51 + 64 * q^52 - 12 * q^53 - 41 * q^54 + 14 * q^55 + 3 * q^56 - 7 * q^57 - 90 * q^58 + 15 * q^59 - 69 * q^60 - 56 * q^61 + 66 * q^62 + 13 * q^63 + 64 * q^64 - 21 * q^65 - 204 * q^66 - 26 * q^67 + 3 * q^68 + 58 * q^69 - 22 * q^70 - 63 * q^71 - 18 * q^72 - 22 * q^73 - 12 * q^74 + 118 * q^75 - 63 * q^76 - 69 * q^77 - 147 * q^78 - 2 * q^79 - 45 * q^80 + 29 * q^81 - 28 * q^82 - 51 * q^83 - 31 * q^84 - 10 * q^85 - 72 * q^86 - 67 * q^87 + 4 * q^88 + 132 * q^89 + 58 * q^90 - 13 * q^91 - 15 * q^92 + 217 * q^93 - 7 * q^94 - 21 * q^95 - 44 * q^96 + 3 * q^97 + 21 * q^98 - 148 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/441\mathbb{Z}\right)^\times$$.

 $$n$$ $$199$$ $$344$$ $$\chi(n)$$ $$e\left(\frac{29}{42}\right)$$ $$e\left(\frac{5}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −2.15589 + 1.71927i −1.52444 + 1.21570i −0.623459 + 0.781856i $$0.714273\pi$$
−0.900986 + 0.433848i $$0.857156\pi$$
$$3$$ −1.44111 0.960829i −0.832027 0.554735i
$$4$$ 1.24695 5.46324i 0.623474 2.73162i
$$5$$ −1.16954 0.797380i −0.523035 0.356599i 0.272841 0.962059i $$-0.412037\pi$$
−0.795876 + 0.605460i $$0.792989\pi$$
$$6$$ 4.75880 0.406215i 1.94277 0.165837i
$$7$$ 1.71430 2.01524i 0.647945 0.761688i
$$8$$ 4.31162 + 8.95316i 1.52439 + 3.16542i
$$9$$ 1.15362 + 2.76933i 0.384539 + 0.923109i
$$10$$ 3.89231 0.291689i 1.23086 0.0922400i
$$11$$ 0.0494234 + 0.327903i 0.0149017 + 0.0988663i 0.995045 0.0994227i $$-0.0316996\pi$$
−0.980144 + 0.198289i $$0.936462\pi$$
$$12$$ −7.04623 + 6.67505i −2.03407 + 1.92692i
$$13$$ −0.0685054 0.454504i −0.0190000 0.126057i 0.977320 0.211767i $$-0.0679220\pi$$
−0.996320 + 0.0857109i $$0.972684\pi$$
$$14$$ −0.231119 + 7.29196i −0.0617690 + 1.94886i
$$15$$ 0.919297 + 2.27285i 0.237362 + 0.586846i
$$16$$ −14.5906 7.02649i −3.64766 1.75662i
$$17$$ 1.77059 1.64287i 0.429432 0.398455i −0.435625 0.900128i $$-0.643473\pi$$
0.865057 + 0.501674i $$0.167282\pi$$
$$18$$ −7.24828 3.98699i −1.70844 0.939743i
$$19$$ 4.18608 + 2.41683i 0.960352 + 0.554460i 0.896281 0.443486i $$-0.146258\pi$$
0.0640709 + 0.997945i $$0.479592\pi$$
$$20$$ −5.81464 + 5.39520i −1.30019 + 1.20640i
$$21$$ −4.40680 + 1.25704i −0.961642 + 0.274308i
$$22$$ −0.670303 0.621950i −0.142909 0.132600i
$$23$$ −2.02294 6.55820i −0.421811 1.36748i −0.878453 0.477829i $$-0.841424\pi$$
0.456642 0.889651i $$-0.349052\pi$$
$$24$$ 2.38893 17.0452i 0.487637 3.47935i
$$25$$ −1.09469 2.78923i −0.218938 0.557846i
$$26$$ 0.929102 + 0.862081i 0.182212 + 0.169068i
$$27$$ 0.998355 5.09934i 0.192133 0.981369i
$$28$$ −8.87207 11.8785i −1.67666 2.24483i
$$29$$ −1.43127 1.54255i −0.265781 0.286443i 0.586034 0.810286i $$-0.300688\pi$$
−0.851815 + 0.523843i $$0.824498\pi$$
$$30$$ −5.88953 3.31949i −1.07528 0.606053i
$$31$$ 8.28618i 1.48824i 0.668045 + 0.744121i $$0.267131\pi$$
−0.668045 + 0.744121i $$0.732869\pi$$
$$32$$ 24.1600 5.51436i 4.27093 0.974811i
$$33$$ 0.243833 0.520032i 0.0424460 0.0905260i
$$34$$ −0.992675 + 6.58597i −0.170242 + 1.12948i
$$35$$ −3.61186 + 0.989954i −0.610515 + 0.167333i
$$36$$ 16.5680 2.84928i 2.76133 0.474880i
$$37$$ −8.11144 2.50205i −1.33351 0.411334i −0.455613 0.890178i $$-0.650580\pi$$
−0.877900 + 0.478844i $$0.841056\pi$$
$$38$$ −13.1799 + 1.98655i −2.13806 + 0.322261i
$$39$$ −0.337976 + 0.720813i −0.0541195 + 0.115422i
$$40$$ 2.09646 13.9091i 0.331479 2.19922i
$$41$$ −0.100337 + 1.33890i −0.0156700 + 0.209102i 0.983873 + 0.178869i $$0.0572438\pi$$
−0.999543 + 0.0302326i $$0.990375\pi$$
$$42$$ 7.33940 10.2865i 1.13249 1.58724i
$$43$$ −0.468804 6.25575i −0.0714919 0.953993i −0.911468 0.411370i $$-0.865050\pi$$
0.839976 0.542623i $$-0.182569\pi$$
$$44$$ 1.85304 + 0.138866i 0.279356 + 0.0209348i
$$45$$ 0.859003 4.15872i 0.128053 0.619945i
$$46$$ 15.6365 + 10.6608i 2.30548 + 1.57185i
$$47$$ 5.40906 + 6.78275i 0.788993 + 0.989366i 0.999930 + 0.0118662i $$0.00377723\pi$$
−0.210937 + 0.977500i $$0.567651\pi$$
$$48$$ 14.2755 + 24.1451i 2.06050 + 3.48504i
$$49$$ −1.12235 6.90944i −0.160336 0.987063i
$$50$$ 7.15546 + 4.13121i 1.01193 + 0.584241i
$$51$$ −4.13014 + 0.666326i −0.578336 + 0.0933043i
$$52$$ −2.56848 0.192481i −0.356185 0.0266924i
$$53$$ −2.76079 8.95026i −0.379224 1.22941i −0.921223 0.389034i $$-0.872809\pi$$
0.542000 0.840379i $$-0.317667\pi$$
$$54$$ 6.61478 + 12.7101i 0.900157 + 1.72962i
$$55$$ 0.203660 0.422905i 0.0274616 0.0570245i
$$56$$ 25.4341 + 6.65949i 3.39878 + 0.889911i
$$57$$ −3.71045 7.50504i −0.491461 0.994066i
$$58$$ 5.73771 + 0.864821i 0.753399 + 0.113557i
$$59$$ −8.56762 4.12595i −1.11541 0.537153i −0.216938 0.976185i $$-0.569607\pi$$
−0.898471 + 0.439033i $$0.855321\pi$$
$$60$$ 13.5634 2.18822i 1.75103 0.282498i
$$61$$ 10.0052 2.28363i 1.28104 0.292389i 0.472761 0.881191i $$-0.343257\pi$$
0.808277 + 0.588802i $$0.200400\pi$$
$$62$$ −14.2461 17.8641i −1.80926 2.26874i
$$63$$ 7.55849 + 2.42265i 0.952280 + 0.305225i
$$64$$ −22.4116 + 28.1032i −2.80145 + 3.51291i
$$65$$ −0.282292 + 0.586186i −0.0350140 + 0.0727074i
$$66$$ 0.368395 + 1.54035i 0.0453463 + 0.189604i
$$67$$ −14.6741 −1.79272 −0.896362 0.443323i $$-0.853799\pi$$
−0.896362 + 0.443323i $$0.853799\pi$$
$$68$$ −6.76755 11.7217i −0.820687 1.42147i
$$69$$ −3.38602 + 11.3948i −0.407629 + 1.37177i
$$70$$ 6.08477 8.34397i 0.727269 0.997295i
$$71$$ −6.85811 1.56532i −0.813907 0.185769i −0.204746 0.978815i $$-0.565637\pi$$
−0.609162 + 0.793046i $$0.708494\pi$$
$$72$$ −19.8203 + 22.2688i −2.33584 + 2.62440i
$$73$$ 0.873201 5.79331i 0.102200 0.678056i −0.877795 0.479036i $$-0.840986\pi$$
0.979996 0.199019i $$-0.0637757\pi$$
$$74$$ 21.7891 8.55158i 2.53293 0.994101i
$$75$$ −1.10240 + 5.07141i −0.127294 + 0.585596i
$$76$$ 18.4236 19.8559i 2.11333 2.27763i
$$77$$ 0.745527 + 0.462524i 0.0849607 + 0.0527095i
$$78$$ −0.510630 2.13506i −0.0578175 0.241748i
$$79$$ 0.748846 0.0842517 0.0421259 0.999112i $$-0.486587\pi$$
0.0421259 + 0.999112i $$0.486587\pi$$
