Properties

Label 4400.2.b.l.4049.1
Level $4400$
Weight $2$
Character 4400.4049
Analytic conductor $35.134$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4400,2,Mod(4049,4400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4400.4049");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4400 = 2^{4} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4400.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(35.1341768894\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 440)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4049.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 4400.4049
Dual form 4400.2.b.l.4049.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{7} +3.00000 q^{9} +O(q^{10})\) \(q-2.00000i q^{7} +3.00000 q^{9} -1.00000 q^{11} -4.00000i q^{13} +4.00000i q^{17} +6.00000 q^{29} +2.00000i q^{37} +6.00000 q^{41} -2.00000i q^{43} +3.00000 q^{49} -10.0000i q^{53} +12.0000 q^{59} -6.00000 q^{61} -6.00000i q^{63} -12.0000i q^{67} -16.0000 q^{71} +4.00000i q^{73} +2.00000i q^{77} -4.00000 q^{79} +9.00000 q^{81} -2.00000i q^{83} -6.00000 q^{89} -8.00000 q^{91} +2.00000i q^{97} -3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 6 q^{9} - 2 q^{11} + 12 q^{29} + 12 q^{41} + 6 q^{49} + 24 q^{59} - 12 q^{61} - 32 q^{71} - 8 q^{79} + 18 q^{81} - 12 q^{89} - 16 q^{91} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4400\mathbb{Z}\right)^\times\).

\(n\) \(177\) \(1201\) \(2751\) \(3301\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 2.00000i − 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) 0 0
\(9\) 3.00000 1.00000
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) − 4.00000i − 1.10940i −0.832050 0.554700i \(-0.812833\pi\)
0.832050 0.554700i \(-0.187167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.00000i 0.970143i 0.874475 + 0.485071i \(0.161206\pi\)
−0.874475 + 0.485071i \(0.838794\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) − 2.00000i − 0.304997i −0.988304 0.152499i \(-0.951268\pi\)
0.988304 0.152499i \(-0.0487319\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 10.0000i − 1.37361i −0.726844 0.686803i \(-0.759014\pi\)
0.726844 0.686803i \(-0.240986\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.0000 1.56227 0.781133 0.624364i \(-0.214642\pi\)
0.781133 + 0.624364i \(0.214642\pi\)
\(60\) 0 0
\(61\) −6.00000 −0.768221 −0.384111 0.923287i \(-0.625492\pi\)
−0.384111 + 0.923287i \(0.625492\pi\)
\(62\) 0 0
\(63\) − 6.00000i − 0.755929i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 12.0000i − 1.46603i −0.680211 0.733017i \(-0.738112\pi\)
0.680211 0.733017i \(-0.261888\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −16.0000 −1.89885 −0.949425 0.313993i \(-0.898333\pi\)
−0.949425 + 0.313993i \(0.898333\pi\)
\(72\) 0 0
\(73\) 4.00000i 0.468165i 0.972217 + 0.234082i \(0.0752085\pi\)
−0.972217 + 0.234082i \(0.924791\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.00000i 0.227921i
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) − 2.00000i − 0.219529i −0.993958 0.109764i \(-0.964990\pi\)
0.993958 0.109764i \(-0.0350096\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) −8.00000 −0.838628
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 2.00000i 0.203069i 0.994832 + 0.101535i \(0.0323753\pi\)
−0.994832 + 0.101535i \(0.967625\pi\)
\(98\) 0 0
\(99\) −3.00000 −0.301511
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) − 4.00000i − 0.394132i −0.980390 0.197066i \(-0.936859\pi\)
0.980390 0.197066i \(-0.0631413\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 6.00000i − 0.580042i −0.957020 0.290021i \(-0.906338\pi\)
0.957020 0.290021i \(-0.0936623\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.0000i 1.31701i 0.752577 + 0.658505i \(0.228811\pi\)
−0.752577 + 0.658505i \(0.771189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 12.0000i − 1.10940i
\(118\) 0 0
\(119\) 8.00000 0.733359
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 22.0000i − 1.95218i −0.217357 0.976092i \(-0.569744\pi\)
