Properties

Label 4400.2.b.z.4049.3
Level $4400$
Weight $2$
Character 4400.4049
Analytic conductor $35.134$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4400,2,Mod(4049,4400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4400.4049"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4400 = 2^{4} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4400.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,6,0,-4,0,0,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(35.1341768894\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2200)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4049.3
Root \(0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 4400.4049
Dual form 4400.2.b.z.4049.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.618034i q^{3} -0.381966i q^{7} +2.61803 q^{9} -1.00000 q^{11} +5.47214i q^{13} +5.09017i q^{17} -3.76393 q^{19} +0.236068 q^{21} -0.381966i q^{23} +3.47214i q^{27} -8.32624 q^{29} +8.70820 q^{31} -0.618034i q^{33} -0.236068i q^{37} -3.38197 q^{39} -10.7082 q^{41} -6.94427i q^{43} -2.23607i q^{47} +6.85410 q^{49} -3.14590 q^{51} +3.61803i q^{53} -2.32624i q^{57} -10.7082 q^{59} -1.90983 q^{61} -1.00000i q^{63} -12.0000i q^{67} +0.236068 q^{69} -8.18034 q^{71} +11.6180i q^{73} +0.381966i q^{77} -7.38197 q^{79} +5.70820 q^{81} +13.5623i q^{83} -5.14590i q^{87} +14.3262 q^{89} +2.09017 q^{91} +5.38197i q^{93} -10.3820i q^{97} -2.61803 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{9} - 4 q^{11} - 24 q^{19} - 8 q^{21} - 2 q^{29} + 8 q^{31} - 18 q^{39} - 16 q^{41} + 14 q^{49} - 26 q^{51} - 16 q^{59} - 30 q^{61} - 8 q^{69} + 12 q^{71} - 34 q^{79} - 4 q^{81} + 26 q^{89} - 14 q^{91}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4400\mathbb{Z}\right)^\times\).

\(n\) \(177\) \(1201\) \(2751\) \(3301\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.618034i 0.356822i 0.983956 + 0.178411i \(0.0570957\pi\)
−0.983956 + 0.178411i \(0.942904\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 0.381966i − 0.144370i −0.997391 0.0721848i \(-0.977003\pi\)
0.997391 0.0721848i \(-0.0229971\pi\)
\(8\) 0 0
\(9\) 2.61803 0.872678
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 5.47214i 1.51770i 0.651267 + 0.758849i \(0.274238\pi\)
−0.651267 + 0.758849i \(0.725762\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.09017i 1.23455i 0.786748 + 0.617274i \(0.211763\pi\)
−0.786748 + 0.617274i \(0.788237\pi\)
\(18\) 0 0
\(19\) −3.76393 −0.863505 −0.431753 0.901992i \(-0.642105\pi\)
−0.431753 + 0.901992i \(0.642105\pi\)
\(20\) 0 0
\(21\) 0.236068 0.0515143
\(22\) 0 0
\(23\) − 0.381966i − 0.0796454i −0.999207 0.0398227i \(-0.987321\pi\)
0.999207 0.0398227i \(-0.0126793\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 3.47214i 0.668213i
\(28\) 0 0
\(29\) −8.32624 −1.54614 −0.773072 0.634319i \(-0.781281\pi\)
−0.773072 + 0.634319i \(0.781281\pi\)
\(30\) 0 0
\(31\) 8.70820 1.56404 0.782020 0.623254i \(-0.214190\pi\)
0.782020 + 0.623254i \(0.214190\pi\)
\(32\) 0 0
\(33\) − 0.618034i − 0.107586i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 0.236068i − 0.0388093i −0.999812 0.0194047i \(-0.993823\pi\)
0.999812 0.0194047i \(-0.00617709\pi\)
\(38\) 0 0
\(39\) −3.38197 −0.541548
\(40\) 0 0
\(41\) −10.7082 −1.67234 −0.836170 0.548470i \(-0.815210\pi\)
−0.836170 + 0.548470i \(0.815210\pi\)
\(42\) 0 0
\(43\) − 6.94427i − 1.05899i −0.848313 0.529496i \(-0.822381\pi\)
0.848313 0.529496i \(-0.177619\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 2.23607i − 0.326164i −0.986613 0.163082i \(-0.947856\pi\)
0.986613 0.163082i \(-0.0521435\pi\)
\(48\) 0 0
\(49\) 6.85410 0.979157
\(50\) 0 0
\(51\) −3.14590 −0.440514
\(52\) 0 0
\(53\) 3.61803i 0.496975i 0.968635 + 0.248488i \(0.0799335\pi\)
−0.968635 + 0.248488i \(0.920066\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 2.32624i − 0.308118i
\(58\) 0 0
\(59\) −10.7082 −1.39409 −0.697045 0.717028i \(-0.745502\pi\)
−0.697045 + 0.717028i \(0.745502\pi\)
\(60\) 0 0
\(61\) −1.90983 −0.244529 −0.122264 0.992498i \(-0.539016\pi\)
−0.122264 + 0.992498i \(0.539016\pi\)
\(62\) 0 0
\(63\) − 1.00000i − 0.125988i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 12.0000i − 1.46603i −0.680211 0.733017i \(-0.738112\pi\)