$$80$$ 11.4616 + 19.8521i 1.28145 + 2.21953i
$$81$$ −6.33834 + 6.38948i −0.704260 + 0.709943i
$$82$$ −2.08562 3.05904i −0.230318 0.337814i
$$83$$ −2.02882 0.305796i −0.222692 0.0335655i 0.0367482 0.999325i $$-0.488300\pi$$
−0.259441 + 0.965759i $$0.583538\pi$$
$$84$$ 1.37243 + 25.6428i 0.149745 + 2.79786i
$$85$$ −3.38078 + 0.509570i −0.366697 + 0.0552706i
$$86$$ 11.7660 + 12.6807i 1.26876 + 1.36740i
$$87$$ 0.580505 + 3.59819i 0.0622367 + 0.385767i
$$88$$ −2.72267 + 1.85629i −0.290238 + 0.197881i
$$89$$ −4.01175 10.2218i −0.425245 1.08351i −0.969610 0.244657i $$-0.921325\pi$$
0.544365 0.838848i $$-0.316771\pi$$
$$90$$ 5.29802 + 10.4426i 0.558460 + 1.10075i
$$91$$ −1.03337 0.641101i −0.108327 0.0672056i
$$92$$ −38.3515 + 2.87405i −3.99842 + 0.299640i
$$93$$ 7.96159 11.9413i 0.825579 1.23826i
$$94$$ −23.3227 5.32325i −2.40555 0.549052i
$$95$$ −2.96866 6.16449i −0.304578 0.632463i
$$96$$ −40.1157 15.2668i −4.09429 1.55816i
$$97$$ −7.31521 + 4.22344i −0.742747 + 0.428825i −0.823067 0.567944i $$-0.807739\pi$$
0.0803202 + 0.996769i $$0.474406\pi$$
$$98$$ 14.2988 + 12.9664i 1.44440 + 1.30980i
$$99$$ −0.851054 + 0.515143i −0.0855341 + 0.0517739i
$$100$$ −16.6033 + 2.50254i −1.66033 + 0.250254i
$$101$$ 0.757537 10.1086i 0.0753778 1.00585i −0.823405 0.567453i $$-0.807929\pi$$
0.898783 0.438393i $$-0.144452\pi$$
$$102$$ 7.75854 8.53734i 0.768210 0.845322i
$$103$$ 3.24831 4.76440i 0.320066 0.469450i −0.632163 0.774835i $$-0.717833\pi$$
0.952229 + 0.305385i $$0.0987851\pi$$
$$104$$ 3.77388 2.57298i 0.370059 0.252302i
$$105$$ 6.15627 + 2.04374i 0.600790 + 0.199448i
$$106$$ 21.3398 + 14.5493i 2.07271 + 1.41315i
$$107$$ 0.497330 0.195188i 0.0480787 0.0188695i −0.341180 0.939998i $$-0.610827\pi$$
0.389259 + 0.921129i $$0.372731\pi$$
$$108$$ −26.6140 11.8129i −2.56094 1.13669i
$$109$$ −4.52761 + 11.5362i −0.433666 + 1.10496i 0.532359 + 0.846518i $$0.321306\pi$$
−0.966026 + 0.258446i $$0.916790\pi$$
$$110$$ 0.288017 + 1.26188i 0.0274613 + 0.120316i
$$111$$ 9.28547 + 11.3994i 0.881338 + 1.08199i
$$112$$ −39.1728 + 17.3581i −3.70148 + 1.64019i
$$113$$ −7.40132 + 2.90480i −0.696258 + 0.273261i −0.686959 0.726696i $$-0.741055\pi$$
−0.00929826 + 0.999957i $$0.502960\pi$$
$$114$$ 20.9025 + 9.80078i 1.95770 + 0.917928i
$$115$$ −2.86347 + 9.28314i −0.267020 + 0.865657i
$$116$$ −10.2120 + 5.89591i −0.948162 + 0.547422i
$$117$$ 1.17964 0.714037i 0.109058 0.0660127i
$$118$$ 25.5645 5.83492i 2.35340 0.537148i
$$119$$ −0.275443 6.38453i −0.0252498 0.585269i
$$120$$ −16.3855 + 18.0303i −1.49578 + 1.64593i
$$121$$ 10.4062 3.20989i 0.946020 0.291809i
$$122$$ −17.6440 + 22.1249i −1.59741 + 2.00309i
$$123$$ 1.43105 1.83311i 0.129034 0.165286i
$$124$$ 45.2694 + 10.3324i 4.06531 + 0.927880i
$$125$$ −2.51868 + 11.0351i −0.225278 + 0.987006i
$$126$$ −20.4605 + 7.77209i −1.82276 + 0.692393i
$$127$$ 3.31618 + 14.5291i 0.294263 + 1.28925i 0.878529 + 0.477689i $$0.158525\pi$$
−0.584266 + 0.811562i $$0.698617\pi$$
$$128$$ 49.5563i 4.38020i
$$129$$ −5.33510 + 9.46569i −0.469730 + 0.833407i
$$130$$ −0.399218 1.74909i −0.0350137 0.153405i
$$131$$ 0.242007 + 3.22936i 0.0211442 + 0.282150i 0.997746 + 0.0670966i $$0.0213736\pi$$
−0.976602 + 0.215054i $$0.931007\pi$$
$$132$$ −2.53701 1.98057i −0.220819 0.172387i
$$133$$ 12.0467 4.29276i 1.04458 0.372229i
$$134$$ 31.6357 25.2286i 2.73291 2.17942i
$$135$$ −5.23373 + 5.16783i −0.450448 + 0.444776i
$$136$$ 22.3430 + 8.76898i 1.91590 + 0.751934i
$$137$$ −3.51017 5.14847i −0.299894 0.439863i 0.646483 0.762928i $$-0.276239\pi$$
−0.946377 + 0.323065i $$0.895287\pi$$
$$138$$ −12.2908 30.3874i −1.04626 2.58675i
$$139$$ −12.4230 0.930974i −1.05370 0.0789642i −0.463403 0.886148i $$-0.653372\pi$$
−0.590301 + 0.807183i $$0.700991\pi$$
$$140$$ 0.904556 + 20.9669i 0.0764489 + 1.77202i
$$141$$ −1.27801 14.9719i −0.107628 1.26086i
$$142$$ 17.4765 8.41625i 1.46660 0.706276i
$$143$$ 0.145647 0.0449262i 0.0121796 0.00375692i
$$144$$ 2.62661 48.5121i 0.218884 4.04268i
$$145$$ 0.443939 + 2.94534i 0.0368671 + 0.244597i
$$146$$ 8.07771 + 13.9910i 0.668516 + 1.15790i
$$147$$ −5.02135 + 11.0357i −0.414154 + 0.910207i
$$148$$ −23.7838 + 41.1948i −1.95502 + 3.38619i
$$149$$ −2.07032 0.812542i −0.169607 0.0665660i 0.279018 0.960286i $$-0.409991\pi$$
−0.448626 + 0.893720i $$0.648086\pi$$
$$150$$ −6.34245 12.8287i −0.517859 1.04746i
$$151$$ −3.88306 3.60295i −0.315999 0.293204i 0.506186 0.862424i $$-0.331055\pi$$
−0.822185 + 0.569220i $$0.807245\pi$$
$$152$$ −3.58954 + 47.8991i −0.291150 + 3.88513i
$$153$$ 6.59223 + 3.00811i 0.532950 + 0.243191i
$$154$$ −2.40248 + 0.284609i −0.193597 + 0.0229344i
$$155$$ 6.60723 9.69103i 0.530706 0.778402i
$$156$$ 3.51654 + 2.74526i 0.281548 + 0.219797i
$$157$$ 3.66918 7.61912i 0.292832 0.608072i −0.701704 0.712469i $$-0.747577\pi$$
0.994536 + 0.104397i $$0.0332912\pi$$
$$158$$ −1.61443 + 1.28746i −0.128437 + 0.102425i
$$159$$ −4.62105 + 15.5510i −0.366473 + 1.23327i
$$160$$ −32.6532 12.8154i −2.58146 1.01315i
$$161$$ −16.6842 7.16603i −1.31490 0.564762i
$$162$$ 2.67954 24.6723i 0.210525 1.93844i
$$163$$ 4.65141 3.17128i 0.364327 0.248394i −0.367295 0.930104i $$-0.619716\pi$$
0.731622 + 0.681711i $$0.238764\pi$$
$$164$$ 7.18964 + 2.21771i 0.561416 + 0.173174i
$$165$$ −0.699837 + 0.413772i −0.0544822 + 0.0322121i
$$166$$ 4.89967 2.82882i 0.380288 0.219559i
$$167$$ 16.1048 + 4.96767i 1.24622 + 0.384409i 0.846580 0.532261i $$-0.178657\pi$$
0.399644 + 0.916670i $$0.369134\pi$$
$$168$$ −30.2549 34.0349i −2.33421 2.62585i
$$169$$ 12.2206 3.76955i 0.940044 0.289965i
$$170$$ 6.41250 6.91103i 0.491816 0.530052i
$$171$$ −1.86387 + 14.3807i −0.142534 + 1.09972i
$$172$$ −34.7612 5.23941i −2.65052 0.399502i
$$173$$ 3.48295 15.2598i 0.264804 1.16018i −0.651166 0.758935i $$-0.725720\pi$$
0.915970 0.401246i $$-0.131423\pi$$
$$174$$ −7.43775 6.75926i −0.563854 0.512418i
$$175$$ −7.49758 2.57551i −0.566764 0.194691i