0.217357 0.976092i \(-0.430256\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.00000 −0.698963 −0.349482 0.936943i \(-0.613642\pi\)
−0.349482 + 0.936943i \(0.613642\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 6.00000i − 0.512615i −0.966595 0.256307i \(-0.917494\pi\)
0.966595 0.256307i \(-0.0825059\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.00000i 0.334497i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) −20.0000 −1.62758 −0.813788 0.581161i \(-0.802599\pi\)
−0.813788 + 0.581161i \(0.802599\pi\)
\(152\) 0 0
\(153\) 12.0000i 0.970143i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 18.0000i − 1.43656i −0.695756 0.718278i \(-0.744931\pi\)
0.695756 0.718278i \(-0.255069\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 24.0000i 1.87983i 0.341415 + 0.939913i \(0.389094\pi\)
−0.341415 + 0.939913i \(0.610906\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 6.00000i − 0.464294i −0.972681 0.232147i \(-0.925425\pi\)
0.972681 0.232147i \(-0.0745750\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 24.0000i − 1.82469i −0.409426 0.912343i \(-0.634271\pi\)
0.409426 0.912343i \(-0.365729\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 20.0000 1.49487 0.747435 0.664335i \(-0.231285\pi\)
0.747435 + 0.664335i \(0.231285\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 4.00000i − 0.292509i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 24.0000 1.73658 0.868290 0.496058i \(-0.165220\pi\)
0.868290 + 0.496058i \(0.165220\pi\)
\(192\) 0 0
\(193\) − 12.0000i − 0.863779i −0.901927 0.431889i \(-0.857847\pi\)
0.901927 0.431889i \(-0.142153\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.00000i 0.569976i 0.958531 + 0.284988i \(0.0919897\pi\)
−0.958531 + 0.284988i \(0.908010\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 12.0000i − 0.842235i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 16.0000 1.07628
\(222\) 0 0
\(223\) 8.00000i 0.535720i 0.963458 + 0.267860i \(0.0863164\pi\)
−0.963458 + 0.267860i \(0.913684\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 26.0000i − 1.72568i −0.505477 0.862840i \(-0.668683\pi\)
0.505477 0.862840i \(-0.331317\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 20.0000 1.26239 0.631194 0.775625i \(-0.282565\pi\)
0.631194 + 0.775625i \(0.282565\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 18.0000i − 1.12281i −0.827541 0.561405i \(-0.810261\pi\)
0.827541 0.561405i \(-0.189739\pi\)
\(258\) 0 0
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) 18.0000 1.11417
\(262\) 0 0
\(263\) − 6.00000i − 0.369976i −0.982741 0.184988i \(-0.940775\pi\)
0.982741 0.184988i \(-0.0592246\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −14.0000 −0.853595 −0.426798 0.904347i \(-0.640358\pi\)
−0.426798 + 0.904347i \(0.640358\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 12.0000i 0.721010i 0.932757 + 0.360505i \(0.117396\pi\)
−0.932757 + 0.360505i \(0.882604\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −26.0000 −1.55103 −0.775515 0.631329i \(-0.782510\pi\)
−0.775515 + 0.631329i \(0.782510\pi\)
\(282\) 0 0
\(283\) − 18.0000i − 1.06999i −0.844856 0.534994i \(-0.820314\pi\)
0.844856 0.534994i \(-0.179686\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 12.0000i − 0.708338i
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 12.0000i − 0.701047i −0.936554 0.350524i \(-0.886004\pi\)
0.936554 0.350524i \(-0.113996\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2.00000i 0.114146i 0.998370 + 0.0570730i \(0.0181768\pi\)
−0.998370 + 0.0570730i \(0.981823\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 10.0000i 0.565233i 0.959233 + 0.282617i \(0.0912024\pi\)
−0.959233 + 0.282617i \(0.908798\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.00000i 0.336994i 0.985702 + 0.168497i \(0.0538913\pi\)
−0.985702 + 0.168497i \(0.946109\pi\)
\(318\) 0 0
\(319\) −6.00000 −0.335936
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) 0 0
\(333\) 6.00000i 0.328798i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 28.0000i − 1.52526i −0.646837 0.762629i \(-0.723908\pi\)
