Properties

Label 441.2.bb.c.163.4
Level $441$
Weight $2$
Character 441.163
Analytic conductor $3.521$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(37,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([0, 32])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.bb (of order \(21\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{21})\)
Twist minimal: no (minimal twist has level 147)
Sato-Tate group: $\mathrm{SU}(2)[C_{21}]$

Embedding invariants

Embedding label 163.4
Character \(\chi\) \(=\) 441.163
Dual form 441.2.bb.c.46.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.712776 + 1.81612i) q^{2} +(-1.32415 + 1.22863i) q^{4} +(2.50104 - 1.70518i) q^{5} +(-1.59223 - 2.11301i) q^{7} +(0.340382 + 0.163920i) q^{8} +(4.87950 + 3.32679i) q^{10} +(3.38245 + 0.509823i) q^{11} +(2.71434 - 3.40367i) q^{13} +(2.70258 - 4.39779i) q^{14} +(-0.325060 + 4.33763i) q^{16} +(-7.31018 + 2.25489i) q^{17} +(0.230569 - 0.399358i) q^{19} +(-1.21672 + 5.33078i) q^{20} +(1.48503 + 6.50634i) q^{22} +(5.60675 + 1.72945i) q^{23} +(1.52086 - 3.87508i) q^{25} +(8.11620 + 2.50352i) q^{26} +(4.70447 + 0.841674i) q^{28} +(-1.51504 + 6.63784i) q^{29} +(-0.485737 - 0.841321i) q^{31} +(-7.38734 + 2.27869i) q^{32} +(-9.30568 - 11.6690i) q^{34} +(-7.58529 - 2.56967i) q^{35} +(-4.44084 - 4.12050i) q^{37} +(0.889627 + 0.134090i) q^{38} +(1.13082 - 0.170444i) q^{40} +(-5.80253 - 2.79435i) q^{41} +(-3.08316 + 1.48477i) q^{43} +(-5.10527 + 3.48071i) q^{44} +(0.855456 + 11.4153i) q^{46} +(-1.71875 - 4.37931i) q^{47} +(-1.92960 + 6.72879i) q^{49} +8.12166 q^{50} +(0.587670 + 7.84191i) q^{52} +(-5.16535 + 4.79274i) q^{53} +(9.32899 - 4.49260i) q^{55} +(-0.195605 - 0.980228i) q^{56} +(-13.1350 + 1.97979i) q^{58} +(9.14460 + 6.23468i) q^{59} +(-0.0508714 - 0.0472018i) q^{61} +(1.18172 - 1.48183i) q^{62} +(-3.97981 - 4.99052i) q^{64} +(0.984793 - 13.1411i) q^{65} +(1.88646 + 3.26744i) q^{67} +(6.90936 - 11.9674i) q^{68} +(-0.739771 - 15.6074i) q^{70} +(-1.17312 - 5.13977i) q^{71} +(-2.98140 + 7.59648i) q^{73} +(4.31801 - 11.0021i) q^{74} +(0.185356 + 0.812096i) q^{76} +(-4.30839 - 7.95890i) q^{77} +(5.82437 - 10.0881i) q^{79} +(6.58345 + 11.4029i) q^{80} +(0.938983 - 12.5299i) q^{82} +(-1.60339 - 2.01058i) q^{83} +(-14.4381 + 18.1047i) q^{85} +(-4.89414 - 4.54110i) q^{86} +(1.06776 + 0.727985i) q^{88} +(-2.46815 + 0.372014i) q^{89} +(-11.5138 - 0.315980i) q^{91} +(-9.54906 + 4.59859i) q^{92} +(6.72828 - 6.24293i) q^{94} +(-0.104314 - 1.39197i) q^{95} +2.26778 q^{97} +(-13.5957 + 1.29174i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + q^{2} + 3 q^{4} - 6 q^{8} + 30 q^{10} + 9 q^{11} + 42 q^{14} + 29 q^{16} + 5 q^{17} - 26 q^{19} + 5 q^{20} + q^{22} + 4 q^{23} - 56 q^{25} + 62 q^{26} + 7 q^{28} - 12 q^{29} - 36 q^{31} + 14 q^{32}+ \cdots - 119 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{10}{21}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.712776 + 1.81612i 0.504009 + 1.28419i 0.925976 + 0.377583i \(0.123245\pi\)
−0.421967 + 0.906611i \(0.638660\pi\)
\(3\) 0 0
\(4\) −1.32415 + 1.22863i −0.662077 + 0.614317i
\(5\) 2.50104 1.70518i 1.11850 0.762580i 0.144584 0.989493i \(-0.453816\pi\)
0.973915 + 0.226913i \(0.0728632\pi\)
\(6\) 0 0
\(7\) −1.59223 2.11301i −0.601807 0.798642i
\(8\) 0.340382 + 0.163920i 0.120343 + 0.0579543i
\(9\) 0 0
\(10\) 4.87950 + 3.32679i 1.54303 + 1.05202i
\(11\) 3.38245 + 0.509823i 1.01985 + 0.153717i 0.637620 0.770351i \(-0.279919\pi\)
0.382227 + 0.924068i \(0.375157\pi\)
\(12\) 0 0
\(13\) 2.71434 3.40367i 0.752821 0.944008i −0.246865 0.969050i \(-0.579400\pi\)
0.999686 + 0.0250418i \(0.00797190\pi\)
\(14\) 2.70258 4.39779i 0.722294 1.17536i
\(15\) 0 0
\(16\) −0.325060 + 4.33763i −0.0812650 + 1.08441i
\(17\) −7.31018 + 2.25489i −1.77298 + 0.546891i −0.996526 0.0832845i \(-0.973459\pi\)
−0.776452 + 0.630176i \(0.782983\pi\)
\(18\) 0 0
\(19\) 0.230569 0.399358i 0.0528962 0.0916189i −0.838365 0.545109i \(-0.816488\pi\)
0.891261 + 0.453491i \(0.149821\pi\)
\(20\) −1.21672 + 5.33078i −0.272066 + 1.19200i
\(21\) 0 0
\(22\) 1.48503 + 6.50634i 0.316609 + 1.38716i
\(23\) 5.60675 + 1.72945i 1.16909 + 0.360616i 0.817717 0.575620i \(-0.195239\pi\)
0.351371 + 0.936236i \(0.385716\pi\)
\(24\) 0 0
\(25\) 1.52086 3.87508i 0.304171 0.775016i
\(26\) 8.11620 + 2.50352i 1.59172 + 0.490980i
\(27\) 0 0
\(28\) 4.70447 + 0.841674i 0.889062 + 0.159061i
\(29\) −1.51504 + 6.63784i −0.281337 + 1.23262i 0.614745 + 0.788726i \(0.289259\pi\)
−0.896081 + 0.443890i \(0.853598\pi\)
\(30\) 0 0
\(31\) −0.485737 0.841321i −0.0872409 0.151106i 0.819103 0.573646i \(-0.194472\pi\)
−0.906344 + 0.422541i \(0.861138\pi\)
\(32\) −7.38734 + 2.27869i −1.30591 + 0.402820i
\(33\) 0 0
\(34\) −9.30568 11.6690i −1.59591 2.00121i
\(35\) −7.58529 2.56967i −1.28215 0.434354i
\(36\) 0 0
\(37\) −4.44084 4.12050i −0.730070 0.677406i 0.224808 0.974403i \(-0.427824\pi\)
−0.954878 + 0.296997i \(0.904015\pi\)
\(38\) 0.889627 + 0.134090i 0.144317 + 0.0217522i
\(39\) 0 0
\(40\) 1.13082 0.170444i 0.178799 0.0269496i
\(41\) −5.80253 2.79435i −0.906203 0.436404i −0.0780774 0.996947i \(-0.524878\pi\)
−0.828125 + 0.560543i \(0.810592\pi\)
\(42\) 0 0
\(43\) −3.08316 + 1.48477i −0.470178 + 0.226426i −0.653942 0.756544i \(-0.726886\pi\)
0.183764 + 0.982970i \(0.441172\pi\)
\(44\) −5.10527 + 3.48071i −0.769648 + 0.524737i
\(45\) 0 0
\(46\) 0.855456 + 11.4153i 0.126130 + 1.68309i
\(47\) −1.71875 4.37931i −0.250706 0.638788i 0.749012 0.662557i \(-0.230529\pi\)
−0.999717 + 0.0237689i \(0.992433\pi\)
\(48\) 0 0
\(49\) −1.92960 + 6.72879i −0.275657 + 0.961256i
\(50\) 8.12166 1.14858
\(51\) 0 0
\(52\) 0.587670 + 7.84191i 0.0814951 + 1.08748i
\(53\) −5.16535 + 4.79274i −0.709515 + 0.658334i −0.949975 0.312325i \(-0.898892\pi\)
0.240460 + 0.970659i \(0.422702\pi\)
\(54\) 0 0
\(55\) 9.32899 4.49260i 1.25792 0.605783i
\(56\) −0.195605 0.980228i −0.0261388 0.130989i
\(57\) 0 0
\(58\) −13.1350 + 1.97979i −1.72471 + 0.259959i
\(59\) 9.14460 + 6.23468i 1.19052 + 0.811686i 0.985930 0.167161i \(-0.0534598\pi\)
0.204595 + 0.978847i \(0.434412\pi\)
\(60\) 0 0
\(61\) −0.0508714 0.0472018i −0.00651342 0.00604357i 0.676909 0.736066i \(-0.263319\pi\)
−0.683423 + 0.730023i \(0.739509\pi\)
\(62\) 1.18172 1.48183i 0.150079 0.188193i
\(63\) 0 0
\(64\) −3.97981 4.99052i −0.497476 0.623815i
\(65\) 0.984793 13.1411i 0.122149 1.62996i
\(66\) 0 0