0.680211 0.733017i \(-0.261888\pi\)
\(68\) 0 0
\(69\) 0.236068 0.0284192
\(70\) 0 0
\(71\) −8.18034 −0.970828 −0.485414 0.874284i \(-0.661331\pi\)
−0.485414 + 0.874284i \(0.661331\pi\)
\(72\) 0 0
\(73\) 11.6180i 1.35979i 0.733310 + 0.679894i \(0.237974\pi\)
−0.733310 + 0.679894i \(0.762026\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.381966i 0.0435291i
\(78\) 0 0
\(79\) −7.38197 −0.830536 −0.415268 0.909699i \(-0.636312\pi\)
−0.415268 + 0.909699i \(0.636312\pi\)
\(80\) 0 0
\(81\) 5.70820 0.634245
\(82\) 0 0
\(83\) 13.5623i 1.48866i 0.667814 + 0.744328i \(0.267230\pi\)
−0.667814 + 0.744328i \(0.732770\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 5.14590i − 0.551698i
\(88\) 0 0
\(89\) 14.3262 1.51858 0.759289 0.650753i \(-0.225547\pi\)
0.759289 + 0.650753i \(0.225547\pi\)
\(90\) 0 0
\(91\) 2.09017 0.219109
\(92\) 0 0
\(93\) 5.38197i 0.558084i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 10.3820i − 1.05413i −0.849825 0.527064i \(-0.823293\pi\)
0.849825 0.527064i \(-0.176707\pi\)
\(98\) 0 0
\(99\) −2.61803 −0.263122
\(100\) 0 0
\(101\) −13.6180 −1.35505 −0.677523 0.735502i \(-0.736946\pi\)
−0.677523 + 0.735502i \(0.736946\pi\)
\(102\) 0 0
\(103\) 12.3262i 1.21454i 0.794495 + 0.607270i \(0.207735\pi\)
−0.794495 + 0.607270i \(0.792265\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 13.1803i − 1.27419i −0.770785 0.637096i \(-0.780136\pi\)
0.770785 0.637096i \(-0.219864\pi\)
\(108\) 0 0
\(109\) −3.56231 −0.341207 −0.170604 0.985340i \(-0.554572\pi\)
−0.170604 + 0.985340i \(0.554572\pi\)
\(110\) 0 0
\(111\) 0.145898 0.0138480
\(112\) 0 0
\(113\) 8.23607i 0.774784i 0.921915 + 0.387392i \(0.126624\pi\)
−0.921915 + 0.387392i \(0.873376\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 14.3262i 1.32446i
\(118\) 0 0
\(119\) 1.94427 0.178231
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) − 6.61803i − 0.596728i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 2.14590i − 0.190418i −0.995457 0.0952088i \(-0.969648\pi\)
0.995457 0.0952088i \(-0.0303519\pi\)
\(128\) 0 0
\(129\) 4.29180 0.377872
\(130\) 0 0
\(131\) 12.5623 1.09757 0.548787 0.835962i \(-0.315090\pi\)
0.548787 + 0.835962i \(0.315090\pi\)
\(132\) 0 0
\(133\) 1.43769i 0.124664i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.56231i 0.816963i 0.912767 + 0.408481i \(0.133942\pi\)
−0.912767 + 0.408481i \(0.866058\pi\)
\(138\) 0 0
\(139\) −11.1803 −0.948304 −0.474152 0.880443i \(-0.657245\pi\)
−0.474152 + 0.880443i \(0.657245\pi\)
\(140\) 0 0
\(141\) 1.38197 0.116383
\(142\) 0 0
\(143\) − 5.47214i − 0.457603i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 4.23607i 0.349385i
\(148\) 0 0
\(149\) 7.41641 0.607576 0.303788 0.952740i \(-0.401749\pi\)
0.303788 + 0.952740i \(0.401749\pi\)
\(150\) 0 0
\(151\) −15.9443 −1.29753 −0.648763 0.760990i \(-0.724713\pi\)
−0.648763 + 0.760990i \(0.724713\pi\)
\(152\) 0 0
\(153\) 13.3262i 1.07736i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 4.47214i 0.356915i 0.983948 + 0.178458i \(0.0571108\pi\)
−0.983948 + 0.178458i \(0.942889\pi\)
\(158\) 0 0
\(159\) −2.23607 −0.177332
\(160\) 0 0
\(161\) −0.145898 −0.0114984
\(162\) 0 0
\(163\) 6.38197i 0.499874i 0.968262 + 0.249937i \(0.0804099\pi\)
−0.968262 + 0.249937i \(0.919590\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.70820i 0.519096i 0.965730 + 0.259548i \(0.0835736\pi\)
−0.965730 + 0.259548i \(0.916426\pi\)
\(168\) 0 0
\(169\) −16.9443 −1.30341
\(170\) 0 0
\(171\) −9.85410 −0.753562
\(172\) 0 0
\(173\) 11.2918i 0.858499i 0.903186 + 0.429250i \(0.141222\pi\)
−0.903186 + 0.429250i \(0.858778\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 6.61803i − 0.497442i
\(178\) 0 0
\(179\) 2.09017 0.156227 0.0781133 0.996944i \(-0.475110\pi\)
0.0781133 + 0.996944i \(0.475110\pi\)
\(180\) 0 0
\(181\) 4.38197 0.325709 0.162854 0.986650i \(-0.447930\pi\)
0.162854 + 0.986650i \(0.447930\pi\)
\(182\) 0 0
\(183\) − 1.18034i − 0.0872532i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 5.09017i − 0.372230i
\(188\) 0 0
\(189\) 1.32624 0.0964696
\(190\) 0 0
\(191\) 12.0344 0.870782 0.435391 0.900242i \(-0.356610\pi\)
0.435391 + 0.900242i \(0.356610\pi\)
\(192\) 0 0
\(193\) 9.52786i 0.685831i 0.939366 + 0.342915i \(0.111414\pi\)