$$176$$ 1.58288 5.13158i 0.119314 0.386808i
$$177$$ 8.38259 + 14.1780i 0.630074 + 1.06568i
$$178$$ 26.2228 + 15.1398i 1.96548 + 1.13477i
$$179$$ 10.5088 + 11.3258i 0.785465 + 0.846530i 0.991240 0.132070i $$-0.0421622\pi$$
−0.205776 + 0.978599i $$0.565972\pi$$
$$180$$ −21.6489 9.87864i −1.61362 0.736311i
$$181$$ 9.01116 + 7.18616i 0.669794 + 0.534143i 0.898291 0.439402i $$-0.144809\pi$$
−0.228496 + 0.973545i $$0.573381\pi$$
$$182$$ 3.33006 0.394495i 0.246840 0.0292419i
$$183$$ −16.6128 6.32234i −1.22806 0.467361i
$$184$$ 49.9945 46.3881i 3.68564 3.41978i
$$185$$ 7.49159 + 9.39416i 0.550793 + 0.690672i
$$186$$ 3.36597 + 39.4323i 0.246805 + 2.89131i
$$187$$ 0.626210 + 0.499386i 0.0457930 + 0.0365187i
$$188$$ 43.8006 21.0933i 3.19449 1.53838i
$$189$$ −8.56490 10.7537i −0.623005 0.782218i
$$190$$ 16.9985 + 8.18604i 1.23320 + 0.593878i
$$191$$ 3.51703 + 7.30319i 0.254483 + 0.528440i 0.988597 0.150587i $$-0.0481163\pi$$
−0.734114 + 0.679027i $$0.762402\pi$$
$$192$$ 59.3000 18.9663i 4.27961 1.36877i
$$193$$ −0.674639 + 0.324889i −0.0485616 + 0.0233860i −0.458007 0.888949i $$-0.651437\pi$$
0.409445 + 0.912335i $$0.365722\pi$$
$$194$$ 8.50958 21.6821i 0.610952 1.55668i
$$195$$ 0.970039 0.573526i 0.0694660 0.0410711i
$$196$$ −39.1474 2.48405i −2.79624 0.177432i
$$197$$ 9.13559i 0.650884i −0.945562 0.325442i $$-0.894487\pi$$
0.945562 0.325442i $$-0.105513\pi$$
$$198$$ 0.949110 2.57378i 0.0674503 0.182911i
$$199$$ 5.85864 8.59305i 0.415308 0.609145i −0.560400 0.828222i $$-0.689352\pi$$
0.975707 + 0.219078i $$0.0703048\pi$$
$$200$$ 20.2525 21.8270i 1.43207 1.54340i
$$201$$ 21.1470 + 14.0993i 1.49159 + 0.994486i
$$202$$ 15.7463 + 23.0955i 1.10790 + 1.62499i
$$203$$ −5.56222 + 0.239967i −0.390392 + 0.0168424i
$$204$$ −1.50978 + 23.3948i −0.105705 + 1.63797i
$$205$$ 1.18496 1.48590i 0.0827615 0.103780i
$$206$$ 1.18826 + 15.8562i 0.0827901 + 1.10476i
$$207$$ 15.8281 13.1678i 1.10013 0.915227i
$$208$$ −2.19402 + 7.11285i −0.152128 + 0.493188i
$$209$$ −0.585596 + 1.49207i −0.0405065 + 0.103209i
$$210$$ −16.7860 + 6.17819i −1.15834 + 0.426335i
$$211$$ −6.03274 15.3712i −0.415311 1.05820i −0.973542 0.228509i $$-0.926615\pi$$
0.558231 0.829686i $$-0.311480\pi$$
$$212$$ −52.3400 + 3.92234i −3.59472 + 0.269387i
$$213$$ 8.37931 + 8.84527i 0.574141 + 0.606068i
$$214$$ −0.736610 + 1.27585i −0.0503536 + 0.0872150i
$$215$$ −4.43993 + 7.69018i −0.302800 + 0.524466i
$$216$$ 49.9598 13.0480i 3.39933 0.887802i
$$217$$ 16.6986 + 14.2050i 1.13357 + 0.964298i
$$218$$ −10.0727 32.6549i −0.682209 2.21167i
$$219$$ −6.82476 + 7.50982i −0.461175 + 0.507467i
$$220$$ −2.05648 1.63999i −0.138648 0.110568i
$$221$$ −0.867985 0.692195i −0.0583870 0.0465621i
$$222$$ −39.6171 8.61176i −2.65893 0.577984i
$$223$$ 3.17181 + 10.2827i 0.212400 + 0.688583i 0.997594 + 0.0693332i $$0.0220872\pi$$
−0.785194 + 0.619250i $$0.787437\pi$$
$$224$$ 30.3048 58.1414i 2.02482 3.88473i
$$225$$ 6.46143 6.24926i 0.430762 0.416617i
$$226$$ 10.9623 18.9873i 0.729202 1.26301i
$$227$$ −8.81639 + 15.2704i −0.585165 + 1.01353i 0.409690 + 0.912225i $$0.365637\pi$$
−0.994855 + 0.101310i $$0.967697\pi$$
$$228$$ −45.6286 + 10.9127i −3.02182 + 0.722711i
$$229$$ 10.7275 0.803911i 0.708890 0.0531240i 0.284595 0.958648i $$-0.408141\pi$$
0.424295 + 0.905524i $$0.360522\pi$$
$$230$$ −9.78686 24.9365i −0.645326 1.64426i
$$231$$ −0.629984 1.38287i −0.0414499 0.0909864i
$$232$$ 7.63956 19.4653i 0.501562 1.27796i
$$233$$ −0.868503 + 2.81562i −0.0568975 + 0.184457i −0.979560 0.201150i $$-0.935532\pi$$
0.922663 + 0.385608i $$0.126008\pi$$
$$234$$ −1.31556 + 3.56750i −0.0860005 + 0.233215i
$$235$$ −0.917695 12.2458i −0.0598639 0.798828i
$$236$$ −33.2244 + 41.6621i −2.16273 + 2.71197i
$$237$$ −1.07917 0.719513i −0.0700998 0.0467374i
$$238$$ 11.5705 + 13.2908i 0.750006 + 0.861514i
$$239$$ 0.0477370 + 0.0700173i 0.00308785 + 0.00452904i 0.827780 0.561053i $$-0.189604\pi$$
−0.824692 + 0.565582i $$0.808651\pi$$
$$240$$ 2.55697 39.6217i 0.165052 2.55757i
$$241$$ 7.24908 7.81265i 0.466954 0.503257i −0.455034 0.890474i $$-0.650373\pi$$
0.921989 + 0.387217i $$0.126564\pi$$
$$242$$ −16.9160 + 24.8112i −1.08740 + 1.59493i
$$243$$ 15.2735 3.11792i 0.979793 0.200014i
$$244$$ 57.5085i 3.68161i
$$245$$ −4.19681 + 8.97582i −0.268125 + 0.573444i
$$246$$ 0.0663996 + 6.41234i 0.00423348 + 0.408836i
$$247$$ 0.811691 2.06815i 0.0516466 0.131593i
$$248$$ −74.1875 + 35.7268i −4.71091 + 2.26865i
$$249$$ 2.62995 + 2.39004i 0.166666 + 0.151463i
$$250$$ −13.5422 28.1207i −0.856484 1.77851i
$$251$$ −3.39351 1.63423i −0.214197 0.103152i 0.323709 0.946157i $$-0.395070\pi$$
−0.537906 + 0.843005i $$0.680784\pi$$
$$252$$ 22.6606 38.2729i 1.42748 2.41097i
$$253$$ 2.05047 0.987454i 0.128912 0.0620807i
$$254$$ −32.1287 25.6218i −2.01594 1.60766i
$$255$$ 5.36169 + 2.51400i 0.335762 + 0.157433i
$$256$$ 40.3773 + 50.6316i 2.52358 + 3.16447i
$$257$$ 15.6041 14.4785i 0.973356 0.903142i −0.0219660 0.999759i $$-0.506993\pi$$
0.995322 + 0.0966166i $$0.0308021\pi$$
$$258$$ −4.77213 29.5794i −0.297100 1.84154i
$$259$$ −18.9477 + 12.0572i −1.17735 + 0.749198i
$$260$$ 2.85047 + 2.27317i 0.176779 + 0.140976i
$$261$$ 2.62067 5.74317i 0.162215 0.355493i
$$262$$ −6.07386 6.54607i −0.375244 0.404417i
$$263$$ 2.87134 + 1.65777i 0.177054 + 0.102222i 0.585908 0.810378i $$-0.300738\pi$$
−0.408854 + 0.912600i $$0.634071\pi$$
$$264$$ 5.70725 0.0590984i 0.351257 0.00363726i
$$265$$ −3.90790 + 12.6691i −0.240061 + 0.778257i
$$266$$ −18.5909 + 29.9662i −1.13988 + 1.83734i
$$267$$ −4.03998 + 18.5853i −0.247243 + 1.13740i
$$268$$ −18.2978 + 80.1680i −1.11772 + 4.89704i
$$269$$ −22.3552 3.36950i −1.36302 0.205442i −0.573520 0.819192i $$-0.694422\pi$$
−0.789501 + 0.613749i $$0.789661\pi$$
$$270$$ 2.39849 20.1394i 0.145967 1.22565i
$$271$$ −2.73339 + 2.94589i −0.166042 + 0.178950i −0.810592 0.585612i $$-0.800854\pi$$
0.644550 + 0.764562i $$0.277045\pi$$