\(67\) 1.88646 + 3.26744i 0.230467 + 0.399181i 0.957946 0.286949i \(-0.0926411\pi\)
−0.727478 + 0.686131i \(0.759308\pi\)
\(68\) 6.90936 11.9674i 0.837883 1.45126i
\(69\) 0 0
\(70\) −0.739771 15.6074i −0.0884195 1.86545i
\(71\) −1.17312 5.13977i −0.139224 0.609979i −0.995606 0.0936372i \(-0.970151\pi\)
0.856383 0.516342i \(-0.172707\pi\)
\(72\) 0 0
\(73\) −2.98140 + 7.59648i −0.348946 + 0.889101i 0.643390 + 0.765538i \(0.277527\pi\)
−0.992337 + 0.123563i \(0.960568\pi\)
\(74\) 4.31801 11.0021i 0.501959 1.27897i
\(75\) 0 0
\(76\) 0.185356 + 0.812096i 0.0212618 + 0.0931538i
\(77\) −4.30839 7.95890i −0.490986 0.907001i
\(78\) 0 0
\(79\) 5.82437 10.0881i 0.655292 1.13500i −0.326528 0.945188i \(-0.605879\pi\)
0.981820 0.189812i \(-0.0607880\pi\)
\(80\) 6.58345 + 11.4029i 0.736052 + 1.27488i
\(81\) 0 0
\(82\) 0.938983 12.5299i 0.103693 1.38369i
\(83\) −1.60339 2.01058i −0.175995 0.220690i 0.686008 0.727594i \(-0.259361\pi\)
−0.862003 + 0.506904i \(0.830790\pi\)
\(84\) 0 0
\(85\) −14.4381 + 18.1047i −1.56603 + 1.96374i
\(86\) −4.89414 4.54110i −0.527749 0.489679i
\(87\) 0 0
\(88\) 1.06776 + 0.727985i 0.113823 + 0.0776034i
\(89\) −2.46815 + 0.372014i −0.261623 + 0.0394334i −0.278544 0.960423i \(-0.589852\pi\)
0.0169208 + 0.999857i \(0.494614\pi\)
\(90\) 0 0
\(91\) −11.5138 0.315980i −1.20698 0.0331237i
\(92\) −9.54906 + 4.59859i −0.995559 + 0.479436i
\(93\) 0 0
\(94\) 6.72828 6.24293i 0.693969 0.643909i
\(95\) −0.104314 1.39197i −0.0107024 0.142813i
\(96\) 0 0
\(97\) 2.26778 0.230259 0.115129 0.993351i \(-0.463272\pi\)
0.115129 + 0.993351i \(0.463272\pi\)
\(98\) −13.5957 + 1.29174i −1.37337 + 0.130485i
\(99\) 0 0
\(100\) 2.74721 + 6.99978i 0.274721 + 0.699978i
\(101\) −0.104409 1.39324i −0.0103890 0.138632i 0.989597 0.143865i \(-0.0459532\pi\)
−0.999986 + 0.00523328i \(0.998334\pi\)
\(102\) 0 0
\(103\) 16.4128 11.1901i 1.61720 1.10259i 0.692831 0.721100i \(-0.256363\pi\)
0.924373 0.381490i \(-0.124589\pi\)
\(104\) 1.48184 0.713617i 0.145306 0.0699759i
\(105\) 0 0
\(106\) −12.3860 5.96476i −1.20303 0.579349i
\(107\) −6.35460 + 0.957802i −0.614323 + 0.0925943i −0.448831 0.893617i \(-0.648159\pi\)
−0.165492 + 0.986211i \(0.552921\pi\)
\(108\) 0 0
\(109\) −2.37836 0.358480i −0.227805 0.0343362i 0.0341474 0.999417i \(-0.489128\pi\)
−0.261953 + 0.965081i \(0.584367\pi\)
\(110\) 14.8086 + 13.7404i 1.41195 + 1.31009i
\(111\) 0 0
\(112\) 9.68301 6.21965i 0.914958 0.587702i
\(113\) −0.680530 0.853357i −0.0640189 0.0802771i 0.748791 0.662806i \(-0.230635\pi\)
−0.812810 + 0.582529i \(0.802063\pi\)
\(114\) 0 0
\(115\) 16.9717 5.23509i 1.58262 0.488175i
\(116\) −6.14933 10.6510i −0.570951 0.988916i
\(117\) 0 0
\(118\) −4.80490 + 21.0517i −0.442327 + 1.93796i
\(119\) 16.4041 + 11.8561i 1.50376 + 1.08685i
\(120\) 0 0
\(121\) 0.669760 + 0.206594i 0.0608873 + 0.0187812i
\(122\) 0.0494644 0.126033i 0.00447829 0.0114105i
\(123\) 0 0
\(124\) 1.67687 + 0.517244i 0.150587 + 0.0464499i
\(125\) 0.563888 + 2.47055i 0.0504357 + 0.220973i
\(126\) 0 0
\(127\) 1.69119 7.40960i 0.150069 0.657496i −0.842794 0.538236i \(-0.819091\pi\)
0.992863 0.119260i \(-0.0380521\pi\)
\(128\) −1.50410 + 2.60518i −0.132945 + 0.230267i
\(129\) 0 0
\(130\) 24.5679 7.57819i 2.15475 0.664651i
\(131\) 0.0640034 0.854066i 0.00559200 0.0746201i −0.993710 0.111988i \(-0.964278\pi\)
0.999302 + 0.0373677i \(0.0118973\pi\)
\(132\) 0 0
\(133\) −1.21097 + 0.148675i −0.105004 + 0.0128918i
\(134\) −4.58946 + 5.75500i −0.396469 + 0.497156i
\(135\) 0 0
\(136\) −2.85788 0.430756i −0.245061 0.0369370i
\(137\) −11.2091 7.64221i −0.957654 0.652918i −0.0197476 0.999805i \(-0.506286\pi\)
−0.937907 + 0.346887i \(0.887239\pi\)
\(138\) 0 0
\(139\) −11.5141 5.54490i −0.976613 0.470312i −0.123674 0.992323i \(-0.539468\pi\)
−0.852939 + 0.522011i \(0.825182\pi\)
\(140\) 13.2013 5.91691i 1.11571 0.500070i
\(141\) 0 0
\(142\) 8.49829 5.79404i 0.713161 0.486225i
\(143\) 10.9164 10.1289i 0.912873 0.847023i
\(144\) 0 0
\(145\) 7.52953 + 19.1849i 0.625294 + 1.59322i
\(146\) −15.9212 −1.31765
\(147\) 0 0
\(148\) 10.9429 0.899505
\(149\) 4.98264 + 12.6956i 0.408194 + 1.04006i 0.976168 + 0.217015i \(0.0696320\pi\)
−0.567974 + 0.823046i \(0.692273\pi\)
\(150\) 0 0
\(151\) −13.7755 + 12.7818i −1.12103 + 1.04017i −0.122171 + 0.992509i \(0.538986\pi\)
−0.998864 + 0.0476589i \(0.984824\pi\)
\(152\) 0.143944 0.0981395i 0.0116754 0.00796017i
\(153\) 0 0
\(154\) 11.3834 13.4975i 0.917303 1.08766i
\(155\) −2.64945 1.27591i −0.212809 0.102483i
\(156\) 0 0
\(157\) −10.0628 6.86068i −0.803096 0.547542i 0.0907718 0.995872i \(-0.471067\pi\)
−0.893868 + 0.448330i \(0.852019\pi\)
\(158\) 22.4727 + 3.38722i 1.78783 + 0.269472i
\(159\) 0 0
\(160\) −14.5905 + 18.2958i −1.15348 + 1.44641i
\(161\) −5.27290 14.6008i −0.415563 1.15070i
\(162\) 0 0
\(163\) −0.695173 + 9.27644i −0.0544501 + 0.726587i 0.901448 + 0.432888i \(0.142505\pi\)
−0.955898 + 0.293699i \(0.905114\pi\)
\(164\) 11.1167 3.42904i 0.868066 0.267763i
\(165\) 0 0
\(166\) 2.50861 4.34505i 0.194706 0.337241i
\(167\) −3.07100 + 13.4549i −0.237641 + 1.04117i 0.705481 + 0.708729i \(0.250731\pi\)
−0.943122 + 0.332446i \(0.892126\pi\)
\(168\) 0 0
\(169\) −1.32457 5.80334i −0.101890 0.446411i
\(170\) −43.1716 13.3167i −3.31111 1.02134i
\(171\) 0 0
\(172\) 2.25834 5.75415i 0.172197 0.438750i
\(173\) −0.664509 0.204974i −0.0505217 0.0155839i 0.269391 0.963031i \(-0.413178\pi\)
−0.319913 + 0.947447i \(0.603654\pi\)
\(174\) 0 0
\(175\) −10.6096 + 2.95645i −0.802013 + 0.223486i
\(176\) −3.31092 + 14.5061i −0.249570 + 1.09344i
\(177\) 0 0
\(178\) −2.43486 4.21730i −0.182500 0.316100i
\(179\) −13.8009 + 4.25700i −1.03152 + 0.318183i −0.763896 0.645339i \(-0.776716\pi\)
−0.267628 + 0.963522i \(0.586240\pi\)
\(180\) 0 0
\(181\) 10.6896 + 13.4044i 0.794555 + 0.996340i 0.999844 + 0.0176387i \(0.00561488\pi\)
−0.205290 + 0.978701i \(0.565814\pi\)
\(182\) −7.63292 21.1358i −0.565790 1.56669i
\(183\) 0 0
\(184\) 1.62495 + 1.50773i 0.119793 + 0.111151i
\(185\) −18.1329 2.73310i −1.33316 0.200941i
\(186\) 0 0
\(187\) −25.8759 + 3.90017i −1.89223 + 0.285208i
\(188\) 7.65646 + 3.68716i 0.558405 + 0.268914i
\(189\) 0 0
\(190\) 2.45364 1.18161i 0.178006 0.0857231i
\(191\) 9.66226 6.58762i 0.699137 0.476663i −0.160851 0.986979i \(-0.551424\pi\)
0.859987 + 0.510315i \(0.170471\pi\)
\(192\) 0 0
\(193\) −2.01860 26.9363i −0.145302 1.93892i −0.306245 0.951953i \(-0.599073\pi\)
0.160943 0.986964i \(-0.448547\pi\)
