Properties

Label 441.2.bg.a.278.18
Level $441$
Weight $2$
Character 441.278
Analytic conductor $3.521$
Analytic rank $0$
Dimension $216$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.bg (of order \(42\), degree \(12\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(18\) over \(\Q(\zeta_{42})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{42}]$

Embedding invariants

Embedding label 278.18
Character \(\chi\) \(=\) 441.278
Dual form 441.2.bg.a.395.18

$q$-expansion

\(f(q)\) \(=\) \(q+(2.45194 - 0.962314i) q^{2} +(3.61984 - 3.35872i) q^{4} +(-1.47762 + 1.00742i) q^{5} +(2.09999 + 1.60937i) q^{7} +(3.35777 - 6.97247i) q^{8} +O(q^{10})\) \(q+(2.45194 - 0.962314i) q^{2} +(3.61984 - 3.35872i) q^{4} +(-1.47762 + 1.00742i) q^{5} +(2.09999 + 1.60937i) q^{7} +(3.35777 - 6.97247i) q^{8} +(-2.65357 + 3.89208i) q^{10} +(0.538606 - 3.57342i) q^{11} +(-2.76752 - 2.20702i) q^{13} +(6.69775 + 1.92522i) q^{14} +(0.785279 - 10.4788i) q^{16} +(-2.32943 + 0.718533i) q^{17} +(6.52328 + 3.76622i) q^{19} +(-1.96509 + 8.60964i) q^{20} +(-2.11812 - 9.28010i) q^{22} +(-1.91813 + 6.21843i) q^{23} +(-0.658247 + 1.67719i) q^{25} +(-8.90963 - 2.74826i) q^{26} +(13.0070 - 1.22762i) q^{28} +(-4.35647 - 0.994336i) q^{29} +(-5.85986 + 3.38319i) q^{31} +(-3.59633 - 11.6590i) q^{32} +(-5.02015 + 4.00344i) q^{34} +(-4.72430 - 0.262454i) q^{35} +(-4.18776 - 3.88567i) q^{37} +(19.6190 + 2.95708i) q^{38} +(2.06274 + 13.6854i) q^{40} +(-3.53525 - 1.70249i) q^{41} +(3.05468 - 1.47106i) q^{43} +(-10.0524 - 14.7442i) q^{44} +(1.28095 + 17.0930i) q^{46} +(-1.81628 - 4.62779i) q^{47} +(1.81988 + 6.75929i) q^{49} +4.74579i q^{50} +(-17.4308 + 1.30625i) q^{52} +(3.20504 + 3.45421i) q^{53} +(2.80409 + 5.82276i) q^{55} +(18.2725 - 9.23822i) q^{56} +(-11.6387 + 1.75424i) q^{58} +(-9.48163 - 6.46446i) q^{59} +(4.54073 - 4.89374i) q^{61} +(-11.1123 + 13.9344i) q^{62} +(-6.93408 - 8.69506i) q^{64} +(6.31275 + 0.473075i) q^{65} +(6.90681 + 11.9629i) q^{67} +(-6.01880 + 10.4249i) q^{68} +(-11.8362 + 3.90274i) q^{70} +(-1.21008 + 0.276193i) q^{71} +(8.19697 + 3.21707i) q^{73} +(-14.0074 - 5.49749i) q^{74} +(36.2629 - 8.27678i) q^{76} +(6.88200 - 6.63731i) q^{77} +(5.24053 - 9.07686i) q^{79} +(9.39628 + 16.2748i) q^{80} +(-10.3066 - 0.772369i) q^{82} +(8.72515 + 10.9410i) q^{83} +(2.71814 - 3.40844i) q^{85} +(6.07427 - 6.54650i) q^{86} +(-23.1070 - 15.7541i) q^{88} +(7.03212 - 1.05992i) q^{89} +(-2.25984 - 9.08866i) q^{91} +(13.9427 + 28.9522i) q^{92} +(-8.90679 - 9.59923i) q^{94} +(-13.4331 + 1.00667i) q^{95} +1.36179i q^{97} +(10.9668 + 14.8221i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 16 q^{4} + 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 216 q - 16 q^{4} + 2 q^{7} + 12 q^{10} + 12 q^{16} - 6 q^{19} + 44 q^{22} + 26 q^{25} + 84 q^{28} - 6 q^{31} - 112 q^{34} + 60 q^{37} - 304 q^{40} + 20 q^{43} - 20 q^{46} - 86 q^{49} - 168 q^{52} - 84 q^{55} - 120 q^{58} - 2 q^{61} + 32 q^{64} + 22 q^{67} - 136 q^{70} - 6 q^{73} + 84 q^{76} + 2 q^{79} - 104 q^{82} + 96 q^{85} - 12 q^{88} + 58 q^{91} + 52 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{41}{42}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.45194 0.962314i 1.73378 0.680459i 0.733782 0.679385i \(-0.237753\pi\)
0.999999 0.00107413i \(-0.000341906\pi\)
\(3\) 0 0
\(4\) 3.61984 3.35872i 1.80992 1.67936i
\(5\) −1.47762 + 1.00742i −0.660812 + 0.450534i −0.846724 0.532032i \(-0.821428\pi\)
0.185912 + 0.982566i \(0.440476\pi\)
\(6\) 0 0
\(7\) 2.09999 + 1.60937i 0.793720 + 0.608283i
\(8\) 3.35777 6.97247i 1.18715 2.46514i
\(9\) 0 0
\(10\) −2.65357 + 3.89208i −0.839134 + 1.23078i
\(11\) 0.538606 3.57342i 0.162396 1.07743i −0.748004 0.663695i \(-0.768987\pi\)
0.910399 0.413731i \(-0.135774\pi\)
\(12\) 0 0
\(13\) −2.76752 2.20702i −0.767571 0.612118i 0.159415 0.987212i \(-0.449039\pi\)
−0.926987 + 0.375094i \(0.877610\pi\)
\(14\) 6.69775 + 1.92522i 1.79005 + 0.514536i
\(15\) 0 0
\(16\) 0.785279 10.4788i 0.196320 2.61970i
\(17\) −2.32943 + 0.718533i −0.564969 + 0.174270i −0.564066 0.825730i \(-0.690764\pi\)
−0.000902867 1.00000i \(0.500287\pi\)
\(18\) 0 0
\(19\) 6.52328 + 3.76622i 1.49654 + 0.864030i 0.999992 0.00397809i \(-0.00126627\pi\)
0.496551 + 0.868008i \(0.334600\pi\)
\(20\) −1.96509 + 8.60964i −0.439408 + 1.92517i
\(21\) 0 0
\(22\) −2.11812 9.28010i −0.451585 1.97852i
\(23\) −1.91813 + 6.21843i −0.399958 + 1.29663i 0.502022 + 0.864855i \(0.332590\pi\)
−0.901980 + 0.431778i \(0.857887\pi\)
\(24\) 0 0
\(25\) −0.658247 + 1.67719i −0.131649 + 0.335437i
\(26\) −8.90963 2.74826i −1.74732 0.538977i
\(27\) 0 0
\(28\) 13.0070 1.22762i 2.45810 0.231999i
\(29\) −4.35647 0.994336i −0.808976 0.184644i −0.202023 0.979381i \(-0.564751\pi\)
−0.606953 + 0.794737i \(0.707609\pi\)
\(30\) 0 0
\(31\) −5.85986 + 3.38319i −1.05246 + 0.607639i −0.923337 0.383990i \(-0.874550\pi\)
−0.129124 + 0.991628i \(0.541216\pi\)
\(32\) −3.59633 11.6590i −0.635747 2.06104i
\(33\) 0 0
\(34\) −5.02015 + 4.00344i −0.860949 + 0.686584i
\(35\) −4.72430 0.262454i −0.798552 0.0443628i
\(36\) 0 0
\(37\) −4.18776 3.88567i −0.688464 0.638801i 0.256283 0.966602i \(-0.417502\pi\)