0.646837 0.762629i \(-0.276092\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) − 20.0000i − 1.07990i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 34.0000i 1.82522i 0.408836 + 0.912608i \(0.365935\pi\)
−0.408836 + 0.912608i \(0.634065\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.0000i 0.532246i 0.963939 + 0.266123i \(0.0857428\pi\)
−0.963939 + 0.266123i \(0.914257\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 20.0000 1.05556 0.527780 0.849381i \(-0.323025\pi\)
0.527780 + 0.849381i \(0.323025\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 32.0000i 1.67039i 0.549957 + 0.835193i \(0.314644\pi\)
−0.549957 + 0.835193i \(0.685356\pi\)
\(368\) 0 0
\(369\) 18.0000 0.937043
\(370\) 0 0
\(371\) −20.0000 −1.03835
\(372\) 0 0
\(373\) − 16.0000i − 0.828449i −0.910175 0.414224i \(-0.864053\pi\)
0.910175 0.414224i \(-0.135947\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 24.0000i − 1.23606i
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 12.0000i − 0.613171i −0.951843 0.306586i \(-0.900813\pi\)
0.951843 0.306586i \(-0.0991866\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 6.00000i − 0.304997i
\(388\) 0 0
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 2.00000i − 0.100377i −0.998740 0.0501886i \(-0.984018\pi\)
0.998740 0.0501886i \(-0.0159822\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 2.00000i − 0.0991363i
\(408\) 0 0
\(409\) −2.00000 −0.0988936 −0.0494468 0.998777i \(-0.515746\pi\)
−0.0494468 + 0.998777i \(0.515746\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 24.0000i − 1.18096i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) −6.00000 −0.292422 −0.146211 0.989253i \(-0.546708\pi\)
−0.146211 + 0.989253i \(0.546708\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 12.0000i 0.580721i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) 0 0
\(433\) 30.0000i 1.44171i 0.693087 + 0.720854i \(0.256250\pi\)
−0.693087 + 0.720854i \(0.743750\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 32.0000 1.52728 0.763638 0.645644i \(-0.223411\pi\)
0.763638 + 0.645644i \(0.223411\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) 0 0
\(443\) − 8.00000i − 0.380091i −0.981775 0.190046i \(-0.939136\pi\)
0.981775 0.190046i \(-0.0608636\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) −6.00000 −0.282529
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) 24.0000i 1.11537i 0.830051 + 0.557687i \(0.188311\pi\)
−0.830051 + 0.557687i \(0.811689\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 36.0000i 1.66588i 0.553362 + 0.832941i \(0.313345\pi\)
−0.553362 + 0.832941i \(0.686655\pi\)
\(468\) 0 0
\(469\) −24.0000 −1.10822
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.00000i 0.0919601i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 30.0000i − 1.37361i
\(478\) 0 0
\(479\) 20.0000 0.913823 0.456912 0.889512i \(-0.348956\pi\)
0.456912 + 0.889512i \(0.348956\pi\)
\(480\) 0 0
\(481\) 8.00000 0.364769
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 16.0000i 0.725029i 0.931978 + 0.362515i \(0.118082\pi\)
−0.931978 + 0.362515i \(0.881918\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 28.0000 1.26362 0.631811 0.775122i \(-0.282312\pi\)
0.631811 + 0.775122i \(0.282312\pi\)
\(492\) 0 0
\(493\) 24.0000i 1.08091i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 32.0000i 1.43540i
\(498\) 0 0
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6.00000i 0.267527i 0.991013 + 0.133763i \(0.0427062\pi\)
−0.991013 + 0.133763i \(0.957294\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −30.0000 −1.32973 −0.664863 0.746965i \(-0.731510\pi\)
−0.664863 + 0.746965i \(0.731510\pi\)
\(510\) 0 0
\(511\) 8.00000 0.353899
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −42.0000 −1.84005 −0.920027 0.391856i \(-0.871833\pi\)
−0.920027 + 0.391856i \(0.871833\pi\)
\(522\) 0 0
\(523\) − 6.00000i − 0.262362i −0.991358 0.131181i \(-0.958123\pi\)
0.991358 0.131181i \(-0.0418769\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) 36.0000 1.56227
\(532\) 0 0
\(533\) − 24.0000i − 1.03956i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −3.00000 −0.129219