\(194\) 1.61642 + 4.11858i 0.116052 + 0.295697i
\(195\) 0 0
\(196\) −5.71215 11.2807i −0.408010 0.805766i
\(197\) 23.3736 1.66530 0.832650 0.553800i \(-0.186823\pi\)
0.832650 + 0.553800i \(0.186823\pi\)
\(198\) 0 0
\(199\) 0.723875 + 9.65944i 0.0513141 + 0.684740i 0.962246 + 0.272182i \(0.0877453\pi\)
−0.910932 + 0.412557i \(0.864636\pi\)
\(200\) 1.15287 1.06971i 0.0815205 0.0756400i
\(201\) 0 0
\(202\) 2.45587 1.18268i 0.172794 0.0832134i
\(203\) 16.4381 7.36768i 1.15373 0.517110i
\(204\) 0 0
\(205\) −19.2772 + 2.90557i −1.34638 + 0.202934i
\(206\) 32.0212 + 21.8317i 2.23102 + 1.52109i
\(207\) 0 0
\(208\) 13.8815 + 12.8802i 0.962510 + 0.893079i
\(209\) 0.983491 1.23326i 0.0680295 0.0853063i
\(210\) 0 0
\(211\) 7.65206 + 9.59538i 0.526790 + 0.660573i 0.972035 0.234835i \(-0.0754550\pi\)
−0.445246 + 0.895409i \(0.646884\pi\)
\(212\) 0.951183 12.6927i 0.0653275 0.871735i
\(213\) 0 0
\(214\) −6.26890 10.8581i −0.428533 0.742241i
\(215\) −5.17931 + 8.97083i −0.353226 + 0.611806i
\(216\) 0 0
\(217\) −1.00431 + 2.36594i −0.0681771 + 0.160611i
\(218\) −1.04419 4.57491i −0.0707217 0.309852i
\(219\) 0 0
\(220\) −6.83324 + 17.4108i −0.460697 + 1.17384i
\(221\) −12.1674 + 31.0020i −0.818466 + 2.08542i
\(222\) 0 0
\(223\) −4.34871 19.0530i −0.291211 1.27588i −0.882842 0.469671i \(-0.844373\pi\)
0.591630 0.806209i \(-0.298485\pi\)
\(224\) 16.5772 + 11.9813i 1.10761 + 0.800534i
\(225\) 0 0
\(226\) 1.06474 1.84418i 0.0708253 0.122673i
\(227\) −0.223240 0.386663i −0.0148170 0.0256637i 0.858522 0.512777i \(-0.171383\pi\)
−0.873339 + 0.487113i \(0.838050\pi\)
\(228\) 0 0
\(229\) 0.233264 3.11269i 0.0154145 0.205692i −0.984179 0.177178i \(-0.943303\pi\)
0.999593 0.0285146i \(-0.00907770\pi\)
\(230\) 21.6046 + 27.0913i 1.42457 + 1.78635i
\(231\) 0 0
\(232\) −1.60377 + 2.01106i −0.105292 + 0.132033i
\(233\) 1.79855 + 1.66881i 0.117827 + 0.109327i 0.736886 0.676017i \(-0.236295\pi\)
−0.619059 + 0.785344i \(0.712486\pi\)
\(234\) 0 0
\(235\) −11.7662 8.02204i −0.767541 0.523301i
\(236\) −19.7690 + 2.97970i −1.28685 + 0.193962i
\(237\) 0 0
\(238\) −9.83978 + 38.2426i −0.637818 + 2.47890i
\(239\) −15.2629 + 7.35021i −0.987273 + 0.475446i −0.856601 0.515980i \(-0.827428\pi\)
−0.130672 + 0.991426i \(0.541714\pi\)
\(240\) 0 0
\(241\) −3.14831 + 2.92121i −0.202801 + 0.188172i −0.775034 0.631919i \(-0.782267\pi\)
0.572234 + 0.820091i \(0.306077\pi\)
\(242\) 0.102189 + 1.36362i 0.00656898 + 0.0876570i
\(243\) 0 0
\(244\) 0.125355 0.00802505
\(245\) 6.64781 + 20.1193i 0.424713 + 1.28537i
\(246\) 0 0
\(247\) −0.733439 1.86877i −0.0466676 0.118907i
\(248\) −0.0274273 0.365992i −0.00174164 0.0232405i
\(249\) 0 0
\(250\) −4.08491 + 2.78504i −0.258352 + 0.176142i
\(251\) −10.6052 + 5.10721i −0.669396 + 0.322364i −0.737532 0.675312i \(-0.764009\pi\)
0.0681364 + 0.997676i \(0.478295\pi\)
\(252\) 0 0
\(253\) 18.0828 + 8.70824i 1.13686 + 0.547482i
\(254\) 14.6622 2.20997i 0.919988 0.138666i
\(255\) 0 0
\(256\) −18.4271 2.77743i −1.15169 0.173590i
\(257\) −9.97662 9.25695i −0.622324 0.577432i 0.304693 0.952451i \(-0.401446\pi\)
−0.927018 + 0.375018i \(0.877637\pi\)
\(258\) 0 0
\(259\) −1.63580 + 15.9443i −0.101643 + 0.990732i
\(260\) 14.8417 + 18.6108i 0.920440 + 1.15420i
\(261\) 0 0
\(262\) 1.59671 0.492520i 0.0986451 0.0304280i
\(263\) 0.494476 + 0.856457i 0.0304907 + 0.0528114i 0.880868 0.473362i \(-0.156960\pi\)
−0.850377 + 0.526173i \(0.823626\pi\)
\(264\) 0 0
\(265\) −4.74626 + 20.7947i −0.291560 + 1.27741i
\(266\) −1.13316 2.09329i −0.0694785 0.128348i
\(267\) 0 0
\(268\) −6.51245 2.00882i −0.397811 0.122708i
\(269\) 9.03288 23.0154i 0.550744 1.40327i −0.336373 0.941729i \(-0.609200\pi\)
0.887117 0.461544i \(-0.152704\pi\)
\(270\) 0 0
\(271\) 24.3217 + 7.50226i 1.47744 + 0.455730i 0.925691 0.378281i \(-0.123485\pi\)
0.551748 + 0.834011i \(0.313961\pi\)
\(272\) −7.40463 32.4418i −0.448971 1.96707i
\(273\) 0 0
\(274\) 5.88965 25.8042i 0.355807 1.55889i
\(275\) 7.11983 12.3319i 0.429342 0.743642i
\(276\) 0 0
\(277\) −9.53712 + 2.94181i −0.573030 + 0.176756i −0.567709 0.823230i \(-0.692170\pi\)
−0.00532123 + 0.999986i \(0.501694\pi\)
\(278\) 1.86325 24.8633i 0.111750 1.49120i
\(279\) 0 0
\(280\) −2.16068 2.11805i −0.129125 0.126578i
\(281\) −4.97450 + 6.23783i −0.296754 + 0.372118i −0.907747 0.419518i \(-0.862199\pi\)
0.610993 + 0.791636i \(0.290770\pi\)
\(282\) 0 0
\(283\) 4.87245 + 0.734404i 0.289637 + 0.0436558i 0.292254 0.956341i \(-0.405595\pi\)
−0.00261652 + 0.999997i \(0.500833\pi\)
\(284\) 7.86829 + 5.36451i 0.466897 + 0.318325i
\(285\) 0 0
\(286\) 26.1763 + 12.6058i 1.54784 + 0.745399i
\(287\) 3.33449 + 16.7100i 0.196829 + 0.986362i
\(288\) 0 0
\(289\) 34.3081 23.3909i 2.01812 1.37593i
\(290\) −29.4753 + 27.3491i −1.73085 + 1.60600i
\(291\) 0 0
\(292\) −5.38547 13.7220i −0.315161 0.803017i
\(293\) −25.2335 −1.47416 −0.737079 0.675806i \(-0.763796\pi\)
−0.737079 + 0.675806i \(0.763796\pi\)
\(294\) 0 0
\(295\) 33.5023 1.95058
\(296\) −0.836155 2.13049i −0.0486005 0.123832i
\(297\) 0 0
\(298\) −19.5052 + 18.0982i −1.12991 + 1.04840i
\(299\) 21.1051 14.3892i 1.22054 0.832149i
\(300\) 0 0
\(301\) 8.04645 + 4.15064i 0.463790 + 0.239239i
\(302\) −33.0322 15.9075i −1.90079 0.915371i
\(303\) 0 0
\(304\) 1.65732 + 1.12994i 0.0950536 + 0.0648064i
\(305\) −0.207719 0.0313086i −0.0118940 0.00179273i
\(306\) 0 0
\(307\) 6.81355 8.54392i 0.388870 0.487627i −0.548408 0.836211i \(-0.684766\pi\)
0.937278 + 0.348584i \(0.113337\pi\)
\(308\) 15.4835 + 5.24537i 0.882257 + 0.298883i
\(309\) 0 0
\(310\) 0.428742 5.72117i 0.0243509 0.324940i
\(311\) 9.28867 2.86518i 0.526712 0.162469i −0.0199838 0.999800i \(-0.506361\pi\)
0.546696 + 0.837331i \(0.315885\pi\)
\(312\) 0 0
\(313\) 2.39374 4.14608i 0.135302 0.234350i −0.790411 0.612577i \(-0.790133\pi\)
0.925713 + 0.378227i \(0.123466\pi\)
\(314\) 5.28734 23.1654i 0.298382 1.30730i
\(315\) 0 0
\(316\) 4.68223 + 20.5142i 0.263396 + 1.15401i
\(317\) 32.8042 + 10.1187i 1.84246 + 0.568325i 0.999541 + 0.0302917i \(0.00964363\pi\)
0.842924 + 0.538033i \(0.180833\pi\)
\(318\) 0 0
\(319\) −8.50869 + 21.6798i −0.476395 + 1.21383i
\(320\) −18.4634 5.69521i −1.03214 0.318372i
\(321\) 0 0
\(322\) 22.7585 19.9833i 1.26828 1.11363i
\(323\) −0.784994 + 3.43928i −0.0436782 + 0.191367i
\(324\) 0 0
\(325\) −9.06138 15.6948i −0.502635 0.870589i
\(326\) −17.3427 + 5.34950i −0.960521 + 0.296282i
\(327\) 0 0