−0.944747 + 0.327801i \(0.893692\pi\)
\(38\) 19.6190 + 2.95708i 3.18262 + 0.479702i
\(39\) 0 0
\(40\) 2.06274 + 13.6854i 0.326147 + 2.16385i
\(41\) −3.53525 1.70249i −0.552114 0.265884i 0.136958 0.990577i \(-0.456267\pi\)
−0.689072 + 0.724693i \(0.741982\pi\)
\(42\) 0 0
\(43\) 3.05468 1.47106i 0.465834 0.224334i −0.186217 0.982509i \(-0.559623\pi\)
0.652052 + 0.758175i \(0.273909\pi\)
\(44\) −10.0524 14.7442i −1.51546 2.22278i
\(45\) 0 0
\(46\) 1.28095 + 17.0930i 0.188865 + 2.52023i
\(47\) −1.81628 4.62779i −0.264931 0.675033i 0.735065 0.677997i \(-0.237152\pi\)
−0.999996 + 0.00296394i \(0.999057\pi\)
\(48\) 0 0
\(49\) 1.81988 + 6.75929i 0.259983 + 0.965613i
\(50\) 4.74579i 0.671157i
\(51\) 0 0
\(52\) −17.4308 + 1.30625i −2.41721 + 0.181145i
\(53\) 3.20504 + 3.45421i 0.440247 + 0.474473i 0.913725 0.406332i \(-0.133192\pi\)
−0.473479 + 0.880805i \(0.657002\pi\)
\(54\) 0 0
\(55\) 2.80409 + 5.82276i 0.378104 + 0.785141i
\(56\) 18.2725 9.23822i 2.44177 1.23451i
\(57\) 0 0
\(58\) −11.6387 + 1.75424i −1.52823 + 0.230344i
\(59\) −9.48163 6.46446i −1.23440 0.841601i −0.242693 0.970103i \(-0.578031\pi\)
−0.991709 + 0.128502i \(0.958983\pi\)
\(60\) 0 0
\(61\) 4.54073 4.89374i 0.581381 0.626580i −0.372042 0.928216i \(-0.621342\pi\)
0.953423 + 0.301636i \(0.0975328\pi\)
\(62\) −11.1123 + 13.9344i −1.41126 + 1.76967i
\(63\) 0 0
\(64\) −6.93408 8.69506i −0.866759 1.08688i
\(65\) 6.31275 + 0.473075i 0.783000 + 0.0586778i
\(66\) 0 0
\(67\) 6.90681 + 11.9629i 0.843801 + 1.46151i 0.886658 + 0.462425i \(0.153020\pi\)
−0.0428576 + 0.999081i \(0.513646\pi\)
\(68\) −6.01880 + 10.4249i −0.729887 + 1.26420i
\(69\) 0 0
\(70\) −11.8362 + 3.90274i −1.41470 + 0.466467i
\(71\) −1.21008 + 0.276193i −0.143610 + 0.0327781i −0.293722 0.955891i \(-0.594894\pi\)
0.150112 + 0.988669i \(0.452037\pi\)
\(72\) 0 0
\(73\) 8.19697 + 3.21707i 0.959383 + 0.376530i 0.792790 0.609495i \(-0.208628\pi\)
0.166594 + 0.986026i \(0.446723\pi\)
\(74\) −14.0074 5.49749i −1.62832 0.639070i
\(75\) 0 0
\(76\) 36.2629 8.27678i 4.15964 0.949412i
\(77\) 6.88200 6.63731i 0.784276 0.756392i
\(78\) 0 0
\(79\) 5.24053 9.07686i 0.589606 1.02123i −0.404678 0.914459i \(-0.632616\pi\)
0.994284 0.106768i \(-0.0340502\pi\)
\(80\) 9.39628 + 16.2748i 1.05054 + 1.81958i
\(81\) 0 0
\(82\) −10.3066 0.772369i −1.13817 0.0852939i
\(83\) 8.72515 + 10.9410i 0.957710 + 1.20093i 0.979557 + 0.201169i \(0.0644740\pi\)
−0.0218467 + 0.999761i \(0.506955\pi\)
\(84\) 0 0
\(85\) 2.71814 3.40844i 0.294824 0.369697i
\(86\) 6.07427 6.54650i 0.655005 0.705927i
\(87\) 0 0
\(88\) −23.1070 15.7541i −2.46322 1.67939i
\(89\) 7.03212 1.05992i 0.745403 0.112351i 0.234651 0.972080i \(-0.424605\pi\)
0.510752 + 0.859728i \(0.329367\pi\)
\(90\) 0 0
\(91\) −2.25984 9.08866i −0.236896 0.952751i
\(92\) 13.9427 + 28.9522i 1.45362 + 3.01848i
\(93\) 0 0
\(94\) −8.90679 9.59923i −0.918665 0.990085i
\(95\) −13.4331 + 1.00667i −1.37821 + 0.103282i
\(96\) 0 0
\(97\) 1.36179i 0.138269i 0.997607 + 0.0691347i \(0.0220238\pi\)
−0.997607 + 0.0691347i \(0.977976\pi\)
\(98\) 10.9668 + 14.8221i 1.10781 + 1.49725i
\(99\) 0 0
\(100\) 3.25045 + 8.28202i 0.325045 + 0.828202i
\(101\) −0.646268 8.62384i −0.0643060 0.858104i −0.932336 0.361593i \(-0.882233\pi\)
0.868030 0.496512i \(-0.165386\pi\)
\(102\) 0 0
\(103\) −8.38856 12.3038i −0.826550 1.21233i −0.974735 0.223366i \(-0.928295\pi\)
0.148185 0.988960i \(-0.452657\pi\)
\(104\) −24.6811 + 11.8858i −2.42018 + 1.16550i
\(105\) 0 0
\(106\) 11.1826 + 5.38526i 1.08615 + 0.523063i
\(107\) −2.23305 14.8153i −0.215877 1.43225i −0.789811 0.613350i \(-0.789822\pi\)
0.573934 0.818901i \(-0.305416\pi\)
\(108\) 0 0
\(109\) −15.2528 2.29900i −1.46096 0.220204i −0.630024 0.776576i \(-0.716955\pi\)
−0.830934 + 0.556372i \(0.812193\pi\)
\(110\) 12.4788 + 11.5786i 1.18981 + 1.10398i
\(111\) 0 0
\(112\) 18.5133 20.7416i 1.74934 1.95989i
\(113\) −2.47511 + 1.97383i −0.232838 + 0.185682i −0.732958 0.680274i \(-0.761861\pi\)
0.500120 + 0.865956i \(0.333289\pi\)
\(114\) 0 0
\(115\) −3.43033 11.1209i −0.319880 1.03703i
\(116\) −19.1094 + 11.0328i −1.77427 + 1.02437i
\(117\) 0 0
\(118\) −29.4692 6.72615i −2.71286 0.619192i
\(119\) −6.04814 2.23999i −0.554432 0.205339i
\(120\) 0 0
\(121\) −1.96790 0.607018i −0.178900 0.0551834i
\(122\) 6.42427 16.3688i 0.581626 1.48196i
\(123\) 0 0
\(124\) −9.84856 + 31.9283i −0.884427 + 2.86724i
\(125\) −2.70675 11.8590i −0.242099 1.06070i
\(126\) 0 0
\(127\) 2.81359 12.3271i 0.249666 1.09386i −0.682232 0.731136i \(-0.738990\pi\)
0.931898 0.362722i \(-0.118152\pi\)
\(128\) −4.23644 2.44591i −0.374452 0.216190i
\(129\) 0 0
\(130\) 15.9337 4.91490i 1.39748 0.431065i
\(131\) −0.625833 + 8.35116i −0.0546793 + 0.729644i 0.900734 + 0.434371i \(0.143029\pi\)
−0.955413 + 0.295272i \(0.904590\pi\)
\(132\) 0 0
\(133\) 7.63758 + 18.4073i 0.662262 + 1.59612i
\(134\) 28.4472 + 22.6859i 2.45746 + 1.95976i
\(135\) 0 0
\(136\) −2.81172 + 18.6545i −0.241103 + 1.59961i
\(137\) −3.40952 + 5.00085i −0.291295 + 0.427251i −0.943792 0.330540i \(-0.892769\pi\)
0.652497 + 0.757791i \(0.273722\pi\)