−0.939366 + 0.342915i \(0.888586\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 11.0344i − 0.786171i −0.919502 0.393086i \(-0.871408\pi\)
0.919502 0.393086i \(-0.128592\pi\)
\(198\) 0 0
\(199\) −14.6180 −1.03624 −0.518122 0.855306i \(-0.673369\pi\)
−0.518122 + 0.855306i \(0.673369\pi\)
\(200\) 0 0
\(201\) 7.41641 0.523113
\(202\) 0 0
\(203\) 3.18034i 0.223216i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 1.00000i − 0.0695048i
\(208\) 0 0
\(209\) 3.76393 0.260357
\(210\) 0 0
\(211\) 1.00000 0.0688428 0.0344214 0.999407i \(-0.489041\pi\)
0.0344214 + 0.999407i \(0.489041\pi\)
\(212\) 0 0
\(213\) − 5.05573i − 0.346413i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 3.32624i − 0.225800i
\(218\) 0 0
\(219\) −7.18034 −0.485202
\(220\) 0 0
\(221\) −27.8541 −1.87367
\(222\) 0 0
\(223\) 25.6525i 1.71782i 0.512129 + 0.858908i \(0.328857\pi\)
−0.512129 + 0.858908i \(0.671143\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 13.8541i 0.919529i 0.888041 + 0.459765i \(0.152066\pi\)
−0.888041 + 0.459765i \(0.847934\pi\)
\(228\) 0 0
\(229\) −12.6180 −0.833823 −0.416912 0.908947i \(-0.636888\pi\)
−0.416912 + 0.908947i \(0.636888\pi\)
\(230\) 0 0
\(231\) −0.236068 −0.0155321
\(232\) 0 0
\(233\) − 16.5623i − 1.08503i −0.840045 0.542516i \(-0.817472\pi\)
0.840045 0.542516i \(-0.182528\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 4.56231i − 0.296354i
\(238\) 0 0
\(239\) −22.3820 −1.44777 −0.723885 0.689921i \(-0.757645\pi\)
−0.723885 + 0.689921i \(0.757645\pi\)
\(240\) 0 0
\(241\) 0.145898 0.00939812 0.00469906 0.999989i \(-0.498504\pi\)
0.00469906 + 0.999989i \(0.498504\pi\)
\(242\) 0 0
\(243\) 13.9443i 0.894525i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 20.5967i − 1.31054i
\(248\) 0 0
\(249\) −8.38197 −0.531186
\(250\) 0 0
\(251\) −18.5066 −1.16812 −0.584062 0.811709i \(-0.698538\pi\)
−0.584062 + 0.811709i \(0.698538\pi\)
\(252\) 0 0
\(253\) 0.381966i 0.0240140i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 5.05573i − 0.315368i −0.987490 0.157684i \(-0.949597\pi\)
0.987490 0.157684i \(-0.0504027\pi\)
\(258\) 0 0
\(259\) −0.0901699 −0.00560289
\(260\) 0 0
\(261\) −21.7984 −1.34929
\(262\) 0 0
\(263\) 15.4721i 0.954053i 0.878889 + 0.477026i \(0.158285\pi\)
−0.878889 + 0.477026i \(0.841715\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 8.85410i 0.541862i
\(268\) 0 0
\(269\) 2.61803 0.159624 0.0798122 0.996810i \(-0.474568\pi\)
0.0798122 + 0.996810i \(0.474568\pi\)
\(270\) 0 0
\(271\) −12.7082 −0.771968 −0.385984 0.922505i \(-0.626138\pi\)
−0.385984 + 0.922505i \(0.626138\pi\)
\(272\) 0 0
\(273\) 1.29180i 0.0781831i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 26.1246i 1.56968i 0.619701 + 0.784838i \(0.287254\pi\)
−0.619701 + 0.784838i \(0.712746\pi\)
\(278\) 0 0
\(279\) 22.7984 1.36490
\(280\) 0 0
\(281\) 4.23607 0.252703 0.126351 0.991986i \(-0.459673\pi\)
0.126351 + 0.991986i \(0.459673\pi\)
\(282\) 0 0
\(283\) − 27.4508i − 1.63178i −0.578205 0.815892i \(-0.696246\pi\)
0.578205 0.815892i \(-0.303754\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.09017i 0.241435i
\(288\) 0 0
\(289\) −8.90983 −0.524108
\(290\) 0 0
\(291\) 6.41641 0.376136
\(292\) 0 0
\(293\) − 11.5279i − 0.673465i −0.941600 0.336733i \(-0.890678\pi\)
0.941600 0.336733i \(-0.109322\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 3.47214i − 0.201474i
\(298\) 0 0
\(299\) 2.09017 0.120878
\(300\) 0 0
\(301\) −2.65248 −0.152886
\(302\) 0 0
\(303\) − 8.41641i − 0.483510i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 23.8541i − 1.36143i −0.732550 0.680713i \(-0.761670\pi\)
0.732550 0.680713i \(-0.238330\pi\)
\(308\) 0 0
\(309\) −7.61803 −0.433375
\(310\) 0 0
\(311\) −5.94427 −0.337069 −0.168534 0.985696i \(-0.553903\pi\)
−0.168534 + 0.985696i \(0.553903\pi\)
\(312\) 0 0
\(313\) − 10.6525i − 0.602114i −0.953606 0.301057i \(-0.902661\pi\)
0.953606 0.301057i \(-0.0973394\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 3.38197i − 0.189950i −0.995480 0.0949751i \(-0.969723\pi\)
0.995480 0.0949751i \(-0.0302771\pi\)
\(318\) 0 0
\(319\) 8.32624 0.466180
\(320\) 0 0
\(321\) 8.14590 0.454660
\(322\) 0 0
\(323\) − 19.1591i − 1.06604i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 2.20163i − 0.121750i