$$272$$ −37.3777 + 11.5295i −2.26636 + 0.699078i
$$273$$ 0.873216 + 1.91679i 0.0528495 + 0.116009i
$$274$$ 16.4191 + 5.06463i 0.991915 + 0.305965i
$$275$$ 0.860492 0.496805i 0.0518896 0.0299585i
$$276$$ 58.0304 + 32.7074i 3.49302 + 1.96875i
$$277$$ −14.0146 4.32295i −0.842059 0.259741i −0.156427 0.987689i $$-0.549998\pi$$
−0.685631 + 0.727949i $$0.740474\pi$$
$$278$$ 28.3832 19.3513i 1.70231 1.16062i
$$279$$ −22.9471 + 9.55907i −1.37381 + 0.572287i
$$280$$ −24.4362 28.0692i −1.46034 1.67746i
$$281$$ 18.9609 + 7.44161i 1.13111 + 0.443929i 0.855739 0.517408i $$-0.173103\pi$$
0.275375 + 0.961337i $$0.411198\pi$$
$$282$$ 28.4959 + 30.0805i 1.69691 + 1.79127i
$$283$$ −11.9502 + 9.52998i −0.710366 + 0.566498i −0.910619 0.413246i $$-0.864395\pi$$
0.200253 + 0.979744i $$0.435824\pi$$
$$284$$ −17.1034 + 35.5156i −1.01490 + 2.10746i
$$285$$ −1.64484 + 11.7361i −0.0974318 + 0.695186i
$$286$$ −0.236759 + 0.347262i −0.0139999 + 0.0205340i
$$287$$ 2.52620 + 2.49749i 0.149117 + 0.147422i
$$288$$ 43.1425 + 60.5455i 2.54219 + 3.56768i
$$289$$ −0.834435 + 11.1348i −0.0490844 + 0.654986i
$$290$$ −6.02091 5.58658i −0.353560 0.328056i
$$291$$ 14.6000 + 0.942208i 0.855870 + 0.0552332i
$$292$$ −30.5614 11.9945i −1.78847 0.701923i
$$293$$ 5.22685 9.05317i 0.305356 0.528892i −0.671985 0.740565i $$-0.734558\pi$$
0.977340 + 0.211673i $$0.0678913\pi$$
$$294$$ −8.14776 32.4247i −0.475187 1.89105i
$$295$$ 6.73024 + 11.6571i 0.391850 + 0.678704i
$$296$$ −12.5722 83.4109i −0.730743 4.84816i
$$297$$ 1.72143 + 0.0753365i 0.0998875 + 0.00437147i
$$298$$ 5.86036 1.80768i 0.339482 0.104716i
$$299$$ −2.84214 + 1.36870i −0.164365 + 0.0791542i
$$300$$ 26.3317 + 12.3464i 1.52026 + 0.712822i
$$301$$ −13.4105 9.77948i −0.772967 0.563680i
$$302$$ 14.5659 + 1.09156i 0.838172 + 0.0628123i
$$303$$ −10.8044 + 13.8398i −0.620694 + 0.795077i
$$304$$ −44.0958 64.6766i −2.52906 3.70946i
$$305$$ −13.5225 5.30717i −0.774293 0.303888i
$$306$$ −19.3839 + 4.84864i −1.10810 + 0.277178i
$$307$$ −20.3957 + 16.2650i −1.16405 + 0.928295i −0.998324 0.0578773i $$-0.981567\pi$$
−0.165722 + 0.986173i $$0.552995\pi$$
$$308$$ 3.45651 3.49625i 0.196953 0.199217i
$$309$$ −9.25896 + 3.74497i −0.526724 + 0.213044i
$$310$$ 2.41698 + 32.2524i 0.137275 + 1.83181i
$$311$$ −2.71546 11.8972i −0.153980 0.674629i −0.991705 0.128537i $$-0.958972\pi$$
0.837725 0.546092i $$-0.183885\pi$$
$$312$$ −7.91078 + 0.0819159i −0.447860 + 0.00463758i
$$313$$ 15.6580i 0.885045i −0.896757 0.442522i $$-0.854084\pi$$
0.896757 0.442522i $$-0.145916\pi$$
$$314$$ 5.18895 + 22.7343i 0.292829 + 1.28297i
$$315$$ −6.90820 8.86038i −0.389233 0.499226i
$$316$$ 0.933773 4.09112i 0.0525288 0.230144i
$$317$$ 9.40866 + 2.14747i 0.528443 + 0.120614i 0.478415 0.878134i $$-0.341212\pi$$
0.0500286 + 0.998748i $$0.484069\pi$$
$$318$$ −16.7738 41.4710i −0.940627 2.32558i
$$319$$ 0.435066 0.545556i 0.0243590 0.0305453i
$$320$$ 48.6203 14.9974i 2.71796 0.838378i
$$321$$ −0.904251 0.196561i −0.0504704 0.0109710i
$$322$$ 48.2897 13.2355i 2.69108 0.737583i
$$323$$ 11.3824 2.59796i 0.633333 0.144554i
$$324$$ 27.0037 + 42.5952i 1.50021 + 2.36640i
$$325$$ −1.19272 + 0.688618i −0.0661603 + 0.0381977i
$$326$$ −4.57566 + 14.8339i −0.253423 + 0.821576i
$$327$$ 17.6091 12.2747i 0.973784 0.678791i
$$328$$ −12.4200 + 4.87451i −0.685782 + 0.269150i
$$329$$ 22.9416 + 0.727133i 1.26481 + 0.0400882i
$$330$$ 0.797389 2.09525i 0.0438948 0.115340i
$$331$$ −2.75634 12.0763i −0.151502 0.663774i −0.992449 0.122656i $$-0.960859\pi$$
0.840947 0.541117i $$-0.181998\pi$$
$$332$$ −4.20048 + 10.7026i −0.230531 + 0.587384i
$$333$$ −2.42851 25.3496i −0.133081 1.38915i
$$334$$ −43.2609 + 16.9786i −2.36713 + 0.929030i
$$335$$ 17.1619 + 11.7008i 0.937657 + 0.639284i
$$336$$ 73.1306 + 12.6233i 3.98960 + 0.688660i
$$337$$ 21.3085 14.5279i 1.16075 0.791384i 0.179428 0.983771i $$-0.442575\pi$$
0.981319 + 0.192387i $$0.0616229\pi$$
$$338$$ −19.8654 + 29.1371i −1.08053 + 1.58485i
$$339$$ 13.4572 + 2.92525i 0.730893 + 0.158878i
$$340$$ −1.43175 + 19.1054i −0.0776476 + 1.03614i
$$341$$ −2.71706 + 0.409531i −0.147137 + 0.0221773i
$$342$$ −20.7060 34.2077i −1.11965 1.84974i
$$343$$ −15.8482 9.58305i −0.855722 0.517436i
$$344$$ 53.9874 31.1697i 2.91081 1.68056i
$$345$$ 13.0461 10.6268i 0.702378 0.572125i
$$346$$ 18.7268 + 38.8866i 1.00676 + 2.09056i
$$347$$ −6.11052 1.39469i −0.328030 0.0748706i 0.0553346 0.998468i $$-0.482377\pi$$
−0.383364 + 0.923597i $$0.625235\pi$$
$$348$$ 20.3816 + 1.31532i 1.09257 + 0.0705086i
$$349$$ −2.04010 + 0.152885i −0.109204 + 0.00818372i −0.129220 0.991616i $$-0.541247\pi$$
0.0200159 + 0.999800i $$0.493628\pi$$
$$350$$ 20.5920 7.33781i 1.10069 0.392222i
$$351$$ −2.38606 0.104423i −0.127359 0.00557371i
$$352$$ 3.00224 + 7.64959i 0.160020 + 0.407724i
$$353$$ 29.7531 20.2853i 1.58360 1.07968i 0.630856 0.775900i $$-0.282704\pi$$
0.952742 0.303780i $$-0.0982487\pi$$
$$354$$ −42.4476 16.1543i −2.25607 0.858590i
$$355$$ 6.77269 + 7.29922i 0.359457 + 0.387403i
$$356$$ −60.8464 + 9.17112i −3.22485 + 0.486069i
$$357$$ −5.73750 + 9.46549i −0.303661 + 0.500967i
$$358$$ −42.1279 6.34976i −2.22653 0.335595i
$$359$$ 19.2645 + 28.2558i 1.01674 + 1.49129i 0.864302 + 0.502974i $$0.167761\pi$$
0.152440 + 0.988313i $$0.451287\pi$$
$$360$$ 40.9373 10.2400i 2.15759 0.539695i
$$361$$ 2.18217 + 3.77963i 0.114851 + 0.198928i
$$362$$ −31.7820 −1.67042
$$363$$ −18.0807 5.37277i −0.948991 0.281997i
$$364$$ −4.79105 + 4.84613i −0.251119 + 0.254006i
$$365$$ −5.64072 + 6.07925i −0.295249 + 0.318202i
$$366$$ 46.6852 14.9316i 2.44028 0.780488i
$$367$$ 13.6569 5.35995i 0.712886 0.279787i 0.0189465 0.999820i $$-0.493969\pi$$
0.693939 + 0.720033i $$0.255874\pi$$
$$368$$ −16.5651 + 109.903i −0.863518 + 5.72906i
$$369$$ −3.82361 + 1.26672i −0.199049 + 0.0659426i
$$370$$ −32.3021 7.37274i −1.67931 0.383291i
$$371$$ −22.7697 9.77979i −1.18214 0.507741i