\(138\) 0 0
\(139\) 4.97685 10.3345i 0.422131 0.876565i −0.576115 0.817369i \(-0.695432\pi\)
0.998246 0.0591961i \(-0.0188537\pi\)
\(140\) −17.9827 + 14.9176i −1.51982 + 1.26076i
\(141\) 0 0
\(142\) −2.70126 + 1.84168i −0.226684 + 0.154551i
\(143\) −9.37721 + 8.70078i −0.784162 + 0.727596i
\(144\) 0 0
\(145\) 7.43893 2.91956i 0.617769 0.242457i
\(146\) 23.1943 1.91957
\(147\) 0 0
\(148\) −28.2099 −2.31884
\(149\) 11.7419 4.60836i 0.961934 0.377531i 0.168171 0.985758i \(-0.446214\pi\)
0.793763 + 0.608227i \(0.208119\pi\)
\(150\) 0 0
\(151\) 1.35780 1.25985i 0.110496 0.102525i −0.622990 0.782230i \(-0.714082\pi\)
0.733486 + 0.679704i \(0.237892\pi\)
\(152\) 48.1635 32.8373i 3.90658 2.66346i
\(153\) 0 0
\(154\) 10.4870 22.8969i 0.845070 1.84509i
\(155\) 5.25034 10.9024i 0.421717 0.875705i
\(156\) 0 0
\(157\) −5.62320 + 8.24772i −0.448780 + 0.658240i −0.982249 0.187580i \(-0.939936\pi\)
0.533469 + 0.845820i \(0.320888\pi\)
\(158\) 4.11465 27.2989i 0.327344 2.17179i
\(159\) 0 0
\(160\) 17.0596 + 13.6046i 1.34868 + 1.07553i
\(161\) −14.0358 + 9.97164i −1.10617 + 0.785876i
\(162\) 0 0
\(163\) 0.815078 10.8765i 0.0638418 0.851910i −0.869732 0.493525i \(-0.835708\pi\)
0.933574 0.358386i \(-0.116673\pi\)
\(164\) −18.5153 + 5.71120i −1.44580 + 0.445970i
\(165\) 0 0
\(166\) 31.9222 + 18.4303i 2.47764 + 1.43047i
\(167\) 4.24385 18.5935i 0.328399 1.43881i −0.493784 0.869585i \(-0.664387\pi\)
0.822183 0.569224i \(-0.192756\pi\)
\(168\) 0 0
\(169\) −0.104562 0.458117i −0.00804325 0.0352398i
\(170\) 3.38472 10.9730i 0.259596 0.841590i
\(171\) 0 0
\(172\) 6.11659 15.5848i 0.466386 1.18833i
\(173\) 17.0108 + 5.24713i 1.29330 + 0.398932i 0.863664 0.504068i \(-0.168164\pi\)
0.429641 + 0.903000i \(0.358640\pi\)
\(174\) 0 0
\(175\) −4.08151 + 2.46271i −0.308533 + 0.186163i
\(176\) −37.0222 8.45008i −2.79065 0.636949i
\(177\) 0 0
\(178\) 16.2223 9.36597i 1.21592 0.702009i
\(179\) 4.74524 + 15.3837i 0.354676 + 1.14983i 0.940615 + 0.339476i \(0.110250\pi\)
−0.585939 + 0.810355i \(0.699274\pi\)
\(180\) 0 0
\(181\) −1.22615 + 0.977821i −0.0911389 + 0.0726809i −0.667999 0.744162i \(-0.732849\pi\)
0.576860 + 0.816843i \(0.304278\pi\)
\(182\) −14.2871 20.1102i −1.05903 1.49066i
\(183\) 0 0
\(184\) 36.9172 + 34.2542i 2.72157 + 2.52525i
\(185\) 10.1024 + 1.52270i 0.742747 + 0.111951i
\(186\) 0 0
\(187\) 1.31297 + 8.71101i 0.0960142 + 0.637012i
\(188\) −22.1181 10.6515i −1.61313 0.776842i
\(189\) 0 0
\(190\) −31.9684 + 15.3952i −2.31923 + 1.11688i
\(191\) 4.14328 + 6.07708i 0.299797 + 0.439722i 0.946348 0.323149i \(-0.104741\pi\)
−0.646551 + 0.762871i \(0.723789\pi\)
\(192\) 0 0
\(193\) 0.156219 + 2.08460i 0.0112449 + 0.150053i 1.00000 0.000508213i \(0.000161769\pi\)
−0.988755 + 0.149545i \(0.952219\pi\)
\(194\) 1.31047 + 3.33904i 0.0940866 + 0.239729i
\(195\) 0 0
\(196\) 29.2903 + 18.3551i 2.09216 + 1.31108i
\(197\) 6.13583i 0.437159i 0.975819 + 0.218580i \(0.0701424\pi\)
−0.975819 + 0.218580i \(0.929858\pi\)
\(198\) 0 0
\(199\) −24.1519 + 1.80994i −1.71209 + 0.128303i −0.894373 0.447322i \(-0.852378\pi\)
−0.817713 + 0.575625i \(0.804759\pi\)
\(200\) 9.48389 + 10.2212i 0.670612 + 0.722748i
\(201\) 0 0
\(202\) −9.88346 20.5232i −0.695398 1.44401i
\(203\) −7.54828 9.09924i −0.529785 0.638642i
\(204\) 0 0
\(205\) 6.93890 1.04587i 0.484633 0.0730467i
\(206\) −32.4083 22.0956i −2.25799 1.53947i
\(207\) 0 0
\(208\) −25.3003 + 27.2672i −1.75426 + 1.89064i
\(209\) 16.9717 21.2819i 1.17396 1.47210i
\(210\) 0 0
\(211\) 4.19892 + 5.26528i 0.289066 + 0.362477i 0.905068 0.425268i \(-0.139820\pi\)
−0.616002 + 0.787745i \(0.711249\pi\)
\(212\) 23.2035 + 1.73886i 1.59362 + 0.119426i
\(213\) 0 0
\(214\) −19.7323 34.1773i −1.34887 2.33631i
\(215\) −3.03168 + 5.25102i −0.206759 + 0.358117i
\(216\) 0 0
\(217\) −17.7504 2.32600i −1.20498 0.157899i
\(218\) −39.6114 + 9.04104i −2.68282 + 0.612336i
\(219\) 0 0
\(220\) 29.7074 + 11.6593i 2.00287 + 0.786070i
\(221\) 8.03254 + 3.15254i 0.540327 + 0.212063i
\(222\) 0 0
\(223\) −7.92276 + 1.80832i −0.530547 + 0.121094i −0.479399 0.877597i \(-0.659145\pi\)
−0.0511482 + 0.998691i \(0.516288\pi\)
\(224\) 11.2114 30.2715i 0.749091 2.02260i
\(225\) 0 0
\(226\) −4.16936 + 7.22154i −0.277342 + 0.480370i
\(227\) 1.53188 + 2.65330i 0.101675 + 0.176106i 0.912375 0.409356i \(-0.134247\pi\)
−0.810700 + 0.585462i \(0.800913\pi\)
\(228\) 0 0
\(229\) 0.150273 + 0.0112614i 0.00993034 + 0.000744176i 0.0796943 0.996819i \(-0.474606\pi\)
−0.0697640 + 0.997564i \(0.522225\pi\)
\(230\) −19.1127 23.9666i −1.26026 1.58031i
\(231\) 0 0
\(232\) −21.5610 + 27.0366i −1.41555 + 1.77504i
\(233\) −14.6211 + 15.7578i −0.957860 + 1.03233i 0.0415891 + 0.999135i \(0.486758\pi\)
−0.999449 + 0.0331927i \(0.989433\pi\)
\(234\) 0 0
\(235\) 7.34592 + 5.00836i 0.479195 + 0.326710i
\(236\) −56.0343 + 8.44582i −3.64753 + 0.549776i
\(237\) 0 0
\(238\) −16.9852 + 0.327903i −1.10099 + 0.0212548i
\(239\) 3.87558 + 8.04773i 0.250691 + 0.520564i 0.987899 0.155102i \(-0.0495705\pi\)
−0.737208 + 0.675666i \(0.763856\pi\)
\(240\) 0 0
\(241\) −6.13948 6.61679i −0.395479 0.426225i 0.503651 0.863907i \(-0.331990\pi\)