\(328\) 0 0
\(329\) −0.854102 −0.0470882
\(330\) 0 0
\(331\) −13.3607 −0.734369 −0.367185 0.930148i \(-0.619678\pi\)
−0.367185 + 0.930148i \(0.619678\pi\)
\(332\) 0 0
\(333\) − 0.618034i − 0.0338681i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 35.8885i − 1.95497i −0.210997 0.977487i \(-0.567671\pi\)
0.210997 0.977487i \(-0.432329\pi\)
\(338\) 0 0
\(339\) −5.09017 −0.276460
\(340\) 0 0
\(341\) −8.70820 −0.471576
\(342\) 0 0
\(343\) − 5.29180i − 0.285730i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.61803i 0.194226i 0.995273 + 0.0971131i \(0.0309609\pi\)
−0.995273 + 0.0971131i \(0.969039\pi\)
\(348\) 0 0
\(349\) 8.12461 0.434900 0.217450 0.976071i \(-0.430226\pi\)
0.217450 + 0.976071i \(0.430226\pi\)
\(350\) 0 0
\(351\) −19.0000 −1.01414
\(352\) 0 0
\(353\) 19.3607i 1.03047i 0.857050 + 0.515233i \(0.172294\pi\)
−0.857050 + 0.515233i \(0.827706\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1.20163i 0.0635968i
\(358\) 0 0
\(359\) 31.8885 1.68301 0.841506 0.540247i \(-0.181669\pi\)
0.841506 + 0.540247i \(0.181669\pi\)
\(360\) 0 0
\(361\) −4.83282 −0.254359
\(362\) 0 0
\(363\) 0.618034i 0.0324384i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 35.9787i 1.87807i 0.343817 + 0.939037i \(0.388280\pi\)
−0.343817 + 0.939037i \(0.611720\pi\)
\(368\) 0 0
\(369\) −28.0344 −1.45941
\(370\) 0 0
\(371\) 1.38197 0.0717481
\(372\) 0 0
\(373\) 14.4164i 0.746453i 0.927740 + 0.373227i \(0.121749\pi\)
−0.927740 + 0.373227i \(0.878251\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 45.5623i − 2.34658i
\(378\) 0 0
\(379\) 29.4721 1.51388 0.756941 0.653483i \(-0.226693\pi\)
0.756941 + 0.653483i \(0.226693\pi\)
\(380\) 0 0
\(381\) 1.32624 0.0679452
\(382\) 0 0
\(383\) 18.9443i 0.968007i 0.875066 + 0.484004i \(0.160818\pi\)
−0.875066 + 0.484004i \(0.839182\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 18.1803i − 0.924159i
\(388\) 0 0
\(389\) −32.9443 −1.67034 −0.835170 0.549991i \(-0.814631\pi\)
−0.835170 + 0.549991i \(0.814631\pi\)
\(390\) 0 0
\(391\) 1.94427 0.0983261
\(392\) 0 0
\(393\) 7.76393i 0.391639i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 24.7984i 1.24459i 0.782781 + 0.622297i \(0.213801\pi\)
−0.782781 + 0.622297i \(0.786199\pi\)
\(398\) 0 0
\(399\) −0.888544 −0.0444828
\(400\) 0 0
\(401\) 0.472136 0.0235773 0.0117887 0.999931i \(-0.496247\pi\)
0.0117887 + 0.999931i \(0.496247\pi\)
\(402\) 0 0
\(403\) 47.6525i 2.37374i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.236068i 0.0117015i
\(408\) 0 0
\(409\) 20.5279 1.01504 0.507519 0.861641i \(-0.330563\pi\)
0.507519 + 0.861641i \(0.330563\pi\)
\(410\) 0 0
\(411\) −5.90983 −0.291510
\(412\) 0 0
\(413\) 4.09017i 0.201264i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 6.90983i − 0.338376i
\(418\) 0 0
\(419\) −12.5279 −0.612026 −0.306013 0.952027i \(-0.598995\pi\)
−0.306013 + 0.952027i \(0.598995\pi\)
\(420\) 0 0
\(421\) 4.67376 0.227785 0.113893 0.993493i \(-0.463668\pi\)
0.113893 + 0.993493i \(0.463668\pi\)
\(422\) 0 0
\(423\) − 5.85410i − 0.284636i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0.729490i 0.0353025i
\(428\) 0 0
\(429\) 3.38197 0.163283
\(430\) 0 0
\(431\) 5.76393 0.277639 0.138819 0.990318i \(-0.455669\pi\)
0.138819 + 0.990318i \(0.455669\pi\)
\(432\) 0 0
\(433\) 10.8885i 0.523270i 0.965167 + 0.261635i \(0.0842617\pi\)
−0.965167 + 0.261635i \(0.915738\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.43769i 0.0687742i
\(438\) 0 0
\(439\) 23.9230 1.14178 0.570891 0.821026i \(-0.306598\pi\)
0.570891 + 0.821026i \(0.306598\pi\)
\(440\) 0 0
\(441\) 17.9443 0.854489
\(442\) 0 0
\(443\) 24.2918i 1.15414i 0.816695 + 0.577069i \(0.195804\pi\)
−0.816695 + 0.577069i \(0.804196\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 4.58359i 0.216796i
\(448\) 0 0
\(449\) −7.72949 −0.364777 −0.182389 0.983227i \(-0.558383\pi\)
−0.182389 + 0.983227i \(0.558383\pi\)
\(450\) 0 0
\(451\) 10.7082 0.504230
\(452\) 0 0
\(453\) − 9.85410i − 0.462986i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 19.1459i − 0.895607i −0.894132 0.447804i \(-0.852206\pi\)
0.894132 0.447804i \(-0.147794\pi\)
\(458\) 0 0
\(459\) −17.6738 −0.824941
\(460\) 0 0