\(328\) −1.51703 1.90230i −0.0837640 0.105037i
\(329\) −6.51686 + 10.6046i −0.359286 + 0.584651i
\(330\) 0 0
\(331\) 10.6694 + 9.89972i 0.586441 + 0.544138i 0.916609 0.399784i \(-0.130915\pi\)
−0.330168 + 0.943922i \(0.607106\pi\)
\(332\) 4.59340 + 0.692344i 0.252096 + 0.0379973i
\(333\) 0 0
\(334\) −26.6248 + 4.01304i −1.45684 + 0.219584i
\(335\) 10.2897 + 4.95525i 0.562185 + 0.270734i
\(336\) 0 0
\(337\) 17.6535 8.50148i 0.961647 0.463105i 0.113892 0.993493i \(-0.463668\pi\)
0.847755 + 0.530388i \(0.177954\pi\)
\(338\) 9.59546 6.54207i 0.521924 0.355842i
\(339\) 0 0
\(340\) −3.12592 41.7125i −0.169527 2.26218i
\(341\) −1.21406 3.09337i −0.0657448 0.167515i
\(342\) 0 0
\(343\) 17.2904 6.63655i 0.933591 0.358340i
\(344\) −1.29284 −0.0697052
\(345\) 0 0
\(346\) −0.101388 1.35293i −0.00545067 0.0727341i
\(347\) 11.8971 11.0389i 0.638670 0.592599i −0.292908 0.956141i \(-0.594623\pi\)
0.931578 + 0.363542i \(0.118433\pi\)
\(348\) 0 0
\(349\) 10.9710 5.28336i 0.587264 0.282812i −0.116562 0.993183i \(-0.537187\pi\)
0.703827 + 0.710372i \(0.251473\pi\)
\(350\) −12.9316 17.1611i −0.691221 0.917301i
\(351\) 0 0
\(352\) −26.1490 + 3.94133i −1.39375 + 0.210074i
\(353\) −8.59910 5.86277i −0.457684 0.312044i 0.312440 0.949937i \(-0.398854\pi\)
−0.770124 + 0.637894i \(0.779806\pi\)
\(354\) 0 0
\(355\) −11.6983 10.8544i −0.620879 0.576092i
\(356\) 2.81114 3.52506i 0.148990 0.186828i
\(357\) 0 0
\(358\) −17.5682 22.0298i −0.928507 1.16431i
\(359\) 0.333449 4.44956i 0.0175987 0.234839i −0.981467 0.191630i \(-0.938623\pi\)
0.999066 0.0432092i \(-0.0137582\pi\)
\(360\) 0 0
\(361\) 9.39368 + 16.2703i 0.494404 + 0.856333i
\(362\) −16.7247 + 28.9680i −0.879031 + 1.52253i
\(363\) 0 0
\(364\) 15.6343 13.7279i 0.819460 0.719536i
\(365\) 5.49677 + 24.0829i 0.287714 + 1.26056i
\(366\) 0 0
\(367\) 6.21915 15.8461i 0.324637 0.827161i −0.671634 0.740883i \(-0.734407\pi\)
0.996271 0.0862781i \(-0.0274974\pi\)
\(368\) −9.32425 + 23.7578i −0.486060 + 1.23846i
\(369\) 0 0
\(370\) −7.96107 34.8797i −0.413877 1.81331i
\(371\) 18.3515 + 3.28326i 0.952764 + 0.170458i
\(372\) 0 0
\(373\) 15.9489 27.6244i 0.825805 1.43034i −0.0754976 0.997146i \(-0.524055\pi\)
0.901303 0.433190i \(-0.142612\pi\)
\(374\) −25.5269 44.2139i −1.31997 2.28625i
\(375\) 0 0
\(376\) 0.132821 1.77238i 0.00684973 0.0914033i
\(377\) 18.4807 + 23.1740i 0.951803 + 1.19352i
\(378\) 0 0
\(379\) 15.9882 20.0486i 0.821261 1.02983i −0.177692 0.984086i \(-0.556863\pi\)
0.998953 0.0457427i \(-0.0145654\pi\)
\(380\) 1.84835 + 1.71502i 0.0948185 + 0.0879787i
\(381\) 0 0
\(382\) 18.8510 + 12.8524i 0.964499 + 0.657584i
\(383\) 0.466900 0.0703738i 0.0238575 0.00359594i −0.137103 0.990557i \(-0.543779\pi\)
0.160960 + 0.986961i \(0.448541\pi\)
\(384\) 0 0
\(385\) −24.3468 12.5590i −1.24083 0.640063i
\(386\) 47.4808 22.8656i 2.41671 1.16383i
\(387\) 0 0
\(388\) −3.00289 + 2.78628i −0.152449 + 0.141452i
\(389\) −1.25556 16.7543i −0.0636594 0.849475i −0.934057 0.357125i \(-0.883757\pi\)
0.870397 0.492350i \(-0.163862\pi\)
\(390\) 0 0
\(391\) −44.8861 −2.26999
\(392\) −1.75978 + 1.97406i −0.0888824 + 0.0997053i
\(393\) 0 0
\(394\) 16.6601 + 42.4493i 0.839326 + 2.13857i
\(395\) −2.63505 35.1623i −0.132584 1.76921i
\(396\) 0 0
\(397\) −22.1720 + 15.1166i −1.11278 + 0.758680i −0.972840 0.231480i \(-0.925643\pi\)
−0.139939 + 0.990160i \(0.544691\pi\)
\(398\) −17.0268 + 8.19967i −0.853475 + 0.411012i
\(399\) 0 0
\(400\) 16.3143 + 7.85655i 0.815714 + 0.392827i
\(401\) −17.5058 + 2.63858i −0.874199 + 0.131764i −0.570790 0.821096i \(-0.693363\pi\)
−0.303409 + 0.952860i \(0.598125\pi\)
\(402\) 0 0
\(403\) −4.18203 0.630339i −0.208322 0.0313994i
\(404\) 1.85003 + 1.71658i 0.0920424 + 0.0854029i
\(405\) 0 0
\(406\) 25.0973 + 24.6021i 1.24556 + 1.22098i
\(407\) −12.9202 16.2014i −0.640431 0.803076i
\(408\) 0 0
\(409\) −9.80566 + 3.02464i −0.484859 + 0.149559i −0.527541 0.849530i \(-0.676886\pi\)
0.0426824 + 0.999089i \(0.486410\pi\)
\(410\) −19.0172 32.9388i −0.939194 1.62673i
\(411\) 0 0
\(412\) −7.98458 + 34.9827i −0.393372 + 1.72348i
\(413\) −1.38639 29.2496i −0.0682199 1.43928i
\(414\) 0 0
\(415\) −7.43854 2.29449i −0.365144 0.112632i
\(416\) −12.2958 + 31.3292i −0.602851 + 1.53604i
\(417\) 0 0
\(418\) 2.94076 + 0.907104i 0.143837 + 0.0443679i
\(419\) 0.830080 + 3.63682i 0.0405521 + 0.177670i 0.991148 0.132760i \(-0.0423840\pi\)
−0.950596 + 0.310430i \(0.899527\pi\)
\(420\) 0 0
\(421\) −6.79690 + 29.7792i −0.331260 + 1.45135i 0.485432 + 0.874274i \(0.338662\pi\)
−0.816693 + 0.577073i \(0.804195\pi\)
\(422\) −11.9722 + 20.7365i −0.582797 + 1.00943i
\(423\) 0 0
\(424\) −2.54382 + 0.784664i −0.123539 + 0.0381067i
\(425\) −2.37985 + 31.7569i −0.115440 + 1.54044i
\(426\) 0 0
\(427\) −0.0187386 + 0.182648i −0.000906825 + 0.00883895i
\(428\) 7.23768 9.07576i 0.349846 0.438694i
\(429\) 0 0
\(430\) −19.9838 3.01208i −0.963706 0.145255i
\(431\) 6.12611 + 4.17671i 0.295084 + 0.201185i 0.701808 0.712366i \(-0.252376\pi\)
−0.406724 + 0.913551i \(0.633329\pi\)
\(432\) 0 0
\(433\) 17.8059 + 8.57485i 0.855695 + 0.412081i 0.809688 0.586860i \(-0.199636\pi\)
0.0460064 + 0.998941i \(0.485351\pi\)
\(434\) −5.01269 0.137566i −0.240617 0.00660338i
\(435\) 0 0
\(436\) 3.58975 2.44745i 0.171918 0.117212i
\(437\) 1.98342 1.84034i 0.0948796 0.0880354i
\(438\) 0 0
\(439\) 7.43134 + 18.9348i 0.354679 + 0.903706i 0.991191 + 0.132440i \(0.0422812\pi\)
−0.636512 + 0.771266i \(0.719624\pi\)
\(440\) 3.91185 0.186490
\(441\) 0 0
\(442\) −64.9760 −3.09059
\(443\) −4.05982 10.3442i −0.192888 0.491470i 0.801409 0.598116i \(-0.204084\pi\)
−0.994297 + 0.106646i \(0.965989\pi\)
\(444\) 0 0
\(445\) −5.53859 + 5.13906i −0.262554 + 0.243615i
\(446\) 31.5029 21.4783i 1.49170 1.01703i
\(447\) 0 0
\(448\) −4.20823 + 16.3554i −0.198820 + 0.772722i
\(449\) 36.2494 + 17.4568i 1.71071 + 0.823837i 0.991660 + 0.128884i \(0.0411394\pi\)
0.719055 + 0.694953i \(0.244575\pi\)
\(450\) 0 0
\(451\) −18.2021 12.4100i −0.857106 0.584365i
\(452\) 1.94959 + 0.293853i 0.0917010 + 0.0138217i
\(453\) 0 0
\(454\) 0.543108 0.681036i 0.0254893 0.0319626i
\(455\) −29.3354 + 18.8429i −1.37526 + 0.883368i
\(456\) 0 0
\(457\) 1.00228 13.3745i 0.0468847 0.625633i −0.923427 0.383774i \(-0.874624\pi\)
0.970312 0.241858i \(-0.0777569\pi\)
\(458\) 5.81930 1.79501i 0.271918 0.0838755i
\(459\) 0 0
\(460\) −16.0412 + 27.7841i −0.747923 + 1.29544i