−0.899130 + 0.437683i \(0.855799\pi\)
\(242\) −5.40932 + 0.405372i −0.347724 + 0.0260583i
\(243\) 0 0
\(244\) 32.9657i 2.11041i
\(245\) −9.49858 8.15427i −0.606842 0.520957i
\(246\) 0 0
\(247\) −9.74117 24.8201i −0.619816 1.57926i
\(248\) 3.91317 + 52.2177i 0.248487 + 3.31582i
\(249\) 0 0
\(250\) −18.0489 26.4729i −1.14151 1.67429i
\(251\) −10.7491 + 5.17648i −0.678476 + 0.326737i −0.741191 0.671295i \(-0.765738\pi\)
0.0627146 + 0.998031i \(0.480024\pi\)
\(252\) 0 0
\(253\) 21.1879 + 10.2036i 1.33207 + 0.641493i
\(254\) −4.96384 32.9330i −0.311459 2.06640i
\(255\) 0 0
\(256\) 9.25313 + 1.39469i 0.578321 + 0.0871678i
\(257\) 9.42230 + 8.74262i 0.587747 + 0.545349i 0.916997 0.398893i \(-0.130606\pi\)
−0.329251 + 0.944243i \(0.606796\pi\)
\(258\) 0 0
\(259\) −2.54077 14.8995i −0.157876 0.925810i
\(260\) 24.4401 19.4903i 1.51571 1.20874i
\(261\) 0 0
\(262\) 6.50194 + 21.0788i 0.401691 + 1.30225i
\(263\) 1.45825 0.841921i 0.0899196 0.0519151i −0.454366 0.890815i \(-0.650134\pi\)
0.544286 + 0.838900i \(0.316801\pi\)
\(264\) 0 0
\(265\) −8.21570 1.87518i −0.504686 0.115191i
\(266\) 36.4405 + 37.7839i 2.23431 + 2.31668i
\(267\) 0 0
\(268\) 65.1818 + 20.1059i 3.98161 + 1.22816i
\(269\) 7.64504 19.4792i 0.466126 1.18767i −0.483795 0.875181i \(-0.660742\pi\)
0.949921 0.312489i \(-0.101163\pi\)
\(270\) 0 0
\(271\) 5.75145 18.6458i 0.349376 1.13265i −0.594985 0.803737i \(-0.702842\pi\)
0.944361 0.328912i \(-0.106682\pi\)
\(272\) 5.70012 + 24.9739i 0.345621 + 1.51426i
\(273\) 0 0
\(274\) −3.54754 + 15.5428i −0.214315 + 0.938975i
\(275\) 5.63874 + 3.25553i 0.340029 + 0.196316i
\(276\) 0 0
\(277\) 4.17247 1.28704i 0.250700 0.0773306i −0.166858 0.985981i \(-0.553362\pi\)
0.417558 + 0.908650i \(0.362886\pi\)
\(278\) 2.25785 30.1290i 0.135417 1.80701i
\(279\) 0 0
\(280\) −17.6930 + 32.0588i −1.05736 + 1.91588i
\(281\) 12.6794 + 10.1115i 0.756389 + 0.603200i 0.923884 0.382673i \(-0.124996\pi\)
−0.167495 + 0.985873i \(0.553568\pi\)
\(282\) 0 0
\(283\) −2.67459 + 17.7447i −0.158988 + 1.05481i 0.756944 + 0.653480i \(0.226692\pi\)
−0.915932 + 0.401334i \(0.868547\pi\)
\(284\) −3.45264 + 5.06410i −0.204877 + 0.300499i
\(285\) 0 0
\(286\) −14.6194 + 30.3576i −0.864466 + 1.79508i
\(287\) −4.68406 9.26472i −0.276491 0.546879i
\(288\) 0 0
\(289\) −9.13612 + 6.22890i −0.537419 + 0.366406i
\(290\) 15.4302 14.3172i 0.906095 0.840734i
\(291\) 0 0
\(292\) 40.4770 15.8861i 2.36874 0.929661i
\(293\) 32.9586 1.92546 0.962731 0.270461i \(-0.0871762\pi\)
0.962731 + 0.270461i \(0.0871762\pi\)
\(294\) 0 0
\(295\) 20.5227 1.19488
\(296\) −41.1543 + 16.1519i −2.39204 + 0.938808i
\(297\) 0 0
\(298\) 24.3557 22.5988i 1.41089 1.30911i
\(299\) 19.0327 12.9763i 1.10069 0.750436i
\(300\) 0 0
\(301\) 8.78225 + 1.82690i 0.506201 + 0.105301i
\(302\) 2.11686 4.39571i 0.121812 0.252945i
\(303\) 0 0
\(304\) 44.5881 65.3987i 2.55730 3.75087i
\(305\) −1.77940 + 11.8055i −0.101888 + 0.675983i
\(306\) 0 0
\(307\) −4.83163 3.85309i −0.275755 0.219908i 0.475840 0.879532i \(-0.342144\pi\)
−0.751596 + 0.659624i \(0.770715\pi\)
\(308\) 2.61886 47.1408i 0.149223 2.68609i
\(309\) 0 0
\(310\) 2.38192 31.7846i 0.135284 1.80524i
\(311\) −8.13363 + 2.50889i −0.461216 + 0.142266i −0.516651 0.856196i \(-0.672822\pi\)
0.0554351 + 0.998462i \(0.482345\pi\)
\(312\) 0 0
\(313\) −20.3319 11.7386i −1.14923 0.663507i −0.200529 0.979688i \(-0.564266\pi\)
−0.948699 + 0.316181i \(0.897599\pi\)
\(314\) −5.85083 + 25.6342i −0.330182 + 1.44662i
\(315\) 0 0
\(316\) −11.5168 50.4583i −0.647870 2.83850i
\(317\) −1.54066 + 4.99470i −0.0865322 + 0.280530i −0.988488 0.151297i \(-0.951655\pi\)
0.901956 + 0.431828i \(0.142131\pi\)
\(318\) 0 0
\(319\) −5.89959 + 15.0319i −0.330314 + 0.841626i
\(320\) 19.0055 + 5.86244i 1.06244 + 0.327720i
\(321\) 0 0
\(322\) −24.8190 + 37.9567i −1.38311 + 2.11524i
\(323\) −17.9016 4.08593i −0.996074 0.227347i
\(324\) 0 0
\(325\) 5.52329 3.18888i 0.306377 0.176887i
\(326\) −8.46806 27.4528i −0.469002 1.52047i
\(327\) 0 0
\(328\) −23.7411 + 18.9329i −1.31088 + 1.04540i
\(329\) 3.63366 12.6414i 0.200330 0.696940i
\(330\) 0 0
\(331\) 2.08468 + 1.93430i 0.114584 + 0.106319i 0.735384 0.677650i \(-0.237002\pi\)
−0.620800 + 0.783969i \(0.713192\pi\)
\(332\) 68.3315 + 10.2993i 3.75018 + 0.565248i
\(333\) 0 0
\(334\) −7.48715 49.6740i −0.409679 2.71804i
\(335\) −22.2574 10.7186i −1.21605 0.585620i
\(336\) 0 0
\(337\) −3.74529 + 1.80364i −0.204019 + 0.0982503i −0.533103 0.846050i \(-0.678974\pi\)
0.329084 + 0.944301i \(0.393260\pi\)
\(338\) −0.697233 1.02265i −0.0379245 0.0556250i
\(339\) 0 0
\(340\) −1.60877 21.4675i −0.0872476 1.16424i
\(341\) 8.93339 + 22.7619i 0.483770 + 1.23263i
\(342\) 0 0
\(343\) −7.05644 + 17.1233i −0.381012 + 0.924570i
\(344\) 26.2381i 1.41467i
\(345\) 0 0
\(346\) 46.7587 3.50408i 2.51376 0.188381i
\(347\) −7.22248 7.78398i −0.387723 0.417866i 0.508785 0.860894i \(-0.330095\pi\)
−0.896508 + 0.443028i \(0.853904\pi\)
\(348\) 0 0
\(349\) 3.07452 + 6.38430i 0.164575 + 0.341744i 0.966905 0.255137i \(-0.0821207\pi\)
−0.802330 + 0.596881i \(0.796406\pi\)
\(350\) −7.63772 + 9.96610i −0.408253 + 0.532710i
