Properties

Label 4400.2.a.j.1.1
Level $4400$
Weight $2$
Character 4400.1
Self dual yes
Analytic conductor $35.134$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4400,2,Mod(1,4400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4400.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4400 = 2^{4} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.1341768894\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 440)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 4400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +1.00000 q^{7} -2.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} +1.00000 q^{7} -2.00000 q^{9} +1.00000 q^{11} -1.00000 q^{17} -1.00000 q^{19} -1.00000 q^{21} +5.00000 q^{27} -1.00000 q^{29} +1.00000 q^{31} -1.00000 q^{33} -1.00000 q^{37} +6.00000 q^{43} +8.00000 q^{47} -6.00000 q^{49} +1.00000 q^{51} -9.00000 q^{53} +1.00000 q^{57} -4.00000 q^{59} -7.00000 q^{61} -2.00000 q^{63} -4.00000 q^{67} -5.00000 q^{71} -14.0000 q^{73} +1.00000 q^{77} -4.00000 q^{79} +1.00000 q^{81} +16.0000 q^{83} +1.00000 q^{87} -7.00000 q^{89} -1.00000 q^{93} +16.0000 q^{97} -2.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.00000 0.377964 0.188982 0.981981i \(-0.439481\pi\)
0.188982 + 0.981981i \(0.439481\pi\)
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.00000 −0.242536 −0.121268 0.992620i \(-0.538696\pi\)
−0.121268 + 0.992620i \(0.538696\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) −1.00000 −0.185695 −0.0928477 0.995680i \(-0.529597\pi\)
−0.0928477 + 0.995680i \(0.529597\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605 0.0898027 0.995960i \(-0.471376\pi\)
0.0898027 + 0.995960i \(0.471376\pi\)
\(32\) 0 0
\(33\) −1.00000 −0.174078
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.00000 −0.164399 −0.0821995 0.996616i \(-0.526194\pi\)
−0.0821995 + 0.996616i \(0.526194\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 6.00000 0.914991 0.457496 0.889212i \(-0.348747\pi\)
0.457496 + 0.889212i \(0.348747\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 1.00000 0.140028
\(52\) 0 0
\(53\) −9.00000 −1.23625 −0.618123 0.786082i \(-0.712106\pi\)
−0.618123 + 0.786082i \(0.712106\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.00000 0.132453
\(58\) 0 0
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) −7.00000 −0.896258 −0.448129 0.893969i \(-0.647910\pi\)
−0.448129 + 0.893969i \(0.647910\pi\)
\(62\) 0 0
\(63\) −2.00000 −0.251976
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.00000 −0.593391 −0.296695 0.954972i \(-0.595885\pi\)
−0.296695 + 0.954972i \(0.595885\pi\)
\(72\) 0 0
\(73\) −14.0000 −1.63858 −0.819288 0.573382i \(-0.805631\pi\)
−0.819288 + 0.573382i \(0.805631\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.00000 0.113961
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 16.0000 1.75623 0.878114 0.478451i \(-0.158802\pi\)
0.878114 + 0.478451i \(0.158802\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.00000 0.107211
\(88\) 0 0
\(89\) −7.00000 −0.741999 −0.370999 0.928633i \(-0.620985\pi\)
−0.370999 + 0.928633i \(0.620985\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −1.00000 −0.103695
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 16.0000 1.62455 0.812277 0.583272i \(-0.198228\pi\)
0.812277 + 0.583272i \(0.198228\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.00000 0.773389 0.386695 0.922208i \(-0.373617\pi\)
0.386695 + 0.922208i \(0.373617\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 1.00000 0.0949158
\(112\) 0 0
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 0 0