\(461\) 5.42370 23.7628i 0.252607 1.10674i −0.676357 0.736574i \(-0.736442\pi\)
0.928964 0.370170i \(-0.120700\pi\)
\(462\) 0 0
\(463\) 4.43592 + 19.4350i 0.206155 + 0.903223i 0.967098 + 0.254404i \(0.0818794\pi\)
−0.760943 + 0.648818i \(0.775263\pi\)
\(464\) −28.3000 8.72939i −1.31379 0.405252i
\(465\) 0 0
\(466\) −1.74880 + 4.45587i −0.0810117 + 0.206414i
\(467\) 31.4648 + 9.70561i 1.45602 + 0.449122i 0.918936 0.394408i \(-0.129050\pi\)
0.537082 + 0.843530i \(0.319526\pi\)
\(468\) 0 0
\(469\) 3.90045 9.18862i 0.180106 0.424291i
\(470\) 6.18238 27.0868i 0.285172 1.24942i
\(471\) 0 0
\(472\) 2.09067 + 3.62115i 0.0962311 + 0.166677i
\(473\) −11.1856 + 3.45031i −0.514316 + 0.158645i
\(474\) 0 0
\(475\) −1.19688 1.50084i −0.0549167 0.0688633i
\(476\) −36.2884 + 4.45529i −1.66328 + 0.204208i
\(477\) 0 0
\(478\) −24.2279 22.4802i −1.10816 1.02822i
\(479\) −35.6287 5.37017i −1.62792 0.245369i −0.729331 0.684162i \(-0.760168\pi\)
−0.898589 + 0.438792i \(0.855406\pi\)
\(480\) 0 0
\(481\) −26.0788 + 3.93074i −1.18909 + 0.179226i
\(482\) −7.54932 3.63556i −0.343862 0.165595i
\(483\) 0 0
\(484\) −1.14069 + 0.549329i −0.0518497 + 0.0249695i
\(485\) 5.67182 3.86698i 0.257544 0.175591i
\(486\) 0 0
\(487\) −0.952918 12.7158i −0.0431808 0.576208i −0.976269 0.216561i \(-0.930516\pi\)
0.933088 0.359647i \(-0.117103\pi\)
\(488\) −0.00957844 0.0244055i −0.000433596 0.00110478i
\(489\) 0 0
\(490\) −31.8007 + 26.4138i −1.43661 + 1.19325i
\(491\) 30.1941 1.36264 0.681321 0.731985i \(-0.261406\pi\)
0.681321 + 0.731985i \(0.261406\pi\)
\(492\) 0 0
\(493\) −3.89237 51.9401i −0.175303 2.33926i
\(494\) 2.87114 2.66403i 0.129179 0.119861i
\(495\) 0 0
\(496\) 3.80723 1.83346i 0.170950 0.0823250i
\(497\) −8.99250 + 10.6625i −0.403369 + 0.478279i
\(498\) 0 0
\(499\) 34.6900 5.22868i 1.55294 0.234068i 0.684183 0.729310i \(-0.260159\pi\)
0.868755 + 0.495242i \(0.164921\pi\)
\(500\) −3.78208 2.57858i −0.169140 0.115318i
\(501\) 0 0
\(502\) −16.8345 15.6201i −0.751359 0.697160i
\(503\) 15.1573 19.0067i 0.675831 0.847466i −0.319131 0.947710i \(-0.603391\pi\)
0.994963 + 0.100245i \(0.0319626\pi\)
\(504\) 0 0
\(505\) −2.63685 3.30650i −0.117338 0.147137i
\(506\) −2.92622 + 39.0477i −0.130086 + 1.73588i
\(507\) 0 0
\(508\) 6.86429 + 11.8893i 0.304554 + 0.527503i
\(509\) −8.11625 + 14.0578i −0.359747 + 0.623099i −0.987918 0.154975i \(-0.950470\pi\)
0.628172 + 0.778075i \(0.283804\pi\)
\(510\) 0 0
\(511\) 20.7985 5.79564i 0.920071 0.256384i
\(512\) −6.75143 29.5800i −0.298374 1.30726i
\(513\) 0 0
\(514\) 9.70067 24.7169i 0.427878 1.09022i
\(515\) 21.9680 55.9736i 0.968027 2.46649i
\(516\) 0 0
\(517\) −3.58093 15.6891i −0.157489 0.690004i
\(518\) −30.1228 + 8.39393i −1.32352 + 0.368808i
\(519\) 0 0
\(520\) 2.48930 4.31159i 0.109163 0.189076i
\(521\) 6.66345 + 11.5414i 0.291931 + 0.505639i 0.974266 0.225400i \(-0.0723689\pi\)
−0.682335 + 0.731039i \(0.739036\pi\)
\(522\) 0 0
\(523\) 0.807242 10.7719i 0.0352982 0.471022i −0.951345 0.308127i \(-0.900298\pi\)
0.986643 0.162895i \(-0.0520832\pi\)
\(524\) 0.964585 + 1.20955i 0.0421381 + 0.0528395i
\(525\) 0 0
\(526\) −1.20298 + 1.50849i −0.0524525 + 0.0657734i
\(527\) 5.44791 + 5.05492i 0.237315 + 0.220196i
\(528\) 0 0
\(529\) 9.44115 + 6.43687i 0.410485 + 0.279864i
\(530\) −41.1488 + 6.20218i −1.78739 + 0.269406i
\(531\) 0 0
\(532\) 1.42084 1.68470i 0.0616010 0.0730411i
\(533\) −25.2611 + 12.1651i −1.09418 + 0.526928i
\(534\) 0 0
\(535\) −14.2599 + 13.2312i −0.616509 + 0.572037i
\(536\) 0.106520 + 1.42141i 0.00460095 + 0.0613954i
\(537\) 0 0
\(538\) 48.2372 2.07965
\(539\) −9.95726 + 21.7761i −0.428889 + 0.937962i
\(540\) 0 0
\(541\) 4.49073 + 11.4422i 0.193071 + 0.491938i 0.994325 0.106387i \(-0.0339283\pi\)
−0.801253 + 0.598325i \(0.795833\pi\)
\(542\) 3.71091 + 49.5187i 0.159397 + 2.12701i
\(543\) 0 0
\(544\) 48.8646 33.3153i 2.09505 1.42838i
\(545\) −6.55965 + 3.15896i −0.280984 + 0.135315i
\(546\) 0 0
\(547\) −24.0469 11.5804i −1.02817 0.495141i −0.157765 0.987477i \(-0.550429\pi\)
−0.870405 + 0.492336i \(0.836143\pi\)
\(548\) 24.2320 3.65238i 1.03514 0.156022i
\(549\) 0 0
\(550\) 27.4711 + 4.14061i 1.17137 + 0.176556i
\(551\) 2.30155 + 2.13553i 0.0980494 + 0.0909765i
\(552\) 0 0
\(553\) −30.5900 + 3.75566i −1.30082 + 0.159707i
\(554\) −12.1405 15.2237i −0.515802 0.646795i
\(555\) 0 0
\(556\) 22.0591 6.80432i 0.935513 0.288568i
\(557\) −9.85957 17.0773i −0.417763 0.723587i 0.577951 0.816072i \(-0.303853\pi\)
−0.995714 + 0.0924844i \(0.970519\pi\)
\(558\) 0 0
\(559\) −3.31506 + 14.5242i −0.140212 + 0.614310i
\(560\) 13.6120 32.0669i 0.575210 1.35507i
\(561\) 0 0
\(562\) −14.8744 4.58814i −0.627438 0.193539i
\(563\) 0.653897 1.66610i 0.0275585 0.0702178i −0.916432 0.400190i \(-0.868944\pi\)
0.943991 + 0.329972i \(0.107039\pi\)
\(564\) 0 0
\(565\) −3.15716 0.973855i −0.132823 0.0409704i
\(566\) 2.13920 + 9.37245i 0.0899173 + 0.393953i
\(567\) 0 0
\(568\) 0.443200 1.94179i 0.0185963 0.0814755i
\(569\) 21.9029 37.9370i 0.918219 1.59040i 0.116101 0.993237i \(-0.462960\pi\)
0.802119 0.597165i \(-0.203706\pi\)
\(570\) 0 0
\(571\) 11.6165 3.58321i 0.486134 0.149953i −0.0419927 0.999118i \(-0.513371\pi\)
0.528127 + 0.849165i \(0.322894\pi\)
\(572\) −2.01022 + 26.8245i −0.0840514 + 1.12159i
\(573\) 0 0
\(574\) −27.9708 + 17.9664i −1.16748 + 0.749901i
\(575\) 15.2288 19.0964i 0.635087 0.796373i
\(576\) 0 0
\(577\) 5.10571 + 0.769562i 0.212553 + 0.0320373i 0.254456 0.967084i \(-0.418104\pi\)
−0.0419022 + 0.999122i \(0.513342\pi\)
\(578\) 66.9347 + 45.6353i 2.78412 + 1.89818i
\(579\) 0 0
\(580\) −33.5415 16.1527i −1.39274 0.670706i
\(581\) −1.69541 + 6.58928i −0.0703376 + 0.273370i
\(582\) 0 0
\(583\) −19.9150 + 13.5778i −0.824795 + 0.562336i
\(584\) −2.26003 + 2.09700i −0.0935206 + 0.0867744i
\(585\) 0 0
\(586\) −17.9859 45.8272i −0.742989 1.89311i
\(587\) −19.1939 −0.792218 −0.396109 0.918203i \(-0.629640\pi\)
−0.396109 + 0.918203i \(0.629640\pi\)
\(588\) 0 0
\(589\) −0.447984 −0.0184589
\(590\) 23.8796 + 60.8443i 0.983108 + 2.50492i
\(591\) 0 0
\(592\) 19.3167 17.9233i 0.793913 0.736644i
\(593\) −7.88708 + 5.37732i −0.323884 + 0.220820i −0.714336 0.699803i \(-0.753271\pi\)
0.390452 + 0.920623i \(0.372319\pi\)
\(594\) 0 0
\(595\) 61.2442 + 1.68076i 2.51077 + 0.0689043i
\(596\) −22.1960 10.6890i −0.909183 0.437840i
\(597\) 0 0
\(598\) 41.1758 + 28.0732i 1.68380 + 1.14800i
\(599\) 12.9057 + 1.94522i 0.527313 + 0.0794796i 0.407303 0.913293i \(-0.366469\pi\)