\(540\) 0 0
\(541\) 14.0000 0.601907 0.300954 0.953639i \(-0.402695\pi\)
0.300954 + 0.953639i \(0.402695\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 42.0000i − 1.79579i −0.440209 0.897895i \(-0.645096\pi\)
0.440209 0.897895i \(-0.354904\pi\)
\(548\) 0 0
\(549\) −18.0000 −0.768221
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 8.00000i 0.340195i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 24.0000i − 1.01691i −0.861088 0.508456i \(-0.830216\pi\)
0.861088 0.508456i \(-0.169784\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 34.0000i 1.43293i 0.697623 + 0.716465i \(0.254241\pi\)
−0.697623 + 0.716465i \(0.745759\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 18.0000i − 0.755929i
\(568\) 0 0
\(569\) 38.0000 1.59304 0.796521 0.604610i \(-0.206671\pi\)
0.796521 + 0.604610i \(0.206671\pi\)
\(570\) 0 0
\(571\) −44.0000 −1.84134 −0.920671 0.390339i \(-0.872358\pi\)
−0.920671 + 0.390339i \(0.872358\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 42.0000i 1.74848i 0.485491 + 0.874241i \(0.338641\pi\)
−0.485491 + 0.874241i \(0.661359\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.00000 −0.165948
\(582\) 0 0
\(583\) 10.0000i 0.414158i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 28.0000i 1.15568i 0.816149 + 0.577842i \(0.196105\pi\)
−0.816149 + 0.577842i \(0.803895\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 12.0000i − 0.492781i −0.969171 0.246390i \(-0.920755\pi\)
0.969171 0.246390i \(-0.0792446\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 16.0000 0.653742 0.326871 0.945069i \(-0.394006\pi\)
0.326871 + 0.945069i \(0.394006\pi\)
\(600\) 0 0
\(601\) −42.0000 −1.71322 −0.856608 0.515968i \(-0.827432\pi\)
−0.856608 + 0.515968i \(0.827432\pi\)
\(602\) 0 0
\(603\) − 36.0000i − 1.46603i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 42.0000i 1.70473i 0.522949 + 0.852364i \(0.324832\pi\)
−0.522949 + 0.852364i \(0.675168\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 16.0000i 0.646234i 0.946359 + 0.323117i \(0.104731\pi\)
−0.946359 + 0.323117i \(0.895269\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.0000i 0.402585i 0.979531 + 0.201292i \(0.0645141\pi\)
−0.979531 + 0.201292i \(0.935486\pi\)
\(618\) 0 0
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.0000i 0.480770i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −8.00000 −0.318981
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 12.0000i − 0.475457i
\(638\) 0 0
\(639\) −48.0000 −1.89885
\(640\) 0 0
\(641\) −34.0000 −1.34292 −0.671460 0.741041i \(-0.734332\pi\)
−0.671460 + 0.741041i \(0.734332\pi\)
\(642\) 0 0
\(643\) 8.00000i 0.315489i 0.987480 + 0.157745i \(0.0504223\pi\)
−0.987480 + 0.157745i \(0.949578\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 28.0000i 1.10079i 0.834903 + 0.550397i \(0.185524\pi\)
−0.834903 + 0.550397i \(0.814476\pi\)
\(648\) 0 0
\(649\) −12.0000 −0.471041
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 42.0000i − 1.64359i −0.569785 0.821794i \(-0.692974\pi\)
0.569785 0.821794i \(-0.307026\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 12.0000i 0.468165i
\(658\) 0 0
\(659\) −28.0000 −1.09073 −0.545363 0.838200i \(-0.683608\pi\)
−0.545363 + 0.838200i \(0.683608\pi\)
\(660\) 0 0
\(661\) 46.0000 1.78919 0.894596 0.446875i \(-0.147463\pi\)
0.894596 + 0.446875i \(0.147463\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6.00000 0.231627
\(672\) 0 0
\(673\) 20.0000i 0.770943i 0.922720 + 0.385472i \(0.125961\pi\)
−0.922720 + 0.385472i \(0.874039\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 20.0000i − 0.768662i −0.923195 0.384331i \(-0.874432\pi\)
0.923195 0.384331i \(-0.125568\pi\)
\(678\) 0 0
\(679\) 4.00000 0.153506
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 4.00000i 0.153056i 0.997067 + 0.0765279i \(0.0243834\pi\)
−0.997067 + 0.0765279i \(0.975617\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −40.0000 −1.52388
\(690\) 0 0
\(691\) 28.0000 1.06517 0.532585 0.846376i \(-0.321221\pi\)
0.532585 + 0.846376i \(0.321221\pi\)