\(351\) 0 0
\(352\) −43.5995 + 6.57156i −2.32386 + 0.350265i
\(353\) 22.5490 + 15.3737i 1.20016 + 0.818257i 0.987306 0.158827i \(-0.0507711\pi\)
0.212856 + 0.977084i \(0.431724\pi\)
\(354\) 0 0
\(355\) 1.50980 1.62717i 0.0801316 0.0863614i
\(356\) 21.8952 27.4557i 1.16044 1.45515i
\(357\) 0 0
\(358\) 26.4390 + 33.1534i 1.39734 + 1.75221i
\(359\) −13.5615 1.01630i −0.715750 0.0536380i −0.288123 0.957593i \(-0.593031\pi\)
−0.427627 + 0.903955i \(0.640650\pi\)
\(360\) 0 0
\(361\) 18.8688 + 32.6817i 0.993094 + 1.72009i
\(362\) −2.06547 + 3.57750i −0.108559 + 0.188029i
\(363\) 0 0
\(364\) −38.7066 25.3093i −2.02878 1.32657i
\(365\) −15.3530 + 3.50422i −0.803612 + 0.183419i
\(366\) 0 0
\(367\) −28.0445 11.0066i −1.46391 0.574542i −0.506235 0.862395i \(-0.668963\pi\)
−0.957675 + 0.287853i \(0.907059\pi\)
\(368\) 63.6555 + 24.9830i 3.31827 + 1.30233i
\(369\) 0 0
\(370\) 26.2359 5.98817i 1.36394 0.311310i
\(371\) 1.17145 + 12.4119i 0.0608187 + 0.644393i
\(372\) 0 0
\(373\) −3.76187 + 6.51575i −0.194782 + 0.337373i −0.946829 0.321737i \(-0.895733\pi\)
0.752047 + 0.659110i \(0.229067\pi\)
\(374\) 11.6021 + 20.0954i 0.599928 + 1.03911i
\(375\) 0 0
\(376\) −38.3658 2.87512i −1.97856 0.148273i
\(377\) 9.86209 + 12.3667i 0.507923 + 0.636916i
\(378\) 0 0
\(379\) 2.63147 3.29975i 0.135169 0.169497i −0.709640 0.704564i \(-0.751142\pi\)
0.844809 + 0.535067i \(0.179714\pi\)
\(380\) −45.2446 + 48.7621i −2.32100 + 2.50144i
\(381\) 0 0
\(382\) 16.0071 + 10.9135i 0.818996 + 0.558382i
\(383\) 4.24118 0.639255i 0.216714 0.0326644i −0.0397876 0.999208i \(-0.512668\pi\)
0.256502 + 0.966544i \(0.417430\pi\)
\(384\) 0 0
\(385\) −3.48239 + 16.7405i −0.177479 + 0.853176i
\(386\) 2.38908 + 4.96098i 0.121601 + 0.252507i
\(387\) 0 0
\(388\) 4.57389 + 4.92948i 0.232204 + 0.250257i
\(389\) 13.0184 0.975597i 0.660061 0.0494647i 0.259512 0.965740i \(-0.416438\pi\)
0.400549 + 0.916275i \(0.368819\pi\)
\(390\) 0 0
\(391\) 15.8636i 0.802257i
\(392\) 53.2397 + 10.0070i 2.68901 + 0.505431i
\(393\) 0 0
\(394\) 5.90459 + 15.0447i 0.297469 + 0.757939i
\(395\) 1.40074 + 18.6916i 0.0704790 + 0.940477i
\(396\) 0 0
\(397\) 18.0630 + 26.4936i 0.906558 + 1.32968i 0.943851 + 0.330372i \(0.107174\pi\)
−0.0372929 + 0.999304i \(0.511873\pi\)
\(398\) −57.4773 + 27.6796i −2.88108 + 1.38745i
\(399\) 0 0
\(400\) 17.0580 + 8.21471i 0.852901 + 0.410735i
\(401\) −0.0147931 0.0981455i −0.000738730 0.00490115i 0.988458 0.151492i \(-0.0484079\pi\)
−0.989197 + 0.146591i \(0.953170\pi\)
\(402\) 0 0
\(403\) 23.6840 + 3.56979i 1.17979 + 0.177824i
\(404\) −31.3045 29.0463i −1.55746 1.44511i
\(405\) 0 0
\(406\) −27.2642 15.0470i −1.35310 0.746768i
\(407\) −16.1407 + 12.8718i −0.800064 + 0.638030i
\(408\) 0 0
\(409\) −1.32490 4.29523i −0.0655123 0.212386i 0.916898 0.399122i \(-0.130685\pi\)
−0.982410 + 0.186737i \(0.940209\pi\)
\(410\) 16.0073 9.24181i 0.790543 0.456420i
\(411\) 0 0
\(412\) −71.6902 16.3628i −3.53192 0.806139i
\(413\) −9.50760 28.8347i −0.467838 1.41886i
\(414\) 0 0
\(415\) −23.9147 7.37671i −1.17393 0.362108i
\(416\) −15.7788 + 40.2037i −0.773618 + 1.97115i
\(417\) 0 0
\(418\) 21.1338 68.5140i 1.03369 3.35113i
\(419\) 3.03434 + 13.2943i 0.148237 + 0.649470i 0.993375 + 0.114921i \(0.0366615\pi\)
−0.845137 + 0.534549i \(0.820481\pi\)
\(420\) 0 0
\(421\) 5.61051 24.5813i 0.273440 1.19802i −0.632483 0.774574i \(-0.717964\pi\)
0.905923 0.423443i \(-0.139179\pi\)
\(422\) 15.3624 + 8.86946i 0.747828 + 0.431759i
\(423\) 0 0
\(424\) 34.8462 10.7486i 1.69228 0.522000i
\(425\) 0.328224 4.37985i 0.0159212 0.212454i
\(426\) 0 0
\(427\) 17.4113 2.96910i 0.842592 0.143685i
\(428\) −57.8439 46.1289i −2.79599 2.22973i
\(429\) 0 0
\(430\) −2.38035 + 15.7926i −0.114791 + 0.761587i
\(431\) −7.62931 + 11.1901i −0.367491 + 0.539010i −0.964794 0.263005i \(-0.915286\pi\)
0.597303 + 0.802015i \(0.296239\pi\)
\(432\) 0 0
\(433\) −6.37412 + 13.2360i −0.306321 + 0.636081i −0.996128 0.0879115i \(-0.971981\pi\)
0.689808 + 0.723993i \(0.257695\pi\)
\(434\) −45.7612 + 11.3783i −2.19661 + 0.546174i
\(435\) 0 0
\(436\) −62.9346 + 42.9081i −3.01402 + 2.05492i
\(437\) −35.9325 + 33.3405i −1.71888 + 1.59489i
\(438\) 0 0
\(439\) −0.572327 + 0.224622i −0.0273157 + 0.0107206i −0.378960 0.925413i \(-0.623718\pi\)
0.351644 + 0.936134i \(0.385623\pi\)
\(440\) 50.0145 2.38435
\(441\) 0 0
\(442\) 22.7290 1.08111
\(443\) −14.0115 + 5.49909i −0.665704 + 0.261270i −0.674039 0.738696i \(-0.735442\pi\)
0.00833484 + 0.999965i \(0.497347\pi\)
\(444\) 0 0
\(445\) −9.32302 + 8.65049i −0.441953 + 0.410073i
\(446\) −17.6859 + 12.0581i −0.837453 + 0.570966i
\(447\) 0 0
\(448\) −0.567938 29.4190i −0.0268326 1.38992i
\(449\) −2.79316 + 5.80005i −0.131817 + 0.273721i −0.956422 0.291988i \(-0.905683\pi\)
0.824605 + 0.565709i \(0.191398\pi\)
\(450\) 0 0
\(451\) −7.98781 + 11.7160i −0.376131 + 0.551683i
\(452\) −2.32994 + 15.4582i −0.109591 + 0.727091i
\(453\) 0 0
\(454\) 6.30940 + 5.03157i 0.296115 + 0.236144i
\(455\) 12.4953 + 11.1530i 0.585790 + 0.522860i
\(456\) 0 0
\(457\) 2.37788 31.7305i 0.111232 1.48429i −0.610443 0.792060i \(-0.709008\pi\)