$$372$$ −55.3106 58.3863i −2.86772 3.02719i
$$373$$ −11.4104 19.7634i −0.590810 1.02331i −0.994124 0.108251i $$-0.965475\pi$$
0.403314 0.915062i $$-0.367858\pi$$
$$374$$ −2.20862 −0.114205
$$375$$ 14.2325 13.4828i 0.734964 0.696247i
$$376$$ −37.4053 + 77.6728i −1.92903 + 4.00567i
$$377$$ −0.603042 + 0.756191i −0.0310583 + 0.0389458i
$$378$$ 36.9535 + 8.45852i 1.90068 + 0.435059i
$$379$$ −4.17213 5.23168i −0.214308 0.268733i 0.663045 0.748580i $$-0.269264\pi$$
−0.877353 + 0.479846i $$0.840692\pi$$
$$380$$ −37.3798 + 8.53170i −1.91754 + 0.437667i
$$381$$ 9.18101 24.1244i 0.470357 1.23593i
$$382$$ −20.1384 9.69816i −1.03037 0.496201i
$$383$$ 13.0409 + 1.96559i 0.666357 + 0.100437i 0.473506 0.880791i $$-0.342988\pi$$
0.192852 + 0.981228i $$0.438226\pi$$
$$384$$ −47.6151 + 71.4163i −2.42985 + 3.64445i
$$385$$ −0.503118 1.13541i −0.0256413 0.0578658i
$$386$$ 0.895877 1.86031i 0.0455990 0.0946872i
$$387$$ 16.7834 8.51501i 0.853148 0.432842i
$$388$$ 13.9520 + 45.2312i 0.708304 + 2.29626i
$$389$$ 23.1828 + 1.73731i 1.17542 + 0.0880852i 0.648080 0.761572i $$-0.275572\pi$$
0.527335 + 0.849657i $$0.323191\pi$$
$$390$$ −1.10526 + 2.90421i −0.0559668 + 0.147061i
$$391$$ −14.3561 8.28848i −0.726018 0.419166i
$$392$$ 57.0222 39.8394i 2.88005 2.01219i
$$393$$ 2.75410 4.88640i 0.138926 0.246486i
$$394$$ 15.7065 + 19.6953i 0.791282 + 0.992237i
$$395$$ −0.875807 0.597115i −0.0440666 0.0300441i
$$396$$ 1.75313 + 5.29187i 0.0880982 + 0.265926i
$$397$$ −9.83076 0.736713i −0.493392 0.0369746i −0.174289 0.984695i $$-0.555763\pi$$
−0.319103 + 0.947720i $$0.603382\pi$$
$$398$$ 2.14314 + 28.5982i 0.107426 + 1.43350i
$$399$$ −21.4852 5.38845i −1.07561 0.269760i
$$400$$ −3.62622 + 48.3885i −0.181311 + 2.41942i
$$401$$ 2.17489 14.4295i 0.108609 0.720573i −0.866554 0.499084i $$-0.833670\pi$$
0.975163 0.221490i $$-0.0710919\pi$$
$$402$$ −69.8310 + 5.96084i −3.48285 + 0.297299i
$$403$$ 3.76610 0.567648i 0.187603 0.0282765i
$$404$$ −54.2813 16.7436i −2.70059 0.833023i
$$405$$ 12.5078 2.41871i 0.621518 0.120186i
$$406$$ 11.5790 10.0803i 0.574655 0.500276i
$$407$$ 0.419533 2.78342i 0.0207955 0.137969i
$$408$$ −23.7733 34.1049i −1.17695 1.68844i
$$409$$ −33.4231 + 7.62861i −1.65267 + 0.377211i −0.944417 0.328751i $$-0.893372\pi$$
−0.708250 + 0.705961i $$0.750515\pi$$
$$410$$ 5.24070i 0.258820i
$$411$$ 0.111753 + 10.7922i 0.00551236 + 0.532340i
$$412$$ −21.9786 23.6873i −1.08281 1.16699i
$$413$$ −23.0022 + 10.1927i −1.13187 + 0.501548i
$$414$$ −11.4847 + 55.6011i −0.564441 + 2.73264i
$$415$$ 2.12896 + 1.97539i 0.104506 + 0.0969678i
$$416$$ −4.16139 10.6030i −0.204029 0.519857i
$$417$$ 17.0084 + 13.2780i 0.832906 + 0.650226i
$$418$$ −1.30279 4.22354i −0.0637216 0.206580i
$$419$$ −6.45995 5.99396i −0.315589 0.292824i 0.506433 0.862279i $$-0.330964\pi$$
−0.822022 + 0.569455i $$0.807154\pi$$
$$420$$ 18.8420 31.0847i 0.919395 1.51678i
$$421$$ −11.4137 + 10.5904i −0.556270 + 0.516143i −0.907447 0.420166i $$-0.861972\pi$$
0.351177 + 0.936309i $$0.385781\pi$$
$$422$$ 39.4331 + 22.7667i 1.91957 + 1.10826i
$$423$$ −12.5437 + 22.8042i −0.609894 + 1.10878i
$$424$$ 68.2297 63.3079i 3.31353 3.07450i
$$425$$ −6.52059 3.14015i −0.316295 0.152320i
$$426$$ −33.2722 4.66317i −1.61204 0.225931i
$$427$$ 12.5499 24.0777i 0.607333 1.16520i
$$428$$ −0.446212 2.96042i −0.0215685 0.143097i
$$429$$ −0.253060 0.0751982i −0.0122179 0.00363060i
$$430$$ −3.64946 24.2126i −0.175993 1.16764i
$$431$$ 34.3903 2.57719i 1.65652 0.124139i 0.786643 0.617408i $$-0.211817\pi$$
0.869877 + 0.493269i $$0.164198\pi$$
$$432$$ −50.3971 + 67.3878i −2.42473 + 3.24220i
$$433$$ 6.96169 + 14.4561i 0.334557 + 0.694715i 0.998595 0.0529834i $$-0.0168730\pi$$
−0.664038 + 0.747699i $$0.731159\pi$$
$$434$$ −60.4225 1.91509i −2.90037 0.0919272i
$$435$$ 2.19020 4.67112i 0.105012 0.223963i
$$436$$ 57.3791 + 39.1204i 2.74796 + 1.87353i
$$437$$ 7.38191 32.3422i 0.353124 1.54714i
$$438$$ 1.80206 27.9239i 0.0861057 1.33426i
$$439$$ 30.3345 24.1910i 1.44779 1.15457i 0.488350 0.872648i $$-0.337599\pi$$
0.959437 0.281923i $$-0.0909724\pi$$
$$440$$ 4.66444 0.222369
$$441$$ 17.8397 11.0790i 0.849511 0.527571i
$$442$$ 3.06135 0.145614
$$443$$ −23.6854 + 18.8885i −1.12533 + 0.897418i −0.995560 0.0941264i $$-0.969994\pi$$
−0.129767 + 0.991545i $$0.541423\pi$$
$$444$$ 73.8564 36.5142i 3.50507 1.73289i
$$445$$ −3.45873 + 15.1537i −0.163960 + 0.718354i
$$446$$ −24.5168 16.7153i −1.16091 0.791492i
$$447$$ 2.20286 + 3.16019i 0.104192 + 0.149472i
$$448$$ 18.2145 + 93.3420i 0.860553 + 4.41000i
$$449$$ −14.5344 30.1810i −0.685921 1.42433i −0.894836 0.446396i $$-0.852707\pi$$
0.208914 0.977934i $$-0.433007\pi$$
$$450$$ −3.18600 + 24.5816i −0.150189 + 1.15879i
$$451$$ −0.443989 + 0.0332724i −0.0209066 + 0.00156674i
$$452$$ 6.64057 + 44.0573i 0.312346 + 2.07228i
$$453$$ 2.13411 + 8.92322i 0.100269 + 0.419249i
$$454$$ −7.24676 48.0791i −0.340107 2.25646i
$$455$$ 0.697369 + 1.57378i 0.0326932 + 0.0737801i
$$456$$ 51.1958 65.5791i 2.39746 3.07102i
$$457$$ −32.0185 15.4193i −1.49776 0.721285i −0.507651 0.861563i $$-0.669486\pi$$
−0.990112 + 0.140278i $$0.955200\pi$$
$$458$$ −21.7451 + 20.1765i −1.01608 + 0.942785i
$$459$$ −6.60988 10.6690i −0.308523 0.497987i
$$460$$ 47.1454 + 27.2194i 2.19817 + 1.26911i
$$461$$ −12.2022 + 11.3220i −0.568312 + 0.527316i −0.911148 0.412079i $$-0.864803\pi$$
0.342836 + 0.939395i $$0.388612\pi$$
$$462$$ 3.73570 + 1.89821i 0.173801 + 0.0883129i
$$463$$ 9.66376 + 8.96666i 0.449113 + 0.416716i 0.872030 0.489452i $$-0.162803\pi$$
−0.422917 + 0.906168i $$0.638994\pi$$
$$464$$ 10.0445 + 32.5636i 0.466305 + 1.51173i
$$465$$ −18.8332 + 7.61746i −0.873369 + 0.353251i
$$466$$ −2.96840 7.56335i −0.137508 0.350365i
$$467$$ −15.1356 14.0438i −0.700391 0.649868i 0.247344 0.968928i $$-0.420442\pi$$
−0.947735 + 0.319060i $$0.896633\pi$$
$$468$$ −2.43000 7.33502i −0.112327 0.339062i
$$469$$ −25.1558 + 29.5717i −1.16159 + 1.36550i