0.120010 + 0.992773i \(0.461707\pi\)
\(600\) 0 0
\(601\) 1.03502 1.29787i 0.0422193 0.0529414i −0.760274 0.649603i \(-0.774935\pi\)
0.802493 + 0.596662i \(0.203507\pi\)
\(602\) −1.80277 + 17.5718i −0.0734753 + 0.716174i
\(603\) 0 0
\(604\) 2.53672 33.8501i 0.103217 1.37734i
\(605\) 2.02738 0.625363i 0.0824246 0.0254246i
\(606\) 0 0
\(607\) −10.2847 + 17.8136i −0.417442 + 0.723031i −0.995681 0.0928362i \(-0.970407\pi\)
0.578239 + 0.815867i \(0.303740\pi\)
\(608\) −0.793280 + 3.47559i −0.0321718 + 0.140954i
\(609\) 0 0
\(610\) −0.0911969 0.399560i −0.00369245 0.0161777i
\(611\) −19.5710 6.03685i −0.791757 0.244225i
\(612\) 0 0
\(613\) 0.833246 2.12308i 0.0336545 0.0857502i −0.913059 0.407828i \(-0.866286\pi\)
0.946713 + 0.322078i \(0.104381\pi\)
\(614\) 20.3733 + 6.28435i 0.822201 + 0.253616i
\(615\) 0 0
\(616\) −0.161880 3.41530i −0.00652235 0.137606i
\(617\) 5.23564 22.9389i 0.210779 0.923484i −0.753260 0.657723i \(-0.771520\pi\)
0.964039 0.265761i \(-0.0856231\pi\)
\(618\) 0 0
\(619\) 13.5222 + 23.4211i 0.543503 + 0.941375i 0.998699 + 0.0509838i \(0.0162357\pi\)
−0.455196 + 0.890391i \(0.650431\pi\)
\(620\) 5.07590 1.56571i 0.203853 0.0628804i
\(621\) 0 0
\(622\) 11.8243 + 14.8272i 0.474110 + 0.594515i
\(623\) 4.71593 + 4.62288i 0.188940 + 0.185212i
\(624\) 0 0
\(625\) 20.8809 + 19.3747i 0.835238 + 0.774988i
\(626\) 9.23599 + 1.39210i 0.369145 + 0.0556396i
\(627\) 0 0
\(628\) 21.7539 3.27888i 0.868076 0.130841i
\(629\) 41.7546 + 20.1080i 1.66487 + 0.801758i
\(630\) 0 0
\(631\) −2.69955 + 1.30003i −0.107467 + 0.0517536i −0.486845 0.873488i \(-0.661852\pi\)
0.379378 + 0.925242i \(0.376138\pi\)
\(632\) 3.63615 2.47908i 0.144638 0.0986127i
\(633\) 0 0
\(634\) 5.00513 + 66.7888i 0.198779 + 2.65252i
\(635\) −8.40497 21.4155i −0.333541 0.849848i
\(636\) 0 0
\(637\) 17.6650 + 24.8319i 0.699913 + 0.983876i
\(638\) −45.4380 −1.79891
\(639\) 0 0
\(640\) 0.680483 + 9.08042i 0.0268985 + 0.358935i
\(641\) −12.7310 + 11.8126i −0.502844 + 0.466571i −0.890337 0.455302i \(-0.849531\pi\)
0.387493 + 0.921872i \(0.373341\pi\)
\(642\) 0 0
\(643\) 32.6018 15.7002i 1.28569 0.619155i 0.338843 0.940843i \(-0.389964\pi\)
0.946846 + 0.321688i \(0.104250\pi\)
\(644\) 24.9212 + 12.8552i 0.982031 + 0.506567i
\(645\) 0 0
\(646\) −6.80569 + 1.02579i −0.267766 + 0.0403593i
\(647\) −18.3861 12.5355i −0.722834 0.492820i 0.145151 0.989409i \(-0.453633\pi\)
−0.867985 + 0.496590i \(0.834585\pi\)
\(648\) 0 0
\(649\) 27.7526 + 25.7506i 1.08938 + 1.01080i
\(650\) 22.0449 27.6434i 0.864673 1.08427i
\(651\) 0 0
\(652\) −10.4768 13.1375i −0.410305 0.514506i
\(653\) −1.91414 + 25.5424i −0.0749059 + 0.999550i 0.825472 + 0.564442i \(0.190909\pi\)
−0.900378 + 0.435108i \(0.856710\pi\)
\(654\) 0 0
\(655\) −1.29626 2.24519i −0.0506491 0.0877268i
\(656\) 14.0070 24.2609i 0.546882 0.947228i
\(657\) 0 0
\(658\) −23.9043 4.27671i −0.931888 0.166724i
\(659\) −3.91920 17.1712i −0.152671 0.668893i −0.992103 0.125429i \(-0.959969\pi\)
0.839432 0.543465i \(-0.182888\pi\)
\(660\) 0 0
\(661\) 4.12689 10.5151i 0.160517 0.408992i −0.827875 0.560912i \(-0.810451\pi\)
0.988393 + 0.151920i \(0.0485458\pi\)
\(662\) −10.3742 + 26.4332i −0.403207 + 1.02735i
\(663\) 0 0
\(664\) −0.216191 0.947194i −0.00838983 0.0367582i
\(665\) −2.77515 + 2.43676i −0.107616 + 0.0944934i
\(666\) 0 0
\(667\) −19.9743 + 34.5965i −0.773408 + 1.33958i
\(668\) −12.4647 21.5895i −0.482275 0.835325i
\(669\) 0 0
\(670\) −1.66511 + 22.2193i −0.0643287 + 0.858407i
\(671\) −0.148006 0.185593i −0.00571369 0.00716474i
\(672\) 0 0
\(673\) −30.1357 + 37.7890i −1.16165 + 1.45666i −0.296574 + 0.955010i \(0.595844\pi\)
−0.865072 + 0.501648i \(0.832727\pi\)
\(674\) 28.0227 + 26.0013i 1.07940 + 1.00153i
\(675\) 0 0
\(676\) 8.88412 + 6.05709i 0.341697 + 0.232965i
\(677\) −35.1547 + 5.29871i −1.35110 + 0.203646i −0.784390 0.620268i \(-0.787024\pi\)
−0.566714 + 0.823915i \(0.691786\pi\)
\(678\) 0 0
\(679\) −3.61084 4.79184i −0.138571 0.183894i
\(680\) −7.88218 + 3.79586i −0.302268 + 0.145564i
\(681\) 0 0
\(682\) 4.75259 4.40975i 0.181986 0.168858i
\(683\) 0.123938 + 1.65384i 0.00474236 + 0.0632825i 0.999073 0.0430512i \(-0.0137079\pi\)
−0.994331 + 0.106334i \(0.966089\pi\)
\(684\) 0 0
\(685\) −41.0656 −1.56904
\(686\) 24.3769 + 26.6711i 0.930716 + 1.01831i
\(687\) 0 0
\(688\) −5.43818 13.8563i −0.207329 0.528265i
\(689\) 2.29242 + 30.5903i 0.0873344 + 1.16540i
\(690\) 0 0
\(691\) 18.1959 12.4058i 0.692206 0.471938i −0.165412 0.986225i \(-0.552895\pi\)
0.857619 + 0.514286i \(0.171943\pi\)
\(692\) 1.13175 0.545022i 0.0430227 0.0207186i
\(693\) 0 0
\(694\) 28.5280 + 13.7384i 1.08291 + 0.521501i
\(695\) −38.2523 + 5.76560i −1.45099 + 0.218702i
\(696\) 0 0
\(697\) 48.7185 + 7.34313i 1.84534 + 0.278141i
\(698\) 17.4151 + 16.1589i 0.659171 + 0.611622i
\(699\) 0 0
\(700\) 10.4164 16.9501i 0.393702 0.640655i
\(701\) 7.66942 + 9.61715i 0.289670 + 0.363235i 0.905279 0.424817i \(-0.139661\pi\)
−0.615609 + 0.788052i \(0.711090\pi\)
\(702\) 0 0
\(703\) −2.66948 + 0.823424i −0.100681 + 0.0310560i
\(704\) −10.9172 18.9092i −0.411459 0.712667i
\(705\) 0 0
\(706\) 4.51828 19.7959i 0.170048 0.745028i
\(707\) −2.77767 + 2.43897i −0.104465 + 0.0917269i
\(708\) 0 0
\(709\) −38.8180 11.9738i −1.45784 0.449684i −0.538324 0.842738i \(-0.680942\pi\)
−0.919516 + 0.393054i \(0.871419\pi\)
\(710\) 11.3747 28.9823i 0.426885 1.08768i
\(711\) 0 0
\(712\) −0.901095 0.277951i −0.0337699 0.0104166i
\(713\) −1.26838 5.55713i −0.0475012 0.208116i
\(714\) 0 0
\(715\) 10.0307 43.9472i 0.375126 1.64353i
\(716\) 13.0442 22.5931i 0.487483 0.844345i
\(717\) 0 0
\(718\) 8.31863 2.56596i 0.310449 0.0957607i
\(719\) 0.737799 9.84525i 0.0275153 0.367166i −0.966402 0.257036i \(-0.917254\pi\)
0.993917 0.110130i \(-0.0351268\pi\)
\(720\) 0 0
\(721\) −49.7777 16.8632i −1.85382 0.628019i
\(722\) −22.8533 + 28.6572i −0.850513 + 1.06651i
\(723\) 0 0
\(724\) −30.6238 4.61580i −1.13812 0.171545i
\(725\) 23.4180 + 15.9661i 0.869723 + 0.592967i
\(726\) 0 0
\(727\) 13.9445 + 6.71531i 0.517172 + 0.249057i 0.674215 0.738535i \(-0.264482\pi\)
−0.157043 + 0.987592i \(0.550196\pi\)
\(728\) −3.86731 1.99490i −0.143332 0.0739357i
\(729\) 0 0
\(730\) −39.8196 + 27.1486i −1.47379 + 1.00481i
\(731\) 19.1905 17.8062i 0.709785 0.658585i
\(732\) 0 0
\(733\) 1.03965 + 2.64899i 0.0384004 + 0.0978426i 0.948788 0.315915i \(-0.102311\pi\)