0.721675 0.692232i \(-0.243372\pi\)
\(458\) 0.379298 0.116998i 0.0177234 0.00546695i
\(459\) 0 0
\(460\) −49.7691 28.7342i −2.32050 1.33974i
\(461\) 3.77229 16.5275i 0.175693 0.769762i −0.807894 0.589328i \(-0.799393\pi\)
0.983587 0.180434i \(-0.0577502\pi\)
\(462\) 0 0
\(463\) 5.33414 + 23.3704i 0.247899 + 1.08612i 0.933624 + 0.358255i \(0.116628\pi\)
−0.685725 + 0.727860i \(0.740515\pi\)
\(464\) −13.8405 + 44.8698i −0.642529 + 2.08303i
\(465\) 0 0
\(466\) −20.6861 + 52.7072i −0.958263 + 2.44161i
\(467\) 14.6360 + 4.51462i 0.677275 + 0.208912i 0.614263 0.789101i \(-0.289453\pi\)
0.0630118 + 0.998013i \(0.479929\pi\)
\(468\) 0 0
\(469\) −4.74855 + 36.2376i −0.219268 + 1.67330i
\(470\) 22.8314 + 5.21111i 1.05313 + 0.240370i
\(471\) 0 0
\(472\) −76.9104 + 44.4042i −3.54009 + 2.04387i
\(473\) −3.61143 11.7080i −0.166054 0.538333i
\(474\) 0 0
\(475\) −10.6106 + 8.46165i −0.486846 + 0.388247i
\(476\) −29.4168 + 12.2056i −1.34832 + 0.559444i
\(477\) 0 0
\(478\) 17.2471 + 16.0030i 0.788865 + 0.731960i
\(479\) −12.0884 1.82203i −0.552331 0.0832506i −0.133054 0.991109i \(-0.542478\pi\)
−0.419277 + 0.907858i \(0.637716\pi\)
\(480\) 0 0
\(481\) 3.01393 + 19.9962i 0.137424 + 0.911746i
\(482\) −21.4211 10.3158i −0.975702 0.469873i
\(483\) 0 0
\(484\) −9.16231 + 4.41233i −0.416468 + 0.200561i
\(485\) −1.37191 2.01222i −0.0622950 0.0913700i
\(486\) 0 0
\(487\) −1.41790 18.9206i −0.0642513 0.857374i −0.932483 0.361215i \(-0.882362\pi\)
0.868231 0.496160i \(-0.165257\pi\)
\(488\) −18.8748 48.0922i −0.854422 2.17703i
\(489\) 0 0
\(490\) −31.1369 10.8531i −1.40662 0.490295i
\(491\) 40.3477i 1.82087i −0.413654 0.910434i \(-0.635748\pi\)
0.413654 0.910434i \(-0.364252\pi\)
\(492\) 0 0
\(493\) 10.8625 0.814034i 0.489224 0.0366623i
\(494\) −47.7695 51.4832i −2.14925 2.31634i
\(495\) 0 0
\(496\) 30.8502 + 64.0611i 1.38522 + 2.87643i
\(497\) −2.98565 1.36746i −0.133925 0.0613390i
\(498\) 0 0
\(499\) −4.49533 + 0.677562i −0.201239 + 0.0303318i −0.248888 0.968532i \(-0.580065\pi\)
0.0476494 + 0.998864i \(0.484827\pi\)
\(500\) −49.6292 33.8366i −2.21949 1.51322i
\(501\) 0 0
\(502\) −21.3747 + 23.0364i −0.953998 + 1.02817i
\(503\) 1.74258 2.18513i 0.0776980 0.0974302i −0.741463 0.670993i \(-0.765868\pi\)
0.819161 + 0.573563i \(0.194439\pi\)
\(504\) 0 0
\(505\) 9.64281 + 12.0917i 0.429099 + 0.538074i
\(506\) 61.7705 + 4.62906i 2.74603 + 0.205787i
\(507\) 0 0
\(508\) −31.2187 54.0724i −1.38511 2.39908i
\(509\) −0.169361 + 0.293342i −0.00750680 + 0.0130022i −0.869754 0.493485i \(-0.835723\pi\)
0.862248 + 0.506487i \(0.169056\pi\)
\(510\) 0 0
\(511\) 12.0361 + 19.9477i 0.532445 + 0.882436i
\(512\) 33.5686 7.66181i 1.48354 0.338607i
\(513\) 0 0
\(514\) 31.5160 + 12.3691i 1.39011 + 0.545579i
\(515\) 24.7902 + 9.72945i 1.09239 + 0.428731i
\(516\) 0 0
\(517\) −17.5153 + 3.99775i −0.770321 + 0.175821i
\(518\) −20.5678 34.0876i −0.903698 1.49772i
\(519\) 0 0
\(520\) 24.4952 42.4270i 1.07419 1.86055i
\(521\) −1.73700 3.00857i −0.0760994 0.131808i 0.825464 0.564454i \(-0.190913\pi\)
−0.901564 + 0.432646i \(0.857580\pi\)
\(522\) 0 0
\(523\) 16.9196 + 1.26795i 0.739844 + 0.0554436i 0.439320 0.898331i \(-0.355219\pi\)
0.300524 + 0.953774i \(0.402839\pi\)
\(524\) 25.7838 + 32.3319i 1.12637 + 1.41242i
\(525\) 0 0
\(526\) 2.76535 3.46763i 0.120575 0.151196i
\(527\) 11.2192 12.0914i 0.488715 0.526709i
\(528\) 0 0
\(529\) −15.9862 10.8992i −0.695050 0.473877i
\(530\) −21.9489 + 3.30826i −0.953399 + 0.143702i
\(531\) 0 0
\(532\) 89.4720 + 40.9792i 3.87910 + 1.77667i
\(533\) 6.02645 + 12.5141i 0.261035 + 0.542044i
\(534\) 0 0
\(535\) 18.2249 + 19.6418i 0.787932 + 0.849189i
\(536\) 106.603 7.98877i 4.60454 0.345062i
\(537\) 0 0
\(538\) 55.1188i 2.37634i
\(539\) 25.1340 2.86261i 1.08260 0.123301i
\(540\) 0 0
\(541\) 11.8096 + 30.0905i 0.507736 + 1.29369i 0.923283 + 0.384119i \(0.125495\pi\)
−0.415547 + 0.909572i \(0.636410\pi\)
\(542\) −3.84088 51.2529i −0.164980 2.20150i
\(543\) 0 0
\(544\) 16.7547 + 24.5747i 0.718354 + 1.05363i
\(545\) 24.8540 11.9690i 1.06463 0.512698i
\(546\) 0 0
\(547\) 6.87858 + 3.31255i 0.294107 + 0.141634i 0.575119 0.818070i \(-0.304956\pi\)
−0.281012 + 0.959704i \(0.590670\pi\)
\(548\) 4.45454 + 29.5539i 0.190288 + 1.26248i
\(549\) 0 0
\(550\) 16.9587 + 2.55611i 0.723121 + 0.108993i
\(551\) −24.6736 22.8937i −1.05113 0.975306i
\(552\) 0 0
\(553\) 25.6130 10.6274i 1.08918 0.451921i
\(554\) 8.99211 7.17096i 0.382038 0.304665i
\(555\) 0 0
\(556\) −16.6954 54.1253i −0.708045 2.29542i
\(557\) −30.3332 + 17.5129i −1.28526 + 0.742044i −0.977805 0.209519i \(-0.932810\pi\)
−0.307454 + 0.951563i \(0.599477\pi\)
\(558\) 0 0
\(559\) −11.7005 2.67057i −0.494880 0.112953i
\(560\) −6.46010 + 49.2990i −0.272989 + 2.08326i
\(561\) 0 0
\(562\) 40.8195 + 12.5911i 1.72187 + 0.531125i
\(563\) 9.58141 24.4130i 0.403808 1.02889i −0.573901 0.818924i \(-0.694571\pi\)
0.977710 0.209962i \(-0.0673340\pi\)
\(564\) 0 0
\(565\) 1.66878 5.41006i 0.0702062 0.227603i
\(566\) 10.5181 + 46.0827i 0.442108 + 1.93700i
\(567\) 0 0
\(568\) −2.13742 + 9.36464i −0.0896841 + 0.392932i