$$470$$ 23.0322 + 24.8228i 1.06240 + 1.14499i
$$471$$ −12.6084 + 7.45457i −0.580963 + 0.343488i
$$472$$ 94.4968i 4.34957i
$$473$$ 2.02811 0.462902i 0.0932524 0.0212843i
$$474$$ 3.56361 0.304193i 0.163682 0.0139720i
$$475$$ 2.15864 14.3216i 0.0990450 0.657121i
$$476$$ −35.2237 6.45638i −1.61448 0.295928i
$$477$$ 21.6013 17.9707i 0.989055 0.822822i
$$478$$ −0.223294 0.0688771i −0.0102132 0.00315037i
$$479$$ 32.6198 4.91664i 1.49043 0.224647i 0.647253 0.762275i $$-0.275918\pi$$
0.843182 + 0.537629i $$0.180680\pi$$
$$480$$ 34.7435 + 49.8426i 1.58582 + 2.27499i
$$481$$ −0.581513 + 3.85808i −0.0265147 + 0.175913i
$$482$$ −2.19620 + 29.3063i −0.100034 + 1.33487i
$$483$$ 17.1586 + 26.3578i 0.780741 + 1.19932i
$$484$$ −4.56040 60.8543i −0.207291 2.76610i
$$485$$ 11.9231 + 0.893515i 0.541402 + 0.0405724i
$$486$$ −27.5674 + 32.9810i −1.25048 + 1.49605i
$$487$$ 3.64089 + 2.48231i 0.164984 + 0.112484i 0.642998 0.765868i $$-0.277691\pi$$
−0.478013 + 0.878353i $$0.658643\pi$$
$$488$$ 63.5844 + 79.7323i 2.87833 + 3.60931i
$$489$$ −9.75027 + 0.100964i −0.440922 + 0.00456574i
$$490$$ −6.38394 26.5663i −0.288397 1.20014i
$$491$$ 20.4587 + 11.8118i 0.923286 + 0.533059i 0.884682 0.466195i $$-0.154376\pi$$
0.0386041 + 0.999255i $$0.487709\pi$$
$$492$$ −8.23025 10.1040i −0.371048 0.455523i
$$493$$ −5.06840 0.379824i −0.228269 0.0171064i
$$494$$ 1.80579 + 5.85422i 0.0812463 + 0.263394i
$$495$$ 1.40611 + 0.0761315i 0.0631999 + 0.00342186i
$$496$$ 58.2227 120.901i 2.61428 5.42860i
$$497$$ −14.9113 + 11.1373i −0.668865 + 0.499575i
$$498$$ −9.77899 0.631083i −0.438207 0.0282795i
$$499$$ 26.6066 + 4.01030i 1.19108 + 0.179526i 0.714518 0.699617i $$-0.246646\pi$$
0.476558 + 0.879143i $$0.341884\pi$$
$$500$$ 57.1465 + 27.5203i 2.55567 + 1.23075i
$$501$$ −18.4357 22.6329i −0.823648 1.01116i
$$502$$ 10.1257 2.31113i 0.451933 0.103151i
$$503$$ 9.50459 + 11.9184i 0.423789 + 0.531414i 0.947190 0.320672i $$-0.103909\pi$$
−0.523402 + 0.852086i $$0.675337\pi$$
$$504$$ 10.8990 + 78.1179i 0.485478 + 3.47965i
$$505$$ −8.94640 + 11.2184i −0.398109 + 0.499214i
$$506$$ −2.72289 + 5.65415i −0.121047 + 0.251357i
$$507$$ −21.2331 6.30953i −0.942996 0.280216i
$$508$$ 83.5112 3.70521
$$509$$ 4.66278 + 8.07618i 0.206674 + 0.357970i 0.950665 0.310220i $$-0.100403\pi$$
−0.743991 + 0.668190i $$0.767069\pi$$
$$510$$ −15.8814 + 3.79827i −0.703242 + 0.168190i
$$511$$ −10.1780 11.6912i −0.450246 0.517187i
$$512$$ −77.4704 17.6821i −3.42374 0.781447i
$$513$$ 16.5035 18.9334i 0.728645 0.835930i
$$514$$ −8.74836 + 58.0415i −0.385873 + 2.56010i
$$515$$ −7.59808 + 2.98203i −0.334811 + 0.131404i
$$516$$ 45.0607 + 40.9502i 1.98369 + 1.80273i
$$517$$ −1.95675 + 2.10887i −0.0860577 + 0.0927481i
$$518$$ 20.1196 58.5701i 0.884003 2.57342i
$$519$$ −19.6814 + 18.6446i −0.863917 + 0.818407i
$$520$$ −6.46535 −0.283525
$$521$$ −2.34018 4.05331i −0.102525 0.177579i 0.810199 0.586155i $$-0.199359\pi$$
−0.912724 + 0.408576i $$0.866026\pi$$
$$522$$ 4.22415 + 16.8873i 0.184886 + 0.739136i
$$523$$ 10.9443 + 16.0523i 0.478561 + 0.701920i 0.987276 0.159015i $$-0.0508319\pi$$
−0.508715 + 0.860935i $$0.669879\pi$$
$$524$$ 17.9445 + 2.70470i 0.783910 + 0.118155i
$$525$$ 8.33024 + 10.9155i 0.363562 + 0.476391i
$$526$$ −9.04043 + 1.36263i −0.394181 + 0.0594133i
$$527$$ 13.6131 + 14.6714i 0.592996 + 0.639098i
$$528$$ −7.21169 + 5.87431i −0.313848 + 0.255647i
$$529$$ −19.9142 + 13.5773i −0.865836 + 0.590317i
$$530$$ −13.3565 34.0319i −0.580171 1.47825i
$$531$$ 1.54235 28.4863i 0.0669321 1.23620i
$$532$$ −8.43076 71.1668i −0.365520 3.08547i
$$533$$ 0.615410 0.0461186i 0.0266564 0.00199762i
$$534$$ −23.2434 47.0138i −1.00584 2.03448i
$$535$$ −0.737287 0.168281i −0.0318757 0.00727542i
$$536$$ −63.2690 131.379i −2.73280 5.67472i
$$537$$ −4.26223 26.4189i −0.183929 1.14006i
$$538$$ 53.9884 31.1702i 2.32761 1.34384i
$$539$$ 2.21015 0.709509i 0.0951980 0.0305607i
$$540$$ 21.7069 + 35.0372i 0.934115 + 1.50776i
$$541$$ 4.07946 0.614879i 0.175390 0.0264357i −0.0607602 0.998152i $$-0.519353\pi$$
0.236150 + 0.971717i $$0.424114\pi$$
$$542$$ 0.828117 11.0505i 0.0355707 0.474658i
$$543$$ −6.08144 19.0143i −0.260980 0.815980i
$$544$$ 33.7181 49.4554i 1.44565 2.12038i
$$545$$ 14.4939 9.88180i 0.620852 0.423290i
$$546$$ −5.17803 2.63110i −0.221599 0.112601i
$$547$$ 0.0331290 + 0.0225870i 0.00141649 + 0.000965750i 0.564028 0.825756i $$-0.309251\pi$$
−0.562612 + 0.826721i $$0.690203\pi$$
$$548$$ −32.5043 + 12.7570i −1.38852 + 0.544952i
$$549$$ 17.8663 + 25.0733i 0.762515 + 1.07010i
$$550$$ −1.00099 + 2.55047i −0.0426822 + 0.108752i
$$551$$ −2.26335 9.91637i −0.0964218 0.422451i
$$552$$ −116.619 + 18.8144i −4.96363 + 0.800794i
$$553$$ 1.28375 1.50910i 0.0545905 0.0641735i
$$554$$ 37.6463 14.7751i 1.59944 0.627734i
$$555$$ −1.77006 20.7362i −0.0751348 0.880202i
$$556$$ −20.5770 + 66.7089i −0.872657 + 2.82909i
$$557$$ 23.8400 13.7640i 1.01013 0.583201i 0.0989024 0.995097i $$-0.468467\pi$$
0.911231 + 0.411897i $$0.135133\pi$$
$$558$$ 33.0369 60.0605i 1.39856 2.54256i
$$559$$ −2.81115 + 0.641626i −0.118899 + 0.0271379i
$$560$$ 59.6552 + 10.9346i 2.52089 + 0.462070i
$$561$$ −0.422616 1.32135i −0.0178428 0.0557875i
$$562$$ −53.6718 + 16.5555i −2.26401 + 0.698354i
$$563$$ 18.4434 23.1273i 0.777298 0.974701i −0.222702 0.974887i $$-0.571488\pi$$
1.00000 0.000185970i $$5.91962e-5\pi$$
$$564$$ −83.3887 11.6871i −3.51130 0.492115i
$$565$$ 10.9724 + 2.50438i 0.461612 + 0.105360i
$$566$$ 9.37879 41.0912i 0.394220 1.72719i
$$567$$ 2.01050 + 23.7267i 0.0844332 + 0.996429i
$$568$$ −15.5550 68.1508i −0.652672 2.85954i
$$569$$ 8.51947i 0.357155i −0.983926 0.178577i $$-0.942850\pi$$
0.983926 0.178577i $$-0.0571495\pi$$
$$570$$ −16.6314 28.1297i −0.696612 1.17822i
$$571$$ 0.0878092 + 0.384717i 0.00367470 + 0.0160999i 0.976732 0.214463i $$-0.0688003\pi$$
−0.973057 + 0.230563i $$0.925943\pi$$