\(129\) −6.00000 −0.528271
\(130\) 0 0
\(131\) −21.0000 −1.83478 −0.917389 0.397991i \(-0.869707\pi\)
−0.917389 + 0.397991i \(0.869707\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −12.0000 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) −8.00000 −0.673722
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 6.00000 0.494872
\(148\) 0 0
\(149\) 17.0000 1.39269 0.696347 0.717705i \(-0.254807\pi\)
0.696347 + 0.717705i \(0.254807\pi\)
\(150\) 0 0
\(151\) −10.0000 −0.813788 −0.406894 0.913475i \(-0.633388\pi\)
−0.406894 + 0.913475i \(0.633388\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −13.0000 −1.03751 −0.518756 0.854922i \(-0.673605\pi\)
−0.518756 + 0.854922i \(0.673605\pi\)
\(158\) 0 0
\(159\) 9.00000 0.713746
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 19.0000 1.48819 0.744097 0.668071i \(-0.232880\pi\)
0.744097 + 0.668071i \(0.232880\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.00000 −0.232147 −0.116073 0.993241i \(-0.537031\pi\)
−0.116073 + 0.993241i \(0.537031\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 2.00000 0.152944
\(172\) 0 0
\(173\) 22.0000 1.67263 0.836315 0.548250i \(-0.184706\pi\)
0.836315 + 0.548250i \(0.184706\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 4.00000 0.300658
\(178\) 0 0
\(179\) 10.0000 0.747435 0.373718 0.927543i \(-0.378083\pi\)
0.373718 + 0.927543i \(0.378083\pi\)
\(180\) 0 0
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 0 0
\(183\) 7.00000 0.517455
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1.00000 −0.0731272
\(188\) 0 0
\(189\) 5.00000 0.363696
\(190\) 0 0
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) 0 0
\(193\) −13.0000 −0.935760 −0.467880 0.883792i \(-0.654982\pi\)
−0.467880 + 0.883792i \(0.654982\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) −17.0000 −1.20510 −0.602549 0.798082i \(-0.705848\pi\)
−0.602549 + 0.798082i \(0.705848\pi\)
\(200\) 0 0
\(201\) 4.00000 0.282138
\(202\) 0 0
\(203\) −1.00000 −0.0701862
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.00000 −0.0691714
\(210\) 0 0
\(211\) −17.0000 −1.17033 −0.585164 0.810915i \(-0.698970\pi\)
−0.585164 + 0.810915i \(0.698970\pi\)
\(212\) 0 0
\(213\) 5.00000 0.342594
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1.00000 0.0678844
\(218\) 0 0
\(219\) 14.0000 0.946032
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −10.0000 −0.669650 −0.334825 0.942280i \(-0.608677\pi\)
−0.334825 + 0.942280i \(0.608677\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) 12.0000 0.792982 0.396491 0.918039i \(-0.370228\pi\)
0.396491 + 0.918039i \(0.370228\pi\)
\(230\) 0 0
\(231\) −1.00000 −0.0657952
\(232\) 0 0
\(233\) −1.00000 −0.0655122 −0.0327561 0.999463i \(-0.510428\pi\)
−0.0327561 + 0.999463i \(0.510428\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 4.00000 0.259828
\(238\) 0 0
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) −16.0000 −1.02640
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −16.0000 −1.01396
\(250\) 0 0
\(251\) −6.00000 −0.378717 −0.189358 0.981908i \(-0.560641\pi\)
−0.189358 + 0.981908i \(0.560641\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −24.0000 −1.49708 −0.748539 0.663090i \(-0.769245\pi\)
−0.748539 + 0.663090i \(0.769245\pi\)
\(258\) 0 0
\(259\) −1.00000 −0.0621370
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) 0 0
\(263\) −21.0000 −1.29492 −0.647458 0.762101i \(-0.724168\pi\)
−0.647458 + 0.762101i \(0.724168\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 7.00000 0.428393
\(268\) 0 0