\(569\) −24.4831 14.1353i −1.02638 0.592583i −0.110437 0.993883i \(-0.535225\pi\)
−0.915946 + 0.401301i \(0.868558\pi\)
\(570\) 0 0
\(571\) −26.3016 + 8.11296i −1.10069 + 0.339517i −0.791305 0.611421i \(-0.790598\pi\)
−0.309381 + 0.950938i \(0.600122\pi\)
\(572\) −4.72052 + 62.9909i −0.197375 + 2.63378i
\(573\) 0 0
\(574\) −20.4006 18.2090i −0.851504 0.760028i
\(575\) −9.16686 7.31032i −0.382284 0.304862i
\(576\) 0 0
\(577\) −1.40499 + 9.32147i −0.0584903 + 0.388058i 0.940363 + 0.340174i \(0.110486\pi\)
−0.998853 + 0.0478841i \(0.984752\pi\)
\(578\) −16.4070 + 24.0647i −0.682443 + 1.00096i
\(579\) 0 0
\(580\) 17.1217 35.5537i 0.710942 1.47629i
\(581\) 0.714637 + 37.0179i 0.0296481 + 1.53576i
\(582\) 0 0
\(583\) 14.0696 9.59249i 0.582703 0.397280i
\(584\) 49.9545 46.3510i 2.06713 1.91802i
\(585\) 0 0
\(586\) 80.8124 31.7165i 3.33833 1.31020i
\(587\) −4.59513 −0.189661 −0.0948306 0.995493i \(-0.530231\pi\)
−0.0948306 + 0.995493i \(0.530231\pi\)
\(588\) 0 0
\(589\) −50.9673 −2.10007
\(590\) 50.3204 19.7493i 2.07166 0.813066i
\(591\) 0 0
\(592\) −44.0058 + 40.8314i −1.80863 + 1.67816i
\(593\) −21.5535 + 14.6949i −0.885097 + 0.603449i −0.918250 0.396002i \(-0.870397\pi\)
0.0331531 + 0.999450i \(0.489445\pi\)
\(594\) 0 0
\(595\) 11.1935 2.78320i 0.458888 0.114100i
\(596\) 27.0256 56.1193i 1.10701 2.29874i
\(597\) 0 0
\(598\) 34.1797 50.1324i 1.39771 2.05007i
\(599\) −4.85200 + 32.1909i −0.198247 + 1.31528i 0.639316 + 0.768944i \(0.279218\pi\)
−0.837563 + 0.546341i \(0.816020\pi\)
\(600\) 0 0
\(601\) 1.15697 + 0.922654i 0.0471938 + 0.0376358i 0.646803 0.762657i \(-0.276106\pi\)
−0.599609 + 0.800293i \(0.704677\pi\)
\(602\) 23.2916 3.97185i 0.949294 0.161880i
\(603\) 0 0
\(604\) 0.683520 9.12094i 0.0278120 0.371126i
\(605\) 3.51934 1.08557i 0.143081 0.0441348i
\(606\) 0 0
\(607\) 16.0586 + 9.27142i 0.651797 + 0.376315i 0.789144 0.614208i \(-0.210524\pi\)
−0.137347 + 0.990523i \(0.543858\pi\)
\(608\) 20.4505 89.5995i 0.829377 3.63374i
\(609\) 0 0
\(610\) 6.99767 + 30.6588i 0.283327 + 1.24134i
\(611\) −5.18707 + 16.8161i −0.209846 + 0.680305i
\(612\) 0 0
\(613\) 9.73929 24.8153i 0.393366 1.00228i −0.587781 0.809020i \(-0.699998\pi\)
0.981147 0.193261i \(-0.0619063\pi\)
\(614\) −15.5547 4.79800i −0.627738 0.193631i
\(615\) 0 0
\(616\) −23.1703 70.2711i −0.933559 2.83130i
\(617\) 26.1918 + 5.97810i 1.05444 + 0.240669i 0.714397 0.699741i \(-0.246701\pi\)
0.340043 + 0.940410i \(0.389558\pi\)
\(618\) 0 0
\(619\) 1.76710 1.02024i 0.0710259 0.0410068i −0.464066 0.885800i \(-0.653610\pi\)
0.535092 + 0.844794i \(0.320277\pi\)
\(620\) −17.6129 57.0995i −0.707350 2.29317i
\(621\) 0 0
\(622\) −17.5288 + 13.9788i −0.702842 + 0.560497i
\(623\) 16.4732 + 9.09143i 0.659983 + 0.364241i
\(624\) 0 0
\(625\) 9.34282 + 8.66887i 0.373713 + 0.346755i
\(626\) −61.1488 9.21670i −2.44400 0.368374i
\(627\) 0 0
\(628\) 7.34671 + 48.7422i 0.293166 + 1.94503i
\(629\) 12.5471 + 6.04235i 0.500284 + 0.240924i
\(630\) 0 0
\(631\) −3.10135 + 1.49353i −0.123463 + 0.0594565i −0.494595 0.869123i \(-0.664684\pi\)
0.371133 + 0.928580i \(0.378969\pi\)
\(632\) −45.6917 67.0174i −1.81752 2.66581i
\(633\) 0 0
\(634\) 1.02887 + 13.7293i 0.0408616 + 0.545260i
\(635\) 8.26125 + 21.0493i 0.327838 + 0.835317i
\(636\) 0 0
\(637\) 9.88134 22.7230i 0.391513 0.900317i
\(638\) 42.5346i 1.68396i
\(639\) 0 0
\(640\) 8.72392 0.653768i 0.344843 0.0258424i
\(641\) 10.0345 + 10.8146i 0.396340 + 0.427153i 0.899419 0.437088i \(-0.143990\pi\)
−0.503079 + 0.864240i \(0.667800\pi\)
\(642\) 0 0
\(643\) 12.4660 + 25.8858i 0.491609 + 1.02084i 0.988245 + 0.152878i \(0.0488542\pi\)
−0.496636 + 0.867959i \(0.665432\pi\)
\(644\) −17.3153 + 83.2381i −0.682320 + 3.28004i
\(645\) 0 0
\(646\) −47.8257 + 7.20856i −1.88168 + 0.283617i
\(647\) −14.3926 9.81273i −0.565833 0.385778i 0.246350 0.969181i \(-0.420769\pi\)
−0.812183 + 0.583403i \(0.801721\pi\)
\(648\) 0 0
\(649\) −28.2071 + 30.4000i −1.10722 + 1.19330i
\(650\) 10.4741 13.1341i 0.410827 0.515161i
\(651\) 0 0
\(652\) −33.5806 42.1087i −1.31512 1.64910i
\(653\) 16.6668 + 1.24900i 0.652220 + 0.0488772i 0.396731 0.917935i \(-0.370144\pi\)
0.255489 + 0.966812i \(0.417763\pi\)
\(654\) 0 0
\(655\) −7.48842 12.9703i −0.292597 0.506792i
\(656\) −20.6162 + 35.7084i −0.804929 + 1.39418i
\(657\) 0 0
\(658\) −3.25545 34.4925i −0.126911 1.34466i
\(659\) −34.9386 + 7.97450i −1.36101 + 0.310643i −0.839852 0.542815i \(-0.817358\pi\)
−0.521162 + 0.853458i \(0.674501\pi\)
\(660\) 0 0
\(661\) −43.5575 17.0950i −1.69419 0.664920i −0.695620 0.718410i \(-0.744870\pi\)
−0.998568 + 0.0534897i \(0.982966\pi\)
\(662\) 6.97291 + 2.73666i 0.271010 + 0.106363i
\(663\) 0 0
\(664\) 105.583 24.0986i 4.09741 0.935207i
\(665\) −29.8295 19.5048i −1.15674 0.756363i
\(666\) 0 0
\(667\) 14.5395 25.1831i 0.562971 0.975095i
\(668\) −47.0884 81.5595i −1.82190 3.15563i
\(669\) 0 0
\(670\) −64.8884 4.86272i −2.50686 0.187863i
\(671\) −15.0417 18.8617i −0.580679 0.728149i
\(672\) 0 0
\(673\) 21.7277 27.2457i 0.837542 1.05024i −0.160459 0.987043i \(-0.551297\pi\)
0.998001 0.0632019i \(-0.0201312\pi\)
\(674\) −7.44754 + 8.02654i −0.286869 + 0.309171i