\(461\) 6.88854 0.320831 0.160416 0.987050i \(-0.448717\pi\)
0.160416 + 0.987050i \(0.448717\pi\)
\(462\) 0 0
\(463\) − 36.2361i − 1.68403i −0.539452 0.842016i \(-0.681369\pi\)
0.539452 0.842016i \(-0.318631\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 34.7082i 1.60610i 0.595909 + 0.803052i \(0.296792\pi\)
−0.595909 + 0.803052i \(0.703208\pi\)
\(468\) 0 0
\(469\) −4.58359 −0.211651
\(470\) 0 0
\(471\) −2.76393 −0.127355
\(472\) 0 0
\(473\) 6.94427i 0.319298i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 9.47214i 0.433699i
\(478\) 0 0
\(479\) −4.41641 −0.201791 −0.100895 0.994897i \(-0.532171\pi\)
−0.100895 + 0.994897i \(0.532171\pi\)
\(480\) 0 0
\(481\) 1.29180 0.0589008
\(482\) 0 0
\(483\) − 0.0901699i − 0.00410287i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 25.1803i − 1.14103i −0.821287 0.570515i \(-0.806744\pi\)
0.821287 0.570515i \(-0.193256\pi\)
\(488\) 0 0
\(489\) −3.94427 −0.178366
\(490\) 0 0
\(491\) 7.65248 0.345351 0.172676 0.984979i \(-0.444759\pi\)
0.172676 + 0.984979i \(0.444759\pi\)
\(492\) 0 0
\(493\) − 42.3820i − 1.90879i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.12461i 0.140158i
\(498\) 0 0
\(499\) 40.5623 1.81582 0.907909 0.419167i \(-0.137678\pi\)
0.907909 + 0.419167i \(0.137678\pi\)
\(500\) 0 0
\(501\) −4.14590 −0.185225
\(502\) 0 0
\(503\) 28.1803i 1.25650i 0.778012 + 0.628250i \(0.216228\pi\)
−0.778012 + 0.628250i \(0.783772\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 10.4721i − 0.465084i
\(508\) 0 0
\(509\) −26.8541 −1.19029 −0.595144 0.803619i \(-0.702905\pi\)
−0.595144 + 0.803619i \(0.702905\pi\)
\(510\) 0 0
\(511\) 4.43769 0.196312
\(512\) 0 0
\(513\) − 13.0689i − 0.577005i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 2.23607i 0.0983422i
\(518\) 0 0
\(519\) −6.97871 −0.306332
\(520\) 0 0
\(521\) 2.76393 0.121090 0.0605450 0.998165i \(-0.480716\pi\)
0.0605450 + 0.998165i \(0.480716\pi\)
\(522\) 0 0
\(523\) 17.4164i 0.761566i 0.924664 + 0.380783i \(0.124346\pi\)
−0.924664 + 0.380783i \(0.875654\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 44.3262i 1.93088i
\(528\) 0 0
\(529\) 22.8541 0.993657
\(530\) 0 0
\(531\) −28.0344 −1.21659
\(532\) 0 0
\(533\) − 58.5967i − 2.53811i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 1.29180i 0.0557451i
\(538\) 0 0
\(539\) −6.85410 −0.295227
\(540\) 0 0
\(541\) 40.4508 1.73912 0.869559 0.493829i \(-0.164403\pi\)
0.869559 + 0.493829i \(0.164403\pi\)
\(542\) 0 0
\(543\) 2.70820i 0.116220i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 2.67376i − 0.114322i −0.998365 0.0571609i \(-0.981795\pi\)
0.998365 0.0571609i \(-0.0182048\pi\)
\(548\) 0 0
\(549\) −5.00000 −0.213395
\(550\) 0 0
\(551\) 31.3394 1.33510
\(552\) 0 0
\(553\) 2.81966i 0.119904i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7.47214i 0.316605i 0.987391 + 0.158302i \(0.0506020\pi\)
−0.987391 + 0.158302i \(0.949398\pi\)
\(558\) 0 0
\(559\) 38.0000 1.60723
\(560\) 0 0
\(561\) 3.14590 0.132820
\(562\) 0 0
\(563\) 1.03444i 0.0435965i 0.999762 + 0.0217983i \(0.00693915\pi\)
−0.999762 + 0.0217983i \(0.993061\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 2.18034i − 0.0915657i
\(568\) 0 0
\(569\) 20.2016 0.846896 0.423448 0.905920i \(-0.360820\pi\)
0.423448 + 0.905920i \(0.360820\pi\)
\(570\) 0 0
\(571\) 34.1591 1.42951 0.714756 0.699374i \(-0.246538\pi\)
0.714756 + 0.699374i \(0.246538\pi\)
\(572\) 0 0
\(573\) 7.43769i 0.310714i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 29.7426i − 1.23820i −0.785311 0.619101i \(-0.787497\pi\)
0.785311 0.619101i \(-0.212503\pi\)
\(578\) 0 0
\(579\) −5.88854 −0.244720
\(580\) 0 0
\(581\) 5.18034 0.214917
\(582\) 0 0
\(583\) − 3.61803i − 0.149844i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.20163i 0.297243i 0.988894 + 0.148621i \(0.0474836\pi\)
−0.988894 + 0.148621i \(0.952516\pi\)
\(588\) 0 0
\(589\) −32.7771 −1.35056
\(590\) 0 0
\(591\) 6.81966 0.280523
\(592\) 0 0
\(593\) − 16.3475i − 0.671312i −0.941985 0.335656i \(-0.891042\pi\)
0.941985 0.335656i \(-0.108958\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 9.03444i − 0.369755i
\(598\) 0 0
\(599\) −34.3951 −1.40535 −0.702673 0.711513i \(-0.748010\pi\)
−0.702673 + 0.711513i \(0.748010\pi\)
\(600\) 0 0