−0.910387 + 0.413757i \(0.864216\pi\)
\(734\) 33.2114 1.22585
\(735\) 0 0
\(736\) −45.3599 −1.67199
\(737\) 4.71504 + 12.0137i 0.173681 + 0.442531i
\(738\) 0 0
\(739\) 6.92190 6.42259i 0.254626 0.236259i −0.542523 0.840041i \(-0.682531\pi\)
0.797149 + 0.603782i \(0.206340\pi\)
\(740\) 27.3688 18.6597i 1.00610 0.685944i
\(741\) 0 0
\(742\) 7.11773 + 35.6689i 0.261300 + 1.30945i
\(743\) 22.8595 + 11.0086i 0.838635 + 0.403865i 0.803347 0.595512i \(-0.203051\pi\)
0.0352884 + 0.999377i \(0.488765\pi\)
\(744\) 0 0
\(745\) 34.1100 + 23.2558i 1.24969 + 0.852027i
\(746\) 61.5373 + 9.27526i 2.25304 + 0.339591i
\(747\) 0 0
\(748\) 29.4718 36.9565i 1.07760 1.35126i
\(749\) 12.1418 + 11.9023i 0.443653 + 0.434900i
\(750\) 0 0
\(751\) −0.876307 + 11.6935i −0.0319769 + 0.426702i 0.958125 + 0.286351i \(0.0924422\pi\)
−0.990102 + 0.140351i \(0.955177\pi\)
\(752\) 19.5545 6.03176i 0.713079 0.219956i
\(753\) 0 0
\(754\) −28.9143 + 50.0811i −1.05300 + 1.82385i
\(755\) −12.6578 + 55.4575i −0.460665 + 2.01831i
\(756\) 0 0
\(757\) −11.0281 48.3174i −0.400824 1.75613i −0.624074 0.781365i \(-0.714524\pi\)
0.223250 0.974761i \(-0.428333\pi\)
\(758\) 47.8068 + 14.7465i 1.73642 + 0.535615i
\(759\) 0 0
\(760\) 0.192665 0.490902i 0.00698869 0.0178069i
\(761\) −38.3876 11.8410i −1.39155 0.429236i −0.493735 0.869613i \(-0.664369\pi\)
−0.897813 + 0.440377i \(0.854845\pi\)
\(762\) 0 0
\(763\) 3.02943 + 5.59627i 0.109673 + 0.202599i
\(764\) −4.70054 + 20.5944i −0.170060 + 0.745079i
\(765\) 0 0
\(766\) 0.460603 + 0.797787i 0.0166423 + 0.0288252i
\(767\) 46.0423 14.2022i 1.66249 0.512810i
\(768\) 0 0
\(769\) −22.3501 28.0261i −0.805965 1.01065i −0.999563 0.0295668i \(-0.990587\pi\)
0.193598 0.981081i \(-0.437984\pi\)
\(770\) 5.45478 53.1686i 0.196577 1.91606i
\(771\) 0 0
\(772\) 35.7678 + 33.1877i 1.28731 + 1.19445i
\(773\) −7.87836 1.18747i −0.283365 0.0427104i 0.00582201 0.999983i \(-0.498147\pi\)
−0.289187 + 0.957273i \(0.593385\pi\)
\(774\) 0 0
\(775\) −3.99892 + 0.602740i −0.143646 + 0.0216511i
\(776\) 0.771914 + 0.371734i 0.0277101 + 0.0133445i
\(777\) 0 0
\(778\) 29.5329 14.2223i 1.05881 0.509894i
\(779\) −2.45383 + 1.67299i −0.0879176 + 0.0599412i
\(780\) 0 0
\(781\) −1.34765 17.9831i −0.0482227 0.643487i
\(782\) −31.9937 81.5187i −1.14409 2.91510i
\(783\) 0 0
\(784\) −28.5598 10.5571i −1.01999 0.377040i
\(785\) −36.8661 −1.31581
\(786\) 0 0
\(787\) 1.87042 + 24.9590i 0.0666732 + 0.889693i 0.925820 + 0.377964i \(0.123376\pi\)
−0.859147 + 0.511729i \(0.829005\pi\)
\(788\) −30.9502 + 28.7176i −1.10256 + 1.02302i
\(789\) 0 0
\(790\) 61.9810 29.8485i 2.20518 1.06196i
\(791\) −0.719589 + 2.79671i −0.0255856 + 0.0994394i
\(792\) 0 0
\(793\) −0.298741 + 0.0450280i −0.0106086 + 0.00159899i
\(794\) −43.2572 29.4923i −1.53514 1.04664i
\(795\) 0 0
\(796\) −12.8264 11.9012i −0.454621 0.421827i
\(797\) 4.58996 5.75562i 0.162585 0.203875i −0.693865 0.720105i \(-0.744094\pi\)
0.856450 + 0.516230i \(0.172665\pi\)
\(798\) 0 0
\(799\) 22.4392 + 28.1379i 0.793843 + 0.995448i
\(800\) −2.40497 + 32.0921i −0.0850286 + 1.13463i
\(801\) 0 0
\(802\) −17.2697 29.9120i −0.609815 1.05623i
\(803\) −13.9573 + 24.1747i −0.492542 + 0.853108i
\(804\) 0 0
\(805\) −38.0847 27.5259i −1.34231 0.970162i
\(806\) −1.83608 8.04437i −0.0646730 0.283351i
\(807\) 0 0
\(808\) 0.192840 0.491347i 0.00678408 0.0172855i
\(809\) −0.767250 + 1.95492i −0.0269751 + 0.0687314i −0.943727 0.330726i \(-0.892706\pi\)
0.916752 + 0.399458i \(0.130802\pi\)
\(810\) 0 0
\(811\) 1.31295 + 5.75241i 0.0461039 + 0.201994i 0.992734 0.120326i \(-0.0383941\pi\)
−0.946630 + 0.322321i \(0.895537\pi\)
\(812\) −12.7144 + 29.9524i −0.446187 + 1.05112i
\(813\) 0 0
\(814\) 20.2146 35.0127i 0.708522 1.22720i
\(815\) 14.0793 + 24.3861i 0.493178 + 0.854209i
\(816\) 0 0
\(817\) −0.117927 + 1.57363i −0.00412575 + 0.0550543i
\(818\) −12.4824 15.6524i −0.436436 0.547273i
\(819\) 0 0
\(820\) 21.9561 27.5321i 0.766741 0.961462i
\(821\) −5.93814 5.50979i −0.207243 0.192293i 0.569722 0.821838i \(-0.307051\pi\)
−0.776964 + 0.629545i \(0.783241\pi\)
\(822\) 0 0
\(823\) −35.9258 24.4938i −1.25229 0.853800i −0.258607 0.965983i \(-0.583263\pi\)
−0.993688 + 0.112183i \(0.964216\pi\)
\(824\) 7.42091 1.11852i 0.258520 0.0389656i
\(825\) 0 0
\(826\) 52.1328 23.3663i 1.81393 0.813018i
\(827\) −4.92118 + 2.36992i −0.171126 + 0.0824101i −0.517486 0.855692i \(-0.673132\pi\)
0.346360 + 0.938102i \(0.387418\pi\)
\(828\) 0 0
\(829\) −27.5164 + 25.5315i −0.955686 + 0.886747i −0.993648 0.112532i \(-0.964104\pi\)
0.0379623 + 0.999279i \(0.487913\pi\)
\(830\) −1.13494 15.1448i −0.0393945 0.525683i
\(831\) 0 0
\(832\) −27.7886 −0.963397
\(833\) −1.06700 53.5397i −0.0369694 1.85504i
\(834\) 0 0
\(835\) 15.2624 + 38.8880i 0.528177 + 1.34577i
\(836\) 0.212932 + 2.84137i 0.00736439 + 0.0982710i
\(837\) 0 0
\(838\) −6.01325 + 4.09977i −0.207724 + 0.141624i
\(839\) 16.0015 7.70590i 0.552432 0.266037i −0.136774 0.990602i \(-0.543674\pi\)
0.689207 + 0.724565i \(0.257959\pi\)
\(840\) 0 0
\(841\) −15.6375 7.53062i −0.539224 0.259676i
\(842\) −58.9273 + 8.88186i −2.03077 + 0.306089i
\(843\) 0 0
\(844\) −21.9217 3.30417i −0.754577 0.113734i
\(845\) −13.2086 12.2557i −0.454388 0.421611i
\(846\) 0 0
\(847\) −0.629879 1.74415i −0.0216429 0.0599298i
\(848\) −19.1101 23.9633i −0.656243 0.822903i
\(849\) 0 0
\(850\) −59.3708 + 18.3135i −2.03640 + 0.628146i
\(851\) −17.7725 30.7829i −0.609233 1.05522i
\(852\) 0 0
\(853\) 4.02744 17.6454i 0.137897 0.604166i −0.857998 0.513653i \(-0.828292\pi\)
0.995895 0.0905136i \(-0.0288509\pi\)
\(854\) −0.345068 + 0.0961554i −0.0118080 + 0.00329037i
\(855\) 0 0
\(856\) −2.32000 0.715625i −0.0792959 0.0244595i
\(857\) −1.44920 + 3.69250i −0.0495036 + 0.126133i −0.953487 0.301435i \(-0.902534\pi\)
0.903983 + 0.427568i \(0.140630\pi\)
\(858\) 0 0
\(859\) −39.3390 12.1345i −1.34223 0.414022i −0.461288 0.887251i \(-0.652612\pi\)
−0.880940 + 0.473228i \(0.843089\pi\)
\(860\) −4.16367 18.2422i −0.141980 0.622055i
\(861\) 0 0
\(862\) −3.21888 + 14.1028i −0.109636 + 0.480345i
\(863\) −0.761312 + 1.31863i −0.0259154 + 0.0448867i −0.878692 0.477389i \(-0.841583\pi\)
0.852777 + 0.522275i \(0.174917\pi\)
\(864\) 0 0
\(865\) −2.01148 + 0.620460i −0.0683925 + 0.0210963i
\(866\) −2.88140 + 38.4496i −0.0979139 + 1.30657i
\(867\) 0 0
\(868\) −1.57702 4.36680i −0.0535274 0.148219i
\(869\) 24.8438 31.1531i 0.842768 1.05680i
\(870\) 0 0