\(269\) 8.00000 0.487769 0.243884 0.969804i \(-0.421578\pi\)
0.243884 + 0.969804i \(0.421578\pi\)
\(270\) 0 0
\(271\) 6.00000 0.364474 0.182237 0.983255i \(-0.441666\pi\)
0.182237 + 0.983255i \(0.441666\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 8.00000 0.480673 0.240337 0.970690i \(-0.422742\pi\)
0.240337 + 0.970690i \(0.422742\pi\)
\(278\) 0 0
\(279\) −2.00000 −0.119737
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) 0 0
\(283\) −20.0000 −1.18888 −0.594438 0.804141i \(-0.702626\pi\)
−0.594438 + 0.804141i \(0.702626\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −16.0000 −0.941176
\(290\) 0 0
\(291\) −16.0000 −0.937937
\(292\) 0 0
\(293\) −16.0000 −0.934730 −0.467365 0.884064i \(-0.654797\pi\)
−0.467365 + 0.884064i \(0.654797\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 5.00000 0.290129
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 6.00000 0.345834
\(302\) 0 0
\(303\) 10.0000 0.574485
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −16.0000 −0.913168 −0.456584 0.889680i \(-0.650927\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) 13.0000 0.737162 0.368581 0.929596i \(-0.379844\pi\)
0.368581 + 0.929596i \(0.379844\pi\)
\(312\) 0 0
\(313\) 18.0000 1.01742 0.508710 0.860938i \(-0.330123\pi\)
0.508710 + 0.860938i \(0.330123\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.00000 0.0561656 0.0280828 0.999606i \(-0.491060\pi\)
0.0280828 + 0.999606i \(0.491060\pi\)
\(318\) 0 0
\(319\) −1.00000 −0.0559893
\(320\) 0 0
\(321\) −8.00000 −0.446516
\(322\) 0 0
\(323\) 1.00000 0.0556415
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −10.0000 −0.553001
\(328\) 0 0
\(329\) 8.00000 0.441054
\(330\) 0 0
\(331\) 34.0000 1.86881 0.934405 0.356214i \(-0.115932\pi\)
0.934405 + 0.356214i \(0.115932\pi\)
\(332\) 0 0
\(333\) 2.00000 0.109599
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 13.0000 0.708155 0.354078 0.935216i \(-0.384795\pi\)
0.354078 + 0.935216i \(0.384795\pi\)
\(338\) 0 0
\(339\) 2.00000 0.108625
\(340\) 0 0
\(341\) 1.00000 0.0541530
\(342\) 0 0
\(343\) −13.0000 −0.701934
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −18.0000 −0.966291 −0.483145 0.875540i \(-0.660506\pi\)
−0.483145 + 0.875540i \(0.660506\pi\)
\(348\) 0 0
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1.00000 0.0529256
\(358\) 0 0
\(359\) −20.0000 −1.05556 −0.527780 0.849381i \(-0.676975\pi\)
−0.527780 + 0.849381i \(0.676975\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 0 0
\(363\) −1.00000 −0.0524864
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −9.00000 −0.467257
\(372\) 0 0
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −2.00000 −0.102733 −0.0513665 0.998680i \(-0.516358\pi\)
−0.0513665 + 0.998680i \(0.516358\pi\)
\(380\) 0 0
\(381\) 16.0000 0.819705
\(382\) 0 0
\(383\) 18.0000 0.919757 0.459879 0.887982i \(-0.347893\pi\)
0.459879 + 0.887982i \(0.347893\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −12.0000 −0.609994
\(388\) 0 0
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 21.0000 1.05931
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 14.0000 0.702640 0.351320 0.936255i \(-0.385733\pi\)
0.351320 + 0.936255i \(0.385733\pi\)
\(398\) 0 0
\(399\) 1.00000 0.0500626
\(400\) 0 0
\(401\) −29.0000 −1.44819 −0.724095 0.689700i \(-0.757743\pi\)
−0.724095 + 0.689700i \(0.757743\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.00000 −0.0495682
\(408\) 0 0
\(409\) −32.0000 −1.58230 −0.791149 0.611623i \(-0.790517\pi\)
−0.791149 + 0.611623i \(0.790517\pi\)
\(410\) 0 0
\(411\) 12.0000 0.591916
\(412\) 0 0