$$572$$ −0.0638280 0.851726i −0.00266878 0.0356124i
$$573$$ 1.94867 13.9040i 0.0814069 0.580847i
$$574$$ −9.74005 1.04110i −0.406542 0.0434546i
$$575$$ −16.0778 + 12.8216i −0.670492 + 0.534699i
$$576$$ −103.681 29.6446i −4.32006 1.23519i
$$577$$ 21.0897 + 8.27708i 0.877974 + 0.344579i 0.761152 0.648574i $$-0.224634\pi$$
0.116822 + 0.993153i $$0.462729\pi$$
$$578$$ −17.3447 25.4399i −0.721442 1.05816i
$$579$$ 1.28439 + 0.180010i 0.0533776 + 0.00748098i
$$580$$ 16.6447 + 1.24735i 0.691132 + 0.0517932i
$$581$$ −4.09426 + 3.56433i −0.169859 + 0.147873i
$$582$$ −33.0960 + 23.0701i −1.37187 + 0.956285i
$$583$$ 2.79837 1.34762i 0.115896 0.0558128i
$$584$$ 55.6334 17.1606i 2.30213 0.710112i
$$585$$ −1.94900 0.105525i −0.0805811 0.00436294i
$$586$$ 4.29628 + 28.5040i 0.177478 + 1.17749i
$$587$$ 6.46045 + 11.1898i 0.266651 + 0.461854i 0.967995 0.250970i $$-0.0807494\pi$$
−0.701344 + 0.712823i $$0.747416\pi$$
$$588$$ 54.0291 + 41.1938i 2.22812 + 1.69880i
$$589$$ −20.0263 + 34.6866i −0.825170 + 1.42924i
$$590$$ −34.5514 13.5604i −1.42246 0.558273i
$$591$$ −8.77774 + 13.1654i −0.361068 + 0.541553i
$$592$$ 100.771 + 93.5014i 4.14165 + 3.84289i
$$593$$ −1.94217 + 25.9164i −0.0797553 + 1.06426i 0.803480 + 0.595331i $$0.202979\pi$$
−0.883236 + 0.468929i $$0.844640\pi$$
$$594$$ −3.84074 + 2.79718i −0.157587 + 0.114770i
$$595$$ −4.76876 + 7.68662i −0.195500 + 0.315120i
$$596$$ −7.02069 + 10.2975i −0.287579 + 0.421801i
$$597$$ −16.6994 + 6.75441i −0.683461 + 0.276439i
$$598$$ 3.77418 7.83717i 0.154338 0.320486i
$$599$$ −3.20111 + 2.55280i −0.130794 + 0.104304i −0.686702 0.726939i $$-0.740942\pi$$
0.555908 + 0.831244i $$0.312371\pi$$
$$600$$ −50.1582 + 11.9960i −2.04770 + 0.489736i
$$601$$ 20.9931 + 8.23920i 0.856328 + 0.336084i 0.752565 0.658518i $$-0.228816\pi$$
0.103763 + 0.994602i $$0.466912\pi$$
$$602$$ 45.7251 1.97268i 1.86361 0.0804004i
$$603$$ −16.9283 40.6373i −0.689372 1.65488i
$$604$$ −24.5258 + 16.7214i −0.997940 + 0.680384i
$$605$$ −14.7300 4.54361i −0.598861 0.184724i
$$606$$ −0.501312 48.4127i −0.0203644 1.96663i
$$607$$ −13.4728 + 7.77853i −0.546844 + 0.315721i −0.747848 0.663870i $$-0.768913\pi$$
0.201004 + 0.979590i $$0.435580\pi$$
$$608$$ 114.463 + 35.3072i 4.64209 + 1.43189i
$$609$$ 8.24636 + 4.99852i 0.334160 + 0.202550i
$$610$$ 38.2774 11.8070i 1.54981 0.478052i
$$611$$ 2.71223 2.92309i 0.109725 0.118256i
$$612$$ 24.6542 32.2640i 0.996586 1.30419i
$$613$$ 8.08553 + 1.21870i 0.326571 + 0.0492227i 0.310282 0.950645i $$-0.399577\pi$$
0.0162895 + 0.999867i $$0.494815\pi$$
$$614$$ 16.0070 70.1313i 0.645991 2.83027i
$$615$$ −3.13536 + 1.00280i −0.126430 + 0.0404368i
$$616$$ −0.926622 + 8.66905i −0.0373347 + 0.349286i
$$617$$ −8.83441 + 28.6405i −0.355660 + 1.15302i 0.584243 + 0.811579i $$0.301392\pi$$
−0.939903 + 0.341442i $$0.889085\pi$$
$$618$$ 13.5227 23.9924i 0.543963 0.965114i
$$619$$ −7.75372 4.47661i −0.311648 0.179930i 0.336015 0.941856i $$-0.390921\pi$$
−0.647664 + 0.761926i $$0.724254\pi$$
$$620$$ −44.7055 48.1811i −1.79542 1.93500i
$$621$$ −35.4621 + 3.76824i −1.42305 + 0.151214i
$$622$$ 26.3087 + 20.9805i 1.05488 + 0.841241i
$$623$$ −27.4766 9.43856i −1.10083 0.378148i
$$624$$ 9.99607 8.14235i 0.400163 0.325955i
$$625$$ 0.762429 0.707431i 0.0304972 0.0282972i
$$626$$ 26.9203 + 33.7570i 1.07595 + 1.34920i
$$627$$ 2.27754 1.58759i 0.0909561 0.0634023i
$$628$$ −37.0498 29.5462i −1.47845 1.17902i
$$629$$ −18.4726 + 8.89594i −0.736551 + 0.354704i
$$630$$ 30.1267 + 7.22497i 1.20028 + 0.287850i
$$631$$ −34.0667 16.4057i −1.35618 0.653100i −0.392395 0.919797i $$-0.628353\pi$$
−0.963780 + 0.266697i $$0.914068\pi$$
$$632$$ 3.22874 + 6.70454i 0.128432 + 0.266692i
$$633$$ −6.07520 + 27.9480i −0.241467 + 1.11083i
$$634$$ −23.9761 + 11.5463i −0.952213 + 0.458562i
$$635$$ 7.70683 19.6367i 0.305836 0.779258i
$$636$$ 79.1966 + 44.6372i 3.14035 + 1.76998i
$$637$$ −3.06348 + 0.983446i −0.121379 + 0.0389655i
$$638$$ 1.92415i 0.0761780i
$$639$$ −3.57675 20.7981i −0.141494 0.822761i
$$640$$ −39.5153 + 57.9582i −1.56198 + 2.29100i
$$641$$ −14.5254 + 15.6546i −0.573717 + 0.618320i −0.951528 0.307563i $$-0.900486\pi$$
0.377811 + 0.925883i $$0.376677\pi$$
$$642$$ 2.28741 1.13088i 0.0902768 0.0446324i
$$643$$ −8.33041 12.2185i −0.328519 0.481849i 0.626073 0.779764i $$-0.284661\pi$$
−0.954592 + 0.297915i $$0.903709\pi$$
$$644$$ −59.9541 + 82.2143i −2.36252 + 3.23970i
$$645$$ 13.7874 6.81641i 0.542878 0.268396i
$$646$$ −20.0726 + 25.1702i −0.789746 + 0.990310i
$$647$$ 2.54128 + 33.9110i 0.0999080 + 1.33318i 0.791623 + 0.611009i $$0.209236\pi$$
−0.691715 + 0.722170i $$0.743145\pi$$
$$648$$ −84.5345 29.1992i −3.32083 1.14705i
$$649$$ 0.929469 3.01326i 0.0364848 0.118281i
$$650$$ 1.38746 3.53519i 0.0544207 0.138662i
$$651$$ −10.4160 36.5155i −0.408236 1.43116i
$$652$$ −11.5254 29.3662i −0.451369 1.15007i
$$653$$ 9.65364 0.723440i 0.377776 0.0283104i 0.115511 0.993306i $$-0.463150\pi$$
0.262265 + 0.964996i $$0.415530\pi$$
$$654$$ −16.8598 + 56.7375i −0.659272 + 2.21861i
$$655$$ 2.29199 3.96984i 0.0895554 0.155115i
$$656$$ 10.8718 18.8305i 0.424471 0.735206i
$$657$$ 17.0509 4.26508i 0.665219 0.166397i
$$658$$ −50.7097 + 37.8751i −1.97687 + 1.47652i
$$659$$ −2.86967 9.30323i −0.111786 0.362403i 0.882342 0.470609i $$-0.155966\pi$$
−0.994128 + 0.108206i $$0.965489\pi$$
$$660$$ 1.38787 + 4.33933i 0.0540229 + 0.168908i
$$661$$ 25.0983 + 20.0152i 0.976209 + 0.778501i 0.975161 0.221499i $$-0.0710948\pi$$
0.00104847 + 0.999999i $$0.499666\pi$$
$$662$$ 26.7047 + 21.2963i 1.03791 + 0.827705i
$$663$$ 0.585785 + 1.83152i 0.0227500 + 0.0711302i
$$664$$ −6.00967 19.4829i −0.233220 0.756082i
$$665$$ −17.5121 4.58523i −0.679089 0.177808i
$$666$$ 48.8183 + 50.4758i 1.89167 + 1.95590i
$$667$$ −7.22095 + 12.5070i −0.279596 + 0.484275i
$$668$$ 47.2214 81.7898i 1.82705 3.16454i
$$669$$ 5.30902 17.8662i 0.205259 0.690746i
$$670$$ −57.1161 + 4.28026i −2.20659 + 0.165361i