\(601\) 4.67376 0.190647 0.0953234 0.995446i \(-0.469611\pi\)
0.0953234 + 0.995446i \(0.469611\pi\)
\(602\) 0 0
\(603\) − 31.4164i − 1.27938i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 8.83282i 0.358513i 0.983802 + 0.179256i \(0.0573692\pi\)
−0.983802 + 0.179256i \(0.942631\pi\)
\(608\) 0 0
\(609\) −1.96556 −0.0796484
\(610\) 0 0
\(611\) 12.2361 0.495018
\(612\) 0 0
\(613\) 46.3262i 1.87110i 0.353195 + 0.935550i \(0.385095\pi\)
−0.353195 + 0.935550i \(0.614905\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13.2361i 0.532864i 0.963854 + 0.266432i \(0.0858448\pi\)
−0.963854 + 0.266432i \(0.914155\pi\)
\(618\) 0 0
\(619\) 40.7082 1.63620 0.818100 0.575075i \(-0.195027\pi\)
0.818100 + 0.575075i \(0.195027\pi\)
\(620\) 0 0
\(621\) 1.32624 0.0532201
\(622\) 0 0
\(623\) − 5.47214i − 0.219236i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 2.32624i 0.0929010i
\(628\) 0 0
\(629\) 1.20163 0.0479120
\(630\) 0 0
\(631\) −38.4508 −1.53070 −0.765352 0.643612i \(-0.777435\pi\)
−0.765352 + 0.643612i \(0.777435\pi\)
\(632\) 0 0
\(633\) 0.618034i 0.0245646i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 37.5066i 1.48606i
\(638\) 0 0
\(639\) −21.4164 −0.847220
\(640\) 0 0
\(641\) −10.4164 −0.411423 −0.205712 0.978613i \(-0.565951\pi\)
−0.205712 + 0.978613i \(0.565951\pi\)
\(642\) 0 0
\(643\) − 25.4164i − 1.00233i −0.865353 0.501163i \(-0.832906\pi\)
0.865353 0.501163i \(-0.167094\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.4164i 0.645396i 0.946502 + 0.322698i \(0.104590\pi\)
−0.946502 + 0.322698i \(0.895410\pi\)
\(648\) 0 0
\(649\) 10.7082 0.420334
\(650\) 0 0
\(651\) 2.05573 0.0805703
\(652\) 0 0
\(653\) − 47.3820i − 1.85420i −0.374815 0.927100i \(-0.622294\pi\)
0.374815 0.927100i \(-0.377706\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 30.4164i 1.18666i
\(658\) 0 0
\(659\) −19.7426 −0.769064 −0.384532 0.923112i \(-0.625637\pi\)
−0.384532 + 0.923112i \(0.625637\pi\)
\(660\) 0 0
\(661\) 26.5967 1.03449 0.517247 0.855836i \(-0.326957\pi\)
0.517247 + 0.855836i \(0.326957\pi\)
\(662\) 0 0
\(663\) − 17.2148i − 0.668567i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 3.18034i 0.123143i
\(668\) 0 0
\(669\) −15.8541 −0.612955
\(670\) 0 0
\(671\) 1.90983 0.0737282
\(672\) 0 0
\(673\) 18.5967i 0.716852i 0.933558 + 0.358426i \(0.116686\pi\)
−0.933558 + 0.358426i \(0.883314\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.59675i 0.0613680i 0.999529 + 0.0306840i \(0.00976855\pi\)
−0.999529 + 0.0306840i \(0.990231\pi\)
\(678\) 0 0
\(679\) −3.96556 −0.152184
\(680\) 0 0
\(681\) −8.56231 −0.328108
\(682\) 0 0
\(683\) 1.18034i 0.0451645i 0.999745 + 0.0225822i \(0.00718876\pi\)
−0.999745 + 0.0225822i \(0.992811\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 7.79837i − 0.297527i
\(688\) 0 0
\(689\) −19.7984 −0.754258
\(690\) 0 0
\(691\) −40.6312 −1.54568 −0.772842 0.634599i \(-0.781165\pi\)
−0.772842 + 0.634599i \(0.781165\pi\)
\(692\) 0 0
\(693\) 1.00000i 0.0379869i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 54.5066i − 2.06458i
\(698\) 0 0
\(699\) 10.2361 0.387164
\(700\) 0 0
\(701\) −37.5279 −1.41741 −0.708704 0.705506i \(-0.750720\pi\)
−0.708704 + 0.705506i \(0.750720\pi\)
\(702\) 0 0
\(703\) 0.888544i 0.0335121i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.20163i 0.195627i
\(708\) 0 0
\(709\) 24.3607 0.914885 0.457442 0.889239i \(-0.348766\pi\)
0.457442 + 0.889239i \(0.348766\pi\)
\(710\) 0 0
\(711\) −19.3262 −0.724791
\(712\) 0 0
\(713\) − 3.32624i − 0.124569i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 13.8328i − 0.516596i
\(718\) 0 0
\(719\) 49.8328 1.85845 0.929225 0.369514i \(-0.120476\pi\)
0.929225 + 0.369514i \(0.120476\pi\)
\(720\) 0 0
\(721\) 4.70820 0.175343
\(722\) 0 0
\(723\) 0.0901699i 0.00335346i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 13.0902i − 0.485488i −0.970090 0.242744i \(-0.921953\pi\)
0.970090 0.242744i \(-0.0780474\pi\)
\(728\) 0 0
\(729\) 8.50658 0.315058
\(730\) 0 0
\(731\) 35.3475 1.30738
\(732\) 0 0
\(733\) 4.12461i 0.152346i 0.997095 + 0.0761730i \(0.0242701\pi\)
−0.997095 + 0.0761730i \(0.975730\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12.0000i 0.442026i
\(738\) 0 0