\(692\) 0 0
\(693\) 6.00000i 0.227921i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 24.0000i 0.909065i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.00000 0.0755390 0.0377695 0.999286i \(-0.487975\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 12.0000i − 0.451306i
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) −12.0000 −0.450035
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −40.0000 −1.49175 −0.745874 0.666087i \(-0.767968\pi\)
−0.745874 + 0.666087i \(0.767968\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 28.0000i − 1.03846i −0.854634 0.519231i \(-0.826218\pi\)
0.854634 0.519231i \(-0.173782\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 8.00000 0.295891
\(732\) 0 0
\(733\) 24.0000i 0.886460i 0.896408 + 0.443230i \(0.146168\pi\)
−0.896408 + 0.443230i \(0.853832\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12.0000i 0.442026i
\(738\) 0 0
\(739\) −44.0000 −1.61857 −0.809283 0.587419i \(-0.800144\pi\)
−0.809283 + 0.587419i \(0.800144\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 22.0000i − 0.807102i −0.914957 0.403551i \(-0.867776\pi\)
0.914957 0.403551i \(-0.132224\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 6.00000i − 0.219529i
\(748\) 0 0
\(749\) −12.0000 −0.438470
\(750\) 0 0
\(751\) 16.0000 0.583848 0.291924 0.956441i \(-0.405705\pi\)
0.291924 + 0.956441i \(0.405705\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 34.0000i − 1.23575i −0.786276 0.617876i \(-0.787994\pi\)
0.786276 0.617876i \(-0.212006\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 34.0000 1.23250 0.616250 0.787551i \(-0.288651\pi\)
0.616250 + 0.787551i \(0.288651\pi\)
\(762\) 0 0
\(763\) − 20.0000i − 0.724049i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 48.0000i − 1.73318i
\(768\) 0 0
\(769\) 18.0000 0.649097 0.324548 0.945869i \(-0.394788\pi\)
0.324548 + 0.945869i \(0.394788\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 34.0000i − 1.22290i −0.791285 0.611448i \(-0.790588\pi\)
0.791285 0.611448i \(-0.209412\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 16.0000 0.572525
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 26.0000i 0.926800i 0.886149 + 0.463400i \(0.153371\pi\)
−0.886149 + 0.463400i \(0.846629\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 28.0000 0.995565
\(792\) 0 0
\(793\) 24.0000i 0.852265i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 22.0000i 0.779280i 0.920967 + 0.389640i \(0.127401\pi\)
−0.920967 + 0.389640i \(0.872599\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −18.0000 −0.635999
\(802\) 0 0
\(803\) − 4.00000i − 0.141157i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −22.0000 −0.773479 −0.386739 0.922189i \(-0.626399\pi\)
−0.386739 + 0.922189i \(0.626399\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −24.0000 −0.838628
\(820\) 0 0
\(821\) −6.00000 −0.209401 −0.104701 0.994504i \(-0.533388\pi\)
−0.104701 + 0.994504i \(0.533388\pi\)
\(822\) 0 0
\(823\) 4.00000i 0.139431i 0.997567 + 0.0697156i \(0.0222092\pi\)
−0.997567 + 0.0697156i \(0.977791\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.00000i 0.0695468i 0.999395 + 0.0347734i \(0.0110710\pi\)
−0.999395 + 0.0347734i \(0.988929\pi\)
\(828\) 0 0
\(829\) −50.0000 −1.73657 −0.868286 0.496064i \(-0.834778\pi\)
−0.868286 + 0.496064i \(0.834778\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 12.0000i 0.415775i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 2.00000i − 0.0687208i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 24.0000i 0.821744i 0.911693 + 0.410872i \(0.134776\pi\)
−0.911693 + 0.410872i \(0.865224\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 20.0000i 0.683187i 0.939848 + 0.341593i \(0.110967\pi\)
−0.939848 + 0.341593i \(0.889033\pi\)
\(858\) 0 0
\(859\) 28.0000 0.955348 0.477674 0.878537i \(-0.341480\pi\)
0.477674 + 0.878537i \(0.341480\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 44.0000i 1.49778i 0.662696 + 0.748889i \(0.269412\pi\)
−0.662696 + 0.748889i \(0.730588\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.00000 0.135691