$$671$$ 1.24330 + 3.16787i 0.0479970 + 0.122294i
$$672$$ −99.5365 + 54.6707i −3.83970 + 2.10897i
$$673$$ −6.24279 + 15.9064i −0.240642 + 0.613146i −0.999263 0.0383865i $$-0.987778\pi$$
0.758621 + 0.651532i $$0.225873\pi$$
$$674$$ −20.9615 + 67.9555i −0.807406 + 2.61755i
$$675$$ −15.3161 + 2.79757i −0.589518 + 0.107678i
$$676$$ −5.35551 71.4643i −0.205981 2.74863i
$$677$$ −7.16428 + 8.98372i −0.275345 + 0.345272i −0.900206 0.435464i $$-0.856584\pi$$
0.624861 + 0.780736i $$0.285156\pi$$
$$678$$ −34.0414 + 16.8299i −1.30735 + 0.646349i
$$679$$ −4.02924 + 21.9821i −0.154628 + 0.843596i
$$680$$ −19.1389 28.0716i −0.733942 1.07650i
$$681$$ 27.3777 13.5354i 1.04912 0.518678i
$$682$$ 5.15359 5.55425i 0.197341 0.212683i
$$683$$ 11.5922 17.0027i 0.443565 0.650590i −0.537726 0.843119i $$-0.680717\pi$$
0.981291 + 0.192529i $$0.0616690\pi$$
$$684$$ 76.2412 + 28.1148i 2.91515 + 1.07500i
$$685$$ 8.82029i 0.337006i
$$686$$ 50.6428 6.58724i 1.93355 0.251502i
$$687$$ −16.2319 9.14871i −0.619285 0.349045i
$$688$$ −37.1158 + 94.5695i −1.41503 + 3.60543i
$$689$$ −3.87880 + 1.86793i −0.147770 + 0.0711625i
$$690$$ −9.85573 + 45.3398i −0.375201 + 1.72606i
$$691$$ −0.0904422 0.187805i −0.00344058 0.00714444i 0.899241 0.437453i $$-0.144119\pi$$
−0.902682 + 0.430308i $$0.858405\pi$$
$$692$$ −79.0249 38.0564i −3.00408 1.44669i
$$693$$ −0.420826 + 2.59818i −0.0159859 + 0.0986968i
$$694$$ 15.5714 7.49881i 0.591084 0.284651i
$$695$$ 13.7869 + 10.9947i 0.522966 + 0.417051i
$$696$$ −29.7123 + 20.7114i −1.12624 + 0.785063i
$$697$$ 2.02199 + 2.53549i 0.0765883 + 0.0960387i
$$698$$ 4.13539 3.83708i 0.156527 0.145236i
$$699$$ 3.95694 3.22314i 0.149665 0.121910i
$$700$$ −23.4198 + 37.7496i −0.885183 + 1.42680i
$$701$$ 9.76941 + 7.79084i 0.368985 + 0.294256i 0.790375 0.612624i $$-0.209886\pi$$
−0.421389 + 0.906880i $$0.638457\pi$$
$$702$$ 5.32362 3.87715i 0.200927 0.146334i
$$703$$ −27.9081 30.0778i −1.05257 1.13440i
$$704$$ −10.3228 5.95986i −0.389054 0.224621i
$$705$$ −10.4436 + 18.5293i −0.393329 + 0.697855i
$$706$$ −29.2686 + 94.8865i −1.10154 + 3.57110i
$$707$$ −19.0726 18.8558i −0.717300 0.709147i
$$708$$ 87.9103 28.1169i 3.30387 1.05670i
$$709$$ 5.62900 24.6622i 0.211401 0.926210i −0.752214 0.658919i $$-0.771014\pi$$
0.963616 0.267292i $$-0.0861287\pi$$
$$710$$ −27.1505 4.09228i −1.01894 0.153580i
$$711$$ 0.863881 + 2.07380i 0.0323981 + 0.0777735i
$$712$$ 74.2201 79.9902i 2.78151 2.99776i
$$713$$ 54.3424 16.7624i 2.03514 0.627757i
$$714$$ −3.90427 30.2708i −0.146114 1.13286i
$$715$$ −0.206164 0.0635931i −0.00771009 0.00237825i
$$716$$ 74.9795 43.2894i 2.80211 1.61780i
$$717$$ −0.00151980 0.146770i −5.67579e−5 0.00548123i
$$718$$ −90.1115 27.7957i −3.36293 1.03733i
$$719$$ −2.51616 + 1.71549i −0.0938368 + 0.0639768i −0.609329 0.792917i $$-0.708561\pi$$
0.515493 + 0.856894i $$0.327609\pi$$
$$720$$ −41.7546 + 54.6426i −1.55610 + 2.03641i
$$721$$ −4.03281 14.7137i −0.150190 0.547968i
$$722$$ −11.2027 4.39674i −0.416922 0.163630i
$$723$$ −17.9534 + 4.29379i −0.667693 + 0.159688i
$$724$$ 50.4962 40.2694i 1.87668 1.49660i
$$725$$ −2.73571 + 5.68076i −0.101602 + 0.210978i
$$726$$ 48.2173 19.5024i 1.78951 0.723803i
$$727$$ −28.7000 + 42.0952i −1.06442 + 1.56122i −0.261443 + 0.965219i $$0.584198\pi$$
−0.802981 + 0.596005i $$0.796754\pi$$
$$728$$ 1.28438 12.0161i 0.0476025 0.445347i
$$729$$ −25.0066 10.1819i −0.926169 0.377108i
$$730$$ 1.70893 22.8041i 0.0632503 0.844017i
$$731$$ −11.1074 10.3062i −0.410824 0.381189i
$$732$$ −55.2558 + 82.8763i −2.04231 + 3.06320i
$$733$$ 22.6704 + 8.89749i 0.837352 + 0.328636i 0.744979 0.667088i $$-0.232460\pi$$
0.0923729 + 0.995724i $$0.470555\pi$$
$$734$$ −20.2277 + 35.0354i −0.746617 + 1.29318i
$$735$$ 14.6723 8.90276i 0.541196 0.328383i
$$736$$ −85.0385 147.291i −3.13456 5.42922i
$$737$$ −0.725242 4.81167i −0.0267146 0.177240i
$$738$$ 6.06547 9.30471i 0.223273 0.342511i
$$739$$ 6.09669 1.88058i 0.224270 0.0691782i −0.180584 0.983560i $$-0.557799\pi$$
0.404854 + 0.914381i $$0.367322\pi$$
$$740$$ 60.6642 29.2143i 2.23006 1.07394i
$$741$$ −3.15688 + 2.20055i −0.115971 + 0.0808392i
$$742$$ 65.9030 18.0630i 2.41938 0.663114i
$$743$$ 1.80182 + 0.135028i 0.0661024 + 0.00495369i 0.107740 0.994179i $$-0.465639\pi$$
−0.0416378 + 0.999133i $$0.513258\pi$$
$$744$$ 141.240 + 19.7951i 5.17811 + 0.725722i
$$745$$ 1.77342 + 2.60114i 0.0649732 + 0.0952982i
$$746$$ 58.5783 + 22.9903i 2.14470 + 0.841734i
$$747$$ −1.49364 5.97125i −0.0546493 0.218476i
$$748$$ 3.50912 2.79843i 0.128306 0.102321i
$$749$$ 0.459224 1.33685i 0.0167797 0.0488473i
$$750$$ −7.50329 + 53.5368i −0.273982 + 1.95489i
$$751$$ −3.12984 41.7648i −0.114210 1.52402i −0.700343 0.713806i $$-0.746970\pi$$
0.586133 0.810215i $$-0.300649\pi$$
$$752$$ −31.2628 136.971i −1.14004 4.99483i
$$753$$ 3.32022 + 5.61570i 0.120996 + 0.204647i
$$754$$ 2.66706i 0.0971284i
$$755$$ 1.66848 + 7.31008i 0.0607221 + 0.266041i
$$756$$ −69.4302 + 33.3827i −2.52515 + 1.21412i
$$757$$ −3.57104 + 15.6458i −0.129792 + 0.568655i 0.867650 + 0.497175i $$0.165629\pi$$
−0.997442 + 0.0714799i $$0.977228\pi$$
$$758$$ 17.9893 + 4.10594i 0.653401 + 0.149134i
$$759$$ −3.90374 0.547116i −0.141697 0.0198591i
$$760$$ 42.3919 53.1578i 1.53772 1.92824i
$$761$$ −34.5793 + 10.6663i −1.25350 + 0.386653i −0.849247 0.527995i $$-0.822944\pi$$
−0.404251 + 0.914648i $$0.632468\pi$$
$$762$$ 21.6830 + 67.7942i 0.785492 + 2.45592i
$$763$$ 15.4864 + 28.9007i 0.560646 + 1.04627i
$$764$$ 44.2846 10.1077i 1.60216 0.365683i
$$765$$ −5.31128 8.77462i −0.192030 0.317247i
$$766$$ −31.4941 + 18.1831i −1.13793 + 0.656982i
$$767$$ −1.28833 + 4.17666i −0.0465189 + 0.150811i
$$768$$ −9.54006 111.761i −0.344247 4.03285i
$$769$$ −49.9038 + 19.5858i −1.79958 + 0.706282i −0.806166 + 0.591690i $$0.798461\pi$$
−0.993413 + 0.114593i $$0.963444\pi$$
$$770$$ 3.03674 + 1.58283i 0.109436 + 0.0570411i
$$771$$