\(739\) −2.85410 −0.104990 −0.0524949 0.998621i \(-0.516717\pi\)
−0.0524949 + 0.998621i \(0.516717\pi\)
\(740\) 0 0
\(741\) 12.7295 0.467630
\(742\) 0 0
\(743\) 47.2148i 1.73214i 0.499921 + 0.866071i \(0.333362\pi\)
−0.499921 + 0.866071i \(0.666638\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 35.5066i 1.29912i
\(748\) 0 0
\(749\) −5.03444 −0.183955
\(750\) 0 0
\(751\) 0.0344419 0.00125680 0.000628401 1.00000i \(-0.499800\pi\)
0.000628401 1.00000i \(0.499800\pi\)
\(752\) 0 0
\(753\) − 11.4377i − 0.416813i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 4.88854i − 0.177677i −0.996046 0.0888386i \(-0.971684\pi\)
0.996046 0.0888386i \(-0.0283155\pi\)
\(758\) 0 0
\(759\) −0.236068 −0.00856872
\(760\) 0 0
\(761\) 8.00000 0.290000 0.145000 0.989432i \(-0.453682\pi\)
0.145000 + 0.989432i \(0.453682\pi\)
\(762\) 0 0
\(763\) 1.36068i 0.0492599i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 58.5967i − 2.11581i
\(768\) 0 0
\(769\) 41.6525 1.50203 0.751013 0.660287i \(-0.229565\pi\)
0.751013 + 0.660287i \(0.229565\pi\)
\(770\) 0 0
\(771\) 3.12461 0.112530
\(772\) 0 0
\(773\) − 48.6312i − 1.74914i −0.484897 0.874571i \(-0.661143\pi\)
0.484897 0.874571i \(-0.338857\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 0.0557281i − 0.00199923i
\(778\) 0 0
\(779\) 40.3050 1.44407
\(780\) 0 0
\(781\) 8.18034 0.292716
\(782\) 0 0
\(783\) − 28.9098i − 1.03315i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 1.76393i − 0.0628774i −0.999506 0.0314387i \(-0.989991\pi\)
0.999506 0.0314387i \(-0.0100089\pi\)
\(788\) 0 0
\(789\) −9.56231 −0.340427
\(790\) 0 0
\(791\) 3.14590 0.111855
\(792\) 0 0
\(793\) − 10.4508i − 0.371121i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 35.5623i 1.25968i 0.776724 + 0.629841i \(0.216880\pi\)
−0.776724 + 0.629841i \(0.783120\pi\)
\(798\) 0 0
\(799\) 11.3820 0.402665
\(800\) 0 0
\(801\) 37.5066 1.32523
\(802\) 0 0
\(803\) − 11.6180i − 0.409992i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.61803i 0.0569575i
\(808\) 0 0
\(809\) 50.2492 1.76667 0.883334 0.468744i \(-0.155293\pi\)
0.883334 + 0.468744i \(0.155293\pi\)
\(810\) 0 0
\(811\) 13.9443 0.489650 0.244825 0.969567i \(-0.421270\pi\)
0.244825 + 0.969567i \(0.421270\pi\)
\(812\) 0 0
\(813\) − 7.85410i − 0.275455i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 26.1378i 0.914445i
\(818\) 0 0
\(819\) 5.47214 0.191212
\(820\) 0 0
\(821\) −52.7214 −1.83999 −0.919994 0.391932i \(-0.871807\pi\)
−0.919994 + 0.391932i \(0.871807\pi\)
\(822\) 0 0
\(823\) − 14.8328i − 0.517039i −0.966006 0.258520i \(-0.916765\pi\)
0.966006 0.258520i \(-0.0832347\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 9.23607i 0.321170i 0.987022 + 0.160585i \(0.0513380\pi\)
−0.987022 + 0.160585i \(0.948662\pi\)
\(828\) 0 0
\(829\) 23.1591 0.804347 0.402174 0.915563i \(-0.368255\pi\)
0.402174 + 0.915563i \(0.368255\pi\)
\(830\) 0 0
\(831\) −16.1459 −0.560095
\(832\) 0 0
\(833\) 34.8885i 1.20882i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 30.2361i 1.04511i
\(838\) 0 0
\(839\) −8.85410 −0.305678 −0.152839 0.988251i \(-0.548842\pi\)
−0.152839 + 0.988251i \(0.548842\pi\)
\(840\) 0 0
\(841\) 40.3262 1.39056
\(842\) 0 0
\(843\) 2.61803i 0.0901699i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 0.381966i − 0.0131245i
\(848\) 0 0
\(849\) 16.9656 0.582256
\(850\) 0 0
\(851\) −0.0901699 −0.00309099
\(852\) 0 0
\(853\) − 11.5623i − 0.395886i −0.980214 0.197943i \(-0.936574\pi\)
0.980214 0.197943i \(-0.0634261\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 11.8328i 0.404201i 0.979365 + 0.202101i \(0.0647768\pi\)
−0.979365 + 0.202101i \(0.935223\pi\)
\(858\) 0 0
\(859\) −21.7082 −0.740674 −0.370337 0.928897i \(-0.620758\pi\)
−0.370337 + 0.928897i \(0.620758\pi\)
\(860\) 0 0
\(861\) −2.52786 −0.0861494
\(862\) 0 0
\(863\) − 52.4164i − 1.78428i −0.451764 0.892138i \(-0.649205\pi\)
0.451764 0.892138i \(-0.350795\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 5.50658i − 0.187013i
\(868\) 0 0
\(869\) 7.38197 0.250416
\(870\) 0 0
\(871\) 65.6656 2.22500
\(872\) 0 0
\(873\) − 27.1803i − 0.919915i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 45.8885i 1.54955i 0.632239 + 0.774773i \(0.282136\pi\)
−0.632239 + 0.774773i \(0.717864\pi\)
