Properties

Label 441.2.a.c
Level $441$
Weight $2$
Character orbit 441.a
Self dual yes
Analytic conductor $3.521$
Analytic rank $1$
Dimension $1$
CM discriminant -7
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(3.52140272914\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 49)
Fricke sign: \(1\)
Sato-Tate group: $N(\mathrm{U}(1))$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} - q^{4} + 3q^{8} + O(q^{10}) \) \( q - q^{2} - q^{4} + 3q^{8} - 4q^{11} - q^{16} + 4q^{22} - 8q^{23} - 5q^{25} - 2q^{29} - 5q^{32} - 6q^{37} - 12q^{43} + 4q^{44} + 8q^{46} + 5q^{50} + 10q^{53} + 2q^{58} + 7q^{64} + 4q^{67} - 16q^{71} + 6q^{74} + 8q^{79} + 12q^{86} - 12q^{88} + 8q^{92} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 0 −1.00000 0 0 0 3.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(7\) \(-1\)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 441.2.a.c 1
3.b odd 2 1 49.2.a.a 1
4.b odd 2 1 7056.2.a.bg 1
7.b odd 2 1 CM 441.2.a.c 1
7.c even 3 2 441.2.e.d 2
7.d odd 6 2 441.2.e.d 2
12.b even 2 1 784.2.a.f 1
15.d odd 2 1 1225.2.a.c 1
15.e even 4 2 1225.2.b.c 2
21.c even 2 1 49.2.a.a 1
21.g even 6 2 49.2.c.a 2
21.h odd 6 2 49.2.c.a 2
24.f even 2 1 3136.2.a.o 1
24.h odd 2 1 3136.2.a.n 1
28.d even 2 1 7056.2.a.bg 1
33.d even 2 1 5929.2.a.c 1
39.d odd 2 1 8281.2.a.d 1
84.h odd 2 1 784.2.a.f 1
84.j odd 6 2 784.2.i.f 2
84.n even 6 2 784.2.i.f 2
105.g even 2 1 1225.2.a.c 1
105.k odd 4 2 1225.2.b.c 2
168.e odd 2 1 3136.2.a.o 1
168.i even 2 1 3136.2.a.n 1
231.h odd 2 1 5929.2.a.c 1
273.g even 2 1 8281.2.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
49.2.a.a 1 3.b odd 2 1
49.2.a.a 1 21.c even 2 1
49.2.c.a 2 21.g even 6 2
49.2.c.a 2 21.h odd 6 2
441.2.a.c 1 1.a even 1 1 trivial
441.2.a.c 1 7.b odd 2 1 CM
441.2.e.d 2 7.c even 3 2
441.2.e.d 2 7.d odd 6 2
784.2.a.f 1 12.b even 2 1
784.2.a.f 1 84.h odd 2 1
784.2.i.f 2 84.j odd 6 2
784.2.i.f 2 84.n even 6 2
1225.2.a.c 1 15.d odd 2 1
1225.2.a.c 1 105.g even 2 1
1225.2.b.c 2 15.e even 4 2
1225.2.b.c 2 105.k odd 4 2
3136.2.a.n 1 24.h odd 2 1
3136.2.a.n 1 168.i even 2 1
3136.2.a.o 1 24.f even 2 1
3136.2.a.o 1 168.e odd 2 1
5929.2.a.c 1 33.d even 2 1
5929.2.a.c 1 231.h odd 2 1
7056.2.a.bg 1 4.b odd 2 1
7056.2.a.bg 1 28.d even 2 1
8281.2.a.d 1 39.d odd 2 1
8281.2.a.d 1 273.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(441))\):

\( T_{2} + 1 \)
\( T_{5} \)
\( T_{13} \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T + 2 T^{2} \)
$3$ 1
$5$ \( 1 + 5 T^{2} \)
$7$ 1
$11$ \( 1 + 4 T + 11 T^{2} \)
$13$ \( 1 + 13 T^{2} \)
$17$ \( 1 + 17 T^{2} \)
$19$ \( 1 + 19 T^{2} \)
$23$ \( 1 + 8 T + 23 T^{2} \)
$29$ \( 1 + 2 T + 29 T^{2} \)
$31$ \( 1 + 31 T^{2} \)
$37$ \( 1 + 6 T + 37 T^{2} \)
$41$ \( 1 + 41 T^{2} \)
$43$ \( 1 + 12 T + 43 T^{2} \)
$47$ \( 1 + 47 T^{2} \)
$53$ \( 1 - 10 T + 53 T^{2} \)
$59$ \( 1 + 59 T^{2} \)
$61$ \( 1 + 61 T^{2} \)
$67$ \( 1 - 4 T + 67 T^{2} \)
$71$ \( 1 + 16 T + 71 T^{2} \)
$73$ \( 1 + 73 T^{2} \)
$79$ \( 1 - 8 T + 79 T^{2} \)
$83$ \( 1 + 83 T^{2} \)
$89$ \( 1 + 89 T^{2} \)
$97$ \( 1 + 97 T^{2} \)
show more
show less