\(413\) −4.00000 −0.196827
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 12.0000 0.587643
\(418\) 0 0
\(419\) −8.00000 −0.390826 −0.195413 0.980721i \(-0.562605\pi\)
−0.195413 + 0.980721i \(0.562605\pi\)
\(420\) 0 0
\(421\) 24.0000 1.16969 0.584844 0.811146i \(-0.301156\pi\)
0.584844 + 0.811146i \(0.301156\pi\)
\(422\) 0 0
\(423\) −16.0000 −0.777947
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −7.00000 −0.338754
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −26.0000 −1.24948 −0.624740 0.780833i \(-0.714795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −26.0000 −1.24091 −0.620456 0.784241i \(-0.713053\pi\)
−0.620456 + 0.784241i \(0.713053\pi\)
\(440\) 0 0
\(441\) 12.0000 0.571429
\(442\) 0 0
\(443\) 20.0000 0.950229 0.475114 0.879924i \(-0.342407\pi\)
0.475114 + 0.879924i \(0.342407\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −17.0000 −0.804072
\(448\) 0 0
\(449\) −2.00000 −0.0943858 −0.0471929 0.998886i \(-0.515028\pi\)
−0.0471929 + 0.998886i \(0.515028\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 10.0000 0.469841
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.00000 0.0467780 0.0233890 0.999726i \(-0.492554\pi\)
0.0233890 + 0.999726i \(0.492554\pi\)
\(458\) 0 0
\(459\) −5.00000 −0.233380
\(460\) 0 0
\(461\) 9.00000 0.419172 0.209586 0.977790i \(-0.432788\pi\)
0.209586 + 0.977790i \(0.432788\pi\)
\(462\) 0 0
\(463\) −36.0000 −1.67306 −0.836531 0.547920i \(-0.815420\pi\)
−0.836531 + 0.547920i \(0.815420\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5.00000 −0.231372 −0.115686 0.993286i \(-0.536907\pi\)
−0.115686 + 0.993286i \(0.536907\pi\)
\(468\) 0 0
\(469\) −4.00000 −0.184703
\(470\) 0 0
\(471\) 13.0000 0.599008
\(472\) 0 0
\(473\) 6.00000 0.275880
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 18.0000 0.824163
\(478\) 0 0
\(479\) 34.0000 1.55350 0.776750 0.629809i \(-0.216867\pi\)
0.776750 + 0.629809i \(0.216867\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 18.0000 0.815658 0.407829 0.913058i \(-0.366286\pi\)
0.407829 + 0.913058i \(0.366286\pi\)
\(488\) 0 0
\(489\) −19.0000 −0.859210
\(490\) 0 0
\(491\) 27.0000 1.21849 0.609246 0.792981i \(-0.291472\pi\)
0.609246 + 0.792981i \(0.291472\pi\)
\(492\) 0 0
\(493\) 1.00000 0.0450377
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5.00000 −0.224281
\(498\) 0 0
\(499\) −28.0000 −1.25345 −0.626726 0.779240i \(-0.715605\pi\)
−0.626726 + 0.779240i \(0.715605\pi\)
\(500\) 0 0
\(501\) 3.00000 0.134030
\(502\) 0 0
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 13.0000 0.577350
\(508\) 0 0
\(509\) 8.00000 0.354594 0.177297 0.984157i \(-0.443265\pi\)
0.177297 + 0.984157i \(0.443265\pi\)
\(510\) 0 0
\(511\) −14.0000 −0.619324
\(512\) 0 0
\(513\) −5.00000 −0.220755
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 8.00000 0.351840
\(518\) 0 0
\(519\) −22.0000 −0.965693
\(520\) 0 0
\(521\) −2.00000 −0.0876216 −0.0438108 0.999040i \(-0.513950\pi\)
−0.0438108 + 0.999040i \(0.513950\pi\)
\(522\) 0 0
\(523\) −28.0000 −1.22435 −0.612177 0.790721i \(-0.709706\pi\)
−0.612177 + 0.790721i \(0.709706\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.00000 −0.0435607
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 8.00000 0.347170
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −10.0000 −0.431532
\(538\) 0 0
\(539\) −6.00000 −0.258438
\(540\) 0 0
\(541\) 3.00000 0.128980 0.0644900 0.997918i \(-0.479458\pi\)
0.0644900 + 0.997918i \(0.479458\pi\)
\(542\) 0 0
\(543\) 22.0000 0.944110
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −12.0000 −0.513083 −0.256541 0.966533i \(-0.582583\pi\)