\(878\) 0 0
\(879\) 7.12461 0.240307
\(880\) 0 0
\(881\) 14.4508 0.486861 0.243431 0.969918i \(-0.421727\pi\)
0.243431 + 0.969918i \(0.421727\pi\)
\(882\) 0 0
\(883\) 25.8328i 0.869343i 0.900589 + 0.434672i \(0.143136\pi\)
−0.900589 + 0.434672i \(0.856864\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 17.0000i 0.570804i 0.958408 + 0.285402i \(0.0921271\pi\)
−0.958408 + 0.285402i \(0.907873\pi\)
\(888\) 0 0
\(889\) −0.819660 −0.0274905
\(890\) 0 0
\(891\) −5.70820 −0.191232
\(892\) 0 0
\(893\) 8.41641i 0.281644i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1.29180i 0.0431318i
\(898\) 0 0
\(899\) −72.5066 −2.41823
\(900\) 0 0
\(901\) −18.4164 −0.613540
\(902\) 0 0
\(903\) − 1.63932i − 0.0545532i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 23.7771i 0.789505i 0.918787 + 0.394753i \(0.129170\pi\)
−0.918787 + 0.394753i \(0.870830\pi\)
\(908\) 0 0
\(909\) −35.6525 −1.18252
\(910\) 0 0
\(911\) 13.0557 0.432556 0.216278 0.976332i \(-0.430608\pi\)
0.216278 + 0.976332i \(0.430608\pi\)
\(912\) 0 0
\(913\) − 13.5623i − 0.448847i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 4.79837i − 0.158456i
\(918\) 0 0
\(919\) −52.3607 −1.72722 −0.863610 0.504161i \(-0.831802\pi\)
−0.863610 + 0.504161i \(0.831802\pi\)
\(920\) 0 0
\(921\) 14.7426 0.485787
\(922\) 0 0
\(923\) − 44.7639i − 1.47342i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 32.2705i 1.05990i
\(928\) 0 0
\(929\) 36.8197 1.20801 0.604007 0.796979i \(-0.293570\pi\)
0.604007 + 0.796979i \(0.293570\pi\)
\(930\) 0 0
\(931\) −25.7984 −0.845508
\(932\) 0 0
\(933\) − 3.67376i − 0.120274i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0.583592i 0.0190651i 0.999955 + 0.00953256i \(0.00303435\pi\)
−0.999955 + 0.00953256i \(0.996966\pi\)
\(938\) 0 0
\(939\) 6.58359 0.214847
\(940\) 0 0
\(941\) −8.81966 −0.287513 −0.143756 0.989613i \(-0.545918\pi\)
−0.143756 + 0.989613i \(0.545918\pi\)
\(942\) 0 0
\(943\) 4.09017i 0.133194i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8.12461i 0.264014i 0.991249 + 0.132007i \(0.0421422\pi\)
−0.991249 + 0.132007i \(0.957858\pi\)
\(948\) 0 0
\(949\) −63.5755 −2.06375
\(950\) 0 0
\(951\) 2.09017 0.0677784
\(952\) 0 0
\(953\) − 0.111456i − 0.00361042i −0.999998 0.00180521i \(-0.999425\pi\)
0.999998 0.00180521i \(-0.000574616\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 5.14590i 0.166343i
\(958\) 0 0
\(959\) 3.65248 0.117945
\(960\) 0 0
\(961\) 44.8328 1.44622
\(962\) 0 0
\(963\) − 34.5066i − 1.11196i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 2.72949i − 0.0877745i −0.999036 0.0438872i \(-0.986026\pi\)
0.999036 0.0438872i \(-0.0139742\pi\)
\(968\) 0 0
\(969\) 11.8409 0.380386
\(970\) 0 0
\(971\) 0.381966 0.0122579 0.00612894 0.999981i \(-0.498049\pi\)
0.00612894 + 0.999981i \(0.498049\pi\)
\(972\) 0 0
\(973\) 4.27051i 0.136906i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 33.5410i − 1.07307i −0.843877 0.536536i \(-0.819733\pi\)
0.843877 0.536536i \(-0.180267\pi\)
\(978\) 0 0
\(979\) −14.3262 −0.457869
\(980\) 0 0
\(981\) −9.32624 −0.297764
\(982\) 0 0
\(983\) 40.9443i 1.30592i 0.757393 + 0.652960i \(0.226473\pi\)
−0.757393 + 0.652960i \(0.773527\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 0.527864i − 0.0168021i
\(988\) 0 0
\(989\) −2.65248 −0.0843438
\(990\) 0 0
\(991\) 49.0902 1.55940 0.779700 0.626153i \(-0.215371\pi\)
0.779700 + 0.626153i \(0.215371\pi\)
\(992\) 0 0
\(993\) − 8.25735i − 0.262039i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 56.0344i − 1.77463i −0.461165 0.887314i \(-0.652568\pi\)
0.461165 0.887314i \(-0.347432\pi\)
\(998\) 0 0
\(999\) 0.819660 0.0259329
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4400.2.b.z.4049.3 4
4.3 odd 2 2200.2.b.k.1849.2 4
5.2 odd 4 4400.2.a.bm.1.2 2
5.3 odd 4 4400.2.a.bo.1.1 2
5.4 even 2 inner 4400.2.b.z.4049.2 4
20.3 even 4 2200.2.a.p.1.2 2
20.7 even 4 2200.2.a.q.1.1 yes 2
20.19 odd 2 2200.2.b.k.1849.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2200.2.a.p.1.2 2 20.3 even 4
2200.2.a.q.1.1 yes 2 20.7 even 4
2200.2.b.k.1849.2 4 4.3 odd 2
2200.2.b.k.1849.3 4 20.19 odd 2
4400.2.a.bm.1.2 2 5.2 odd 4
4400.2.a.bo.1.1 2 5.3 odd 4
4400.2.b.z.4049.2 4 5.4 even 2 inner
4400.2.b.z.4049.3 4 1.1 even 1 trivial