# Properties

 Label 441.2.bn Level $441$ Weight $2$ Character orbit 441.bn Rep. character $\chi_{441}(5,\cdot)$ Character field $\Q(\zeta_{42})$ Dimension $648$ Newform subspaces $1$ Sturm bound $112$ Trace bound $0$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$441 = 3^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 441.bn (of order $$42$$ and degree $$12$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$441$$ Character field: $$\Q(\zeta_{42})$$ Newform subspaces: $$1$$ Sturm bound: $$112$$ Trace bound: $$0$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(441, [\chi])$$.

Total New Old
Modular forms 696 696 0
Cusp forms 648 648 0
Eisenstein series 48 48 0

## Trace form

 $$648 q - 21 q^{2} - 11 q^{3} + 99 q^{4} - 18 q^{5} - 34 q^{6} - 5 q^{7} - 23 q^{9} + O(q^{10})$$ $$648 q - 21 q^{2} - 11 q^{3} + 99 q^{4} - 18 q^{5} - 34 q^{6} - 5 q^{7} - 23 q^{9} - 22 q^{10} - 18 q^{11} - 72 q^{12} - 4 q^{13} + 66 q^{14} - 10 q^{15} - 105 q^{16} - 9 q^{17} - 27 q^{18} - 36 q^{19} - 27 q^{20} - 11 q^{21} - 9 q^{22} - 27 q^{23} - 8 q^{24} + 38 q^{25} + 6 q^{26} - 29 q^{27} - 26 q^{28} + 3 q^{29} - 16 q^{30} - 21 q^{32} - 11 q^{33} - 13 q^{34} + 28 q^{36} - 13 q^{37} - 90 q^{38} - 15 q^{39} - 31 q^{40} - 27 q^{41} - 4 q^{42} - 9 q^{43} + 51 q^{44} - 11 q^{45} - 108 q^{46} + 75 q^{47} - 15 q^{48} - 13 q^{49} - 45 q^{50} - 38 q^{51} + 64 q^{52} - 12 q^{53} - 41 q^{54} + 14 q^{55} + 3 q^{56} - 7 q^{57} - 90 q^{58} + 15 q^{59} - 69 q^{60} - 56 q^{61} + 66 q^{62} + 13 q^{63} + 64 q^{64} - 21 q^{65} - 204 q^{66} - 26 q^{67} + 3 q^{68} + 58 q^{69} - 22 q^{70} - 63 q^{71} - 18 q^{72} - 22 q^{73} - 12 q^{74} + 118 q^{75} - 63 q^{76} - 69 q^{77} - 147 q^{78} - 2 q^{79} - 45 q^{80} + 29 q^{81} - 28 q^{82} - 51 q^{83} - 31 q^{84} - 10 q^{85} - 72 q^{86} - 67 q^{87} + 4 q^{88} + 132 q^{89} + 58 q^{90} - 13 q^{91} - 15 q^{92} + 217 q^{93} - 7 q^{94} - 21 q^{95} - 44 q^{96} + 3 q^{97} + 21 q^{98} - 148 q^{99} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(441, [\chi])$$ into newform subspaces

Label Dim. $$A$$ Field CM Traces $q$-expansion
$$a_2$$ $$a_3$$ $$a_5$$ $$a_7$$
441.2.bn.a $$648$$ $$3.521$$ None $$-21$$ $$-11$$ $$-18$$ $$-5$$