\(675\) 0 0
\(676\) −1.91719 1.30712i −0.0737380 0.0502737i
\(677\) 24.5223 3.69615i 0.942470 0.142054i 0.340205 0.940351i \(-0.389503\pi\)
0.602264 + 0.798297i \(0.294265\pi\)
\(678\) 0 0
\(679\) −2.19163 + 2.85975i −0.0841069 + 0.109747i
\(680\) −14.6384 30.3969i −0.561356 1.16567i
\(681\) 0 0
\(682\) 43.8082 + 47.2140i 1.67750 + 1.80792i
\(683\) 16.4540 1.23306i 0.629596 0.0471817i 0.243889 0.969803i \(-0.421577\pi\)
0.385707 + 0.922622i \(0.373958\pi\)
\(684\) 0 0
\(685\) 10.8242i 0.413571i
\(686\) −0.823972 + 48.7757i −0.0314594 + 1.86227i
\(687\) 0 0
\(688\) −13.0162 33.1646i −0.496236 1.26439i
\(689\) −1.24649 16.6332i −0.0474873 0.633675i
\(690\) 0 0
\(691\) 1.14649 + 1.68159i 0.0436146 + 0.0639709i 0.847427 0.530912i \(-0.178151\pi\)
−0.803812 + 0.594883i \(0.797198\pi\)
\(692\) 79.1999 38.1407i 3.01073 1.44989i
\(693\) 0 0
\(694\) −25.1997 12.1355i −0.956568 0.460659i
\(695\) 3.05737 + 20.2843i 0.115973 + 0.769429i
\(696\) 0 0
\(697\) 9.45841 + 1.42563i 0.358263 + 0.0539994i
\(698\) 13.6822 + 12.6953i 0.517880 + 0.480522i
\(699\) 0 0
\(700\) −6.50289 + 22.6233i −0.245786 + 0.855080i
\(701\) −24.4713 + 19.5152i −0.924267 + 0.737079i −0.965044 0.262090i \(-0.915588\pi\)
0.0407762 + 0.999168i \(0.487017\pi\)
\(702\) 0 0
\(703\) −12.6836 41.1194i −0.478373 1.55085i
\(704\) −34.8058 + 20.0951i −1.31179 + 0.757364i
\(705\) 0 0
\(706\) 70.0830 + 15.9960i 2.63761 + 0.602017i
\(707\) 12.5218 19.1500i 0.470929 0.720211i
\(708\) 0 0
\(709\) −17.2167 5.31064i −0.646586 0.199445i −0.0459197 0.998945i \(-0.514622\pi\)
−0.600666 + 0.799500i \(0.705098\pi\)
\(710\) 2.13607 5.44262i 0.0801654 0.204258i
\(711\) 0 0
\(712\) 16.2219 52.5902i 0.607943 1.97090i
\(713\) −9.79815 42.9285i −0.366944 1.60769i
\(714\) 0 0
\(715\) 5.09058 22.3033i 0.190377 0.834095i
\(716\) 68.8466 + 39.7486i 2.57292 + 1.48548i
\(717\) 0 0
\(718\) −34.2300 + 10.5586i −1.27745 + 0.394042i
\(719\) 1.58598 21.1634i 0.0591471 0.789263i −0.886222 0.463261i \(-0.846679\pi\)
0.945369 0.326002i \(-0.105702\pi\)
\(720\) 0 0
\(721\) 2.18539 39.3380i 0.0813880 1.46502i
\(722\) 77.7151 + 61.9758i 2.89226 + 2.30650i
\(723\) 0 0
\(724\) −1.15424 + 7.65786i −0.0428968 + 0.284602i
\(725\) 4.53532 6.65209i 0.168437 0.247052i
\(726\) 0 0
\(727\) −3.87602 + 8.04863i −0.143753 + 0.298507i −0.960397 0.278635i \(-0.910118\pi\)
0.816644 + 0.577142i \(0.195832\pi\)
\(728\) −70.9585 14.7609i −2.62990 0.547076i
\(729\) 0 0
\(730\) −34.2724 + 23.3665i −1.26848 + 0.864834i
\(731\) −6.05865 + 5.62160i −0.224087 + 0.207923i
\(732\) 0 0
\(733\) −10.5663 + 4.14695i −0.390274 + 0.153171i −0.552360 0.833605i \(-0.686273\pi\)
0.162087 + 0.986777i \(0.448178\pi\)
\(734\) −79.3552 −2.92905
\(735\) 0 0
\(736\) 79.3989 2.92668
\(737\) 46.4686 18.2376i 1.71169 0.671790i
\(738\) 0 0
\(739\) −16.4690 + 15.2810i −0.605823 + 0.562121i −0.922298 0.386479i \(-0.873691\pi\)
0.316475 + 0.948601i \(0.397501\pi\)
\(740\) 41.6836 28.4194i 1.53232 1.04472i
\(741\) 0 0
\(742\) 14.8165 + 29.3059i 0.543930 + 1.07585i
\(743\) −15.4681 + 32.1198i −0.567468 + 1.17836i 0.397890 + 0.917433i \(0.369743\pi\)
−0.965358 + 0.260927i \(0.915972\pi\)
\(744\) 0 0
\(745\) −12.7075 + 18.6385i −0.465567 + 0.682861i
\(746\) −2.95367 + 19.5963i −0.108142 + 0.717472i
\(747\) 0 0
\(748\) 34.0106 + 27.1226i 1.24355 + 0.991700i
\(749\) 19.1539 34.7058i 0.699868 1.26812i
\(750\) 0 0
\(751\) 2.28540 30.4966i 0.0833955 1.11283i −0.785838 0.618433i \(-0.787768\pi\)
0.869233 0.494402i \(-0.164613\pi\)
\(752\) −49.9201 + 15.3983i −1.82040 + 0.561519i
\(753\) 0 0
\(754\) 36.0818 + 20.8319i 1.31402 + 0.758652i
\(755\) −0.737105 + 3.22947i −0.0268260 + 0.117532i
\(756\) 0 0
\(757\) −4.69912 20.5882i −0.170793 0.748291i −0.985674 0.168663i \(-0.946055\pi\)
0.814881 0.579628i \(-0.196802\pi\)
\(758\) 3.27679 10.6231i 0.119018 0.385848i
\(759\) 0 0
\(760\) −38.0863 + 97.0422i −1.38153 + 3.52009i
\(761\) 21.1016 + 6.50898i 0.764932 + 0.235950i 0.652582 0.757718i \(-0.273686\pi\)
0.112350 + 0.993669i \(0.464162\pi\)
\(762\) 0 0
\(763\) −28.3308 29.3753i −1.02565 1.06346i
\(764\) 35.4093 + 8.08194i 1.28106 + 0.292394i
\(765\) 0 0
\(766\) 9.78395 5.64876i 0.353508 0.204098i
\(767\) 11.9734 + 38.8167i 0.432333 + 1.40159i
\(768\) 0 0
\(769\) 28.0841 22.3963i 1.01274 0.807632i 0.0313193 0.999509i \(-0.490029\pi\)
0.981419 + 0.191878i \(0.0614577\pi\)
\(770\) 7.57104 + 44.3979i 0.272841 + 1.59999i
\(771\) 0 0
\(772\) 7.56710 + 7.02124i 0.272346 + 0.252700i
\(773\) 17.7403 + 2.67391i 0.638072 + 0.0961740i 0.460108 0.887863i \(-0.347811\pi\)
0.177964 + 0.984037i \(0.443049\pi\)
\(774\) 0 0
\(775\) −1.81700 12.0550i −0.0652687 0.433030i
\(776\) 9.49508 + 4.57259i 0.340853 + 0.164146i
\(777\) 0 0
\(778\) 30.9816 14.9199i 1.11074 0.534906i
\(779\) −16.6495 24.4203i −0.596531 0.874950i
\(780\) 0 0
\(781\) 0.335196 + 4.47288i 0.0119943 + 0.160052i
\(782\) −15.2658 38.8966i −0.545903 1.39094i
\(783\) 0 0
\(784\) 72.2585 13.7623i 2.58066 0.491511i
\(785\) 17.8520i 0.637164i
\(786\) 0 0
\(787\) 15.8280 1.18614i 0.564206 0.0422814i 0.210426 0.977610i \(-0.432515\pi\)