\(870\) 0 0
\(871\) −48.0000 −1.62642
\(872\) 0 0
\(873\) 6.00000i 0.203069i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 24.0000i 0.810422i 0.914223 + 0.405211i \(0.132802\pi\)
−0.914223 + 0.405211i \(0.867198\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 58.0000 1.95407 0.977035 0.213080i \(-0.0683494\pi\)
0.977035 + 0.213080i \(0.0683494\pi\)
\(882\) 0 0
\(883\) − 8.00000i − 0.269221i −0.990899 0.134611i \(-0.957022\pi\)
0.990899 0.134611i \(-0.0429784\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 42.0000i 1.41022i 0.709097 + 0.705111i \(0.249103\pi\)
−0.709097 + 0.705111i \(0.750897\pi\)
\(888\) 0 0
\(889\) −44.0000 −1.47571
\(890\) 0 0
\(891\) −9.00000 −0.301511
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 40.0000 1.33259
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 44.0000i 1.46100i 0.682915 + 0.730498i \(0.260712\pi\)
−0.682915 + 0.730498i \(0.739288\pi\)
\(908\) 0 0
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) −8.00000 −0.265052 −0.132526 0.991180i \(-0.542309\pi\)
−0.132526 + 0.991180i \(0.542309\pi\)
\(912\) 0 0
\(913\) 2.00000i 0.0661903i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 16.0000i 0.528367i
\(918\) 0 0
\(919\) 32.0000 1.05558 0.527791 0.849374i \(-0.323020\pi\)
0.527791 + 0.849374i \(0.323020\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 64.0000i 2.10659i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 12.0000i − 0.394132i
\(928\) 0 0
\(929\) −34.0000 −1.11550 −0.557752 0.830008i \(-0.688336\pi\)
−0.557752 + 0.830008i \(0.688336\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 16.0000i 0.522697i 0.965244 + 0.261349i \(0.0841672\pi\)
−0.965244 + 0.261349i \(0.915833\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 54.0000 1.76035 0.880175 0.474650i \(-0.157425\pi\)
0.880175 + 0.474650i \(0.157425\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 36.0000i − 1.16984i −0.811090 0.584921i \(-0.801125\pi\)
0.811090 0.584921i \(-0.198875\pi\)
\(948\) 0 0
\(949\) 16.0000 0.519382
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −12.0000 −0.387500
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) − 18.0000i − 0.580042i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 34.0000i 1.09337i 0.837340 + 0.546683i \(0.184110\pi\)
−0.837340 + 0.546683i \(0.815890\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 36.0000 1.15529 0.577647 0.816286i \(-0.303971\pi\)
0.577647 + 0.816286i \(0.303971\pi\)
\(972\) 0 0
\(973\) 24.0000i 0.769405i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 10.0000i 0.319928i 0.987123 + 0.159964i \(0.0511379\pi\)
−0.987123 + 0.159964i \(0.948862\pi\)
\(978\) 0 0
\(979\) 6.00000 0.191761
\(980\) 0 0
\(981\) 30.0000 0.957826
\(982\) 0 0
\(983\) 36.0000i 1.14822i 0.818778 + 0.574111i \(0.194652\pi\)
−0.818778 + 0.574111i \(0.805348\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −40.0000 −1.27064 −0.635321 0.772248i \(-0.719132\pi\)
−0.635321 + 0.772248i \(0.719132\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 16.0000i − 0.506725i −0.967371 0.253363i \(-0.918463\pi\)
0.967371 0.253363i \(-0.0815366\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4400.2.b.l.4049.1 2
4.3 odd 2 2200.2.b.e.1849.2 2
5.2 odd 4 880.2.a.e.1.1 1
5.3 odd 4 4400.2.a.m.1.1 1
5.4 even 2 inner 4400.2.b.l.4049.2 2
15.2 even 4 7920.2.a.bi.1.1 1
20.3 even 4 2200.2.a.g.1.1 1
20.7 even 4 440.2.a.b.1.1 1
20.19 odd 2 2200.2.b.e.1849.1 2
40.27 even 4 3520.2.a.s.1.1 1
40.37 odd 4 3520.2.a.v.1.1 1
55.32 even 4 9680.2.a.o.1.1 1
60.47 odd 4 3960.2.a.j.1.1 1
220.87 odd 4 4840.2.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.a.b.1.1 1 20.7 even 4
880.2.a.e.1.1 1 5.2 odd 4
2200.2.a.g.1.1 1 20.3 even 4
2200.2.b.e.1849.1 2 20.19 odd 2
2200.2.b.e.1849.2 2 4.3 odd 2
3520.2.a.s.1.1 1 40.27 even 4
3520.2.a.v.1.1 1 40.37 odd 4
3960.2.a.j.1.1 1 60.47 odd 4
4400.2.a.m.1.1 1 5.3 odd 4
4400.2.b.l.4049.1 2 1.1 even 1 trivial
4400.2.b.l.4049.2 2 5.4 even 2 inner
4840.2.a.d.1.1 1 220.87 odd 4
7920.2.a.bi.1.1 1 15.2 even 4
9680.2.a.o.1.1 1 55.32 even 4