\(871\) 16.2418 + 2.44805i 0.550331 + 0.0829491i
\(872\) −0.750790 0.511880i −0.0254249 0.0173344i
\(873\) 0 0
\(874\) 4.75602 + 2.29038i 0.160875 + 0.0774732i
\(875\) 4.32246 5.12519i 0.146126 0.173263i
\(876\) 0 0
\(877\) −20.1100 + 13.7108i −0.679068 + 0.462981i −0.853092 0.521761i \(-0.825275\pi\)
0.174024 + 0.984741i \(0.444323\pi\)
\(878\) −29.0910 + 26.9925i −0.981773 + 0.910952i
\(879\) 0 0
\(880\) 16.4548 + 41.9260i 0.554690 + 1.41333i
\(881\) −25.5874 −0.862060 −0.431030 0.902338i \(-0.641850\pi\)
−0.431030 + 0.902338i \(0.641850\pi\)
\(882\) 0 0
\(883\) −21.2143 −0.713917 −0.356958 0.934120i \(-0.616186\pi\)
−0.356958 + 0.934120i \(0.616186\pi\)
\(884\) −21.9786 56.0006i −0.739221 1.88350i
\(885\) 0 0
\(886\) 15.8927 14.7463i 0.533926 0.495411i
\(887\) −37.1508 + 25.3290i −1.24740 + 0.850463i −0.993170 0.116680i \(-0.962775\pi\)
−0.254231 + 0.967144i \(0.581822\pi\)
\(888\) 0 0
\(889\) −18.3493 + 8.22430i −0.615416 + 0.275834i
\(890\) −13.2809 6.39577i −0.445178 0.214387i
\(891\) 0 0
\(892\) 29.1675 + 19.8860i 0.976599 + 0.665834i
\(893\) −2.14520 0.323337i −0.0717864 0.0108201i
\(894\) 0 0
\(895\) −27.2576 + 34.1799i −0.911120 + 1.14251i
\(896\) 7.89964 0.969873i 0.263908 0.0324012i
\(897\) 0 0
\(898\) −5.86599 + 78.2762i −0.195751 + 2.61211i
\(899\) 6.32047 1.94961i 0.210799 0.0650230i
\(900\) 0 0
\(901\) 26.9525 46.6831i 0.897918 1.55524i
\(902\) 9.56407 41.9029i 0.318449 1.39521i
\(903\) 0 0
\(904\) −0.0917584 0.402020i −0.00305184 0.0133710i
\(905\) 49.5921 + 15.2971i 1.64850 + 0.508494i
\(906\) 0 0
\(907\) −1.88228 + 4.79598i −0.0625002 + 0.159248i −0.958712 0.284378i \(-0.908213\pi\)
0.896212 + 0.443626i \(0.146308\pi\)
\(908\) 0.770672 + 0.237721i 0.0255756 + 0.00788904i
\(909\) 0 0
\(910\) −55.1305 39.8459i −1.82756 1.32088i
\(911\) −4.34392 + 19.0320i −0.143920 + 0.630557i 0.850582 + 0.525843i \(0.176250\pi\)
−0.994502 + 0.104714i \(0.966607\pi\)
\(912\) 0 0
\(913\) −4.39834 7.61815i −0.145564 0.252124i
\(914\) 25.0042 7.71276i 0.827064 0.255115i
\(915\) 0 0
\(916\) 3.51548 + 4.40827i 0.116155 + 0.145653i
\(917\) −1.90656 + 1.22463i −0.0629600 + 0.0404409i
\(918\) 0 0
\(919\) 39.1234 + 36.3012i 1.29056 + 1.19747i 0.968009 + 0.250916i \(0.0807317\pi\)
0.322554 + 0.946551i \(0.395459\pi\)
\(920\) 6.63501 + 1.00007i 0.218750 + 0.0329713i
\(921\) 0 0
\(922\) 47.0221 7.08744i 1.54859 0.233412i
\(923\) −20.6783 9.95816i −0.680635 0.327777i
\(924\) 0 0
\(925\) −22.7212 + 10.9419i −0.747068 + 0.359769i
\(926\) −32.1346 + 21.9090i −1.05601 + 0.719975i
\(927\) 0 0
\(928\) −3.93345 52.4883i −0.129122 1.72301i
\(929\) 6.87983 + 17.5295i 0.225720 + 0.575125i 0.998204 0.0599093i \(-0.0190812\pi\)
−0.772484 + 0.635034i \(0.780986\pi\)
\(930\) 0 0
\(931\) 2.24229 + 2.32205i 0.0734881 + 0.0761022i
\(932\) −4.43191 −0.145172
\(933\) 0 0
\(934\) 4.80078 + 64.0619i 0.157086 + 2.09617i
\(935\) −58.0662 + 53.8776i −1.89897 + 1.76199i
\(936\) 0 0
\(937\) −13.3793 + 6.44315i −0.437084 + 0.210488i −0.639468 0.768818i \(-0.720845\pi\)
0.202384 + 0.979306i \(0.435131\pi\)
\(938\) 19.4678 + 0.534266i 0.635647 + 0.0174444i
\(939\) 0 0
\(940\) 25.4364 3.83392i 0.829643 0.125049i
\(941\) 12.2965 + 8.38362i 0.400855 + 0.273298i 0.746922 0.664911i \(-0.231531\pi\)
−0.346067 + 0.938210i \(0.612483\pi\)
\(942\) 0 0
\(943\) −27.7006 25.7024i −0.902057 0.836986i
\(944\) −30.0163 + 37.6392i −0.976946 + 1.22505i
\(945\) 0 0
\(946\) −14.2390 17.8552i −0.462951 0.580522i
\(947\) −3.19198 + 42.5940i −0.103725 + 1.38412i 0.666100 + 0.745863i \(0.267962\pi\)
−0.769825 + 0.638255i \(0.779657\pi\)
\(948\) 0 0
\(949\) 17.7634 + 30.7671i 0.576624 + 0.998742i
\(950\) 1.87261 3.24345i 0.0607553 0.105231i
\(951\) 0 0
\(952\) 3.64021 + 6.72457i 0.117980 + 0.217945i
\(953\) −2.15522 9.44264i −0.0698144 0.305877i 0.927950 0.372704i \(-0.121569\pi\)
−0.997765 + 0.0668274i \(0.978712\pi\)
\(954\) 0 0
\(955\) 12.9326 32.9518i 0.418490 1.06630i
\(956\) 11.1797 28.4853i 0.361576 0.921280i
\(957\) 0 0
\(958\) −15.6424 68.5340i −0.505384 2.21423i
\(959\) 1.69938 + 35.8530i 0.0548759 + 1.15775i
\(960\) 0 0
\(961\) 15.0281 26.0295i 0.484778 0.839660i
\(962\) −25.7270 44.5605i −0.829473 1.43669i
\(963\) 0 0
\(964\) 0.579752 7.73625i 0.0186726 0.249168i
\(965\) −50.9798 63.9267i −1.64110 2.05787i
\(966\) 0 0
\(967\) 5.99430 7.51661i 0.192764 0.241718i −0.676052 0.736854i \(-0.736310\pi\)
0.868815 + 0.495136i \(0.164882\pi\)
\(968\) 0.194110 + 0.180108i 0.00623892 + 0.00578888i
\(969\) 0 0
\(970\) 11.0657 + 7.54444i 0.355297 + 0.242237i
\(971\) −13.5790 + 2.04670i −0.435769 + 0.0656817i −0.363264 0.931686i \(-0.618338\pi\)
−0.0725056 + 0.997368i \(0.523100\pi\)
\(972\) 0 0
\(973\) 6.61670 + 33.1581i 0.212122 + 1.06300i
\(974\) 22.4143 10.7941i 0.718199 0.345866i
\(975\) 0 0
\(976\) 0.221280 0.205318i 0.00708300 0.00657206i
\(977\) −1.67126 22.3014i −0.0534683 0.713485i −0.957943 0.286958i \(-0.907356\pi\)
0.904475 0.426527i \(-0.140263\pi\)
\(978\) 0 0
\(979\) −8.53805 −0.272877
\(980\) −33.5220 18.4733i −1.07082 0.590108i
\(981\) 0 0
\(982\) 21.5216 + 54.8363i 0.686783 + 1.74990i
\(983\) 3.43993 + 45.9026i 0.109717 + 1.46407i 0.732016 + 0.681287i \(0.238580\pi\)
−0.622300 + 0.782779i \(0.713801\pi\)
\(984\) 0 0
\(985\) 58.4583 39.8562i 1.86264 1.26992i
\(986\) 91.5552 44.0907i 2.91571 1.40413i
\(987\) 0 0
\(988\) 3.26722 + 1.57341i 0.103944 + 0.0500569i
\(989\) −19.8544 + 2.99257i −0.631333 + 0.0951581i
\(990\) 0 0
\(991\) 21.8811 + 3.29805i 0.695076 + 0.104766i 0.487072 0.873362i \(-0.338065\pi\)
0.208004 + 0.978128i \(0.433303\pi\)
\(992\) 5.50541 + 5.10828i 0.174797 + 0.162188i
\(993\) 0 0
\(994\) −25.7741 8.73150i −0.817505 0.276946i
\(995\) 18.2815 + 22.9243i 0.579563 + 0.726750i
\(996\) 0 0
\(997\) −6.11128 + 1.88508i −0.193546 + 0.0597011i −0.390013 0.920809i \(-0.627529\pi\)
0.196467 + 0.980511i \(0.437053\pi\)
\(998\) 34.2221 + 59.2745i 1.08328 + 1.87630i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.bb.c.163.4 48
3.2 odd 2 147.2.m.a.16.1 48
49.46 even 21 inner 441.2.bb.c.46.4 48
147.86 odd 42 7203.2.a.i.1.6 24
147.95 odd 42 147.2.m.a.46.1 yes 48
147.110 even 42 7203.2.a.k.1.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
147.2.m.a.16.1 48 3.2 odd 2
147.2.m.a.46.1 yes 48 147.95 odd 42
441.2.bb.c.46.4 48 49.46 even 21 inner
441.2.bb.c.163.4 48 1.1 even 1 trivial
7203.2.a.i.1.6 24 147.86 odd 42
7203.2.a.k.1.6 24 147.110 even 42