−0.256541 + 0.966533i \(0.582583\pi\)
\(548\) 0 0
\(549\) 14.0000 0.597505
\(550\) 0 0
\(551\) 1.00000 0.0426014
\(552\) 0 0
\(553\) −4.00000 −0.170097
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8.00000 −0.338971 −0.169485 0.985533i \(-0.554211\pi\)
−0.169485 + 0.985533i \(0.554211\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 1.00000 0.0422200
\(562\) 0 0
\(563\) −12.0000 −0.505740 −0.252870 0.967500i \(-0.581374\pi\)
−0.252870 + 0.967500i \(0.581374\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) 24.0000 1.00613 0.503066 0.864248i \(-0.332205\pi\)
0.503066 + 0.864248i \(0.332205\pi\)
\(570\) 0 0
\(571\) −7.00000 −0.292941 −0.146470 0.989215i \(-0.546791\pi\)
−0.146470 + 0.989215i \(0.546791\pi\)
\(572\) 0 0
\(573\) 24.0000 1.00261
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −4.00000 −0.166522 −0.0832611 0.996528i \(-0.526534\pi\)
−0.0832611 + 0.996528i \(0.526534\pi\)
\(578\) 0 0
\(579\) 13.0000 0.540262
\(580\) 0 0
\(581\) 16.0000 0.663792
\(582\) 0 0
\(583\) −9.00000 −0.372742
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 33.0000 1.36206 0.681028 0.732257i \(-0.261533\pi\)
0.681028 + 0.732257i \(0.261533\pi\)
\(588\) 0 0
\(589\) −1.00000 −0.0412043
\(590\) 0 0
\(591\) 18.0000 0.740421
\(592\) 0 0
\(593\) 18.0000 0.739171 0.369586 0.929197i \(-0.379500\pi\)
0.369586 + 0.929197i \(0.379500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 17.0000 0.695764
\(598\) 0 0
\(599\) 5.00000 0.204294 0.102147 0.994769i \(-0.467429\pi\)
0.102147 + 0.994769i \(0.467429\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) 8.00000 0.325785
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 3.00000 0.121766 0.0608831 0.998145i \(-0.480608\pi\)
0.0608831 + 0.998145i \(0.480608\pi\)
\(608\) 0 0
\(609\) 1.00000 0.0405220
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 46.0000 1.85792 0.928961 0.370177i \(-0.120703\pi\)
0.928961 + 0.370177i \(0.120703\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.00000 0.322068 0.161034 0.986949i \(-0.448517\pi\)
0.161034 + 0.986949i \(0.448517\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −7.00000 −0.280449
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 1.00000 0.0399362
\(628\) 0 0
\(629\) 1.00000 0.0398726
\(630\) 0 0
\(631\) −21.0000 −0.835997 −0.417998 0.908448i \(-0.637268\pi\)
−0.417998 + 0.908448i \(0.637268\pi\)
\(632\) 0 0
\(633\) 17.0000 0.675689
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 10.0000 0.395594
\(640\) 0 0
\(641\) −1.00000 −0.0394976 −0.0197488 0.999805i \(-0.506287\pi\)
−0.0197488 + 0.999805i \(0.506287\pi\)
\(642\) 0 0
\(643\) −1.00000 −0.0394362 −0.0197181 0.999806i \(-0.506277\pi\)
−0.0197181 + 0.999806i \(0.506277\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 48.0000 1.88707 0.943537 0.331266i \(-0.107476\pi\)
0.943537 + 0.331266i \(0.107476\pi\)
\(648\) 0 0
\(649\) −4.00000 −0.157014
\(650\) 0 0
\(651\) −1.00000 −0.0391931
\(652\) 0 0
\(653\) −27.0000 −1.05659 −0.528296 0.849060i \(-0.677169\pi\)
−0.528296 + 0.849060i \(0.677169\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 28.0000 1.09238
\(658\) 0 0
\(659\) 33.0000 1.28550 0.642749 0.766077i \(-0.277794\pi\)
0.642749 + 0.766077i \(0.277794\pi\)
\(660\) 0 0
\(661\) 28.0000 1.08907 0.544537 0.838737i \(-0.316705\pi\)
0.544537 + 0.838737i \(0.316705\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 10.0000 0.386622
\(670\) 0 0
\(671\) −7.00000 −0.270232
\(672\) 0 0
\(673\) 35.0000 1.34915 0.674575 0.738206i \(-0.264327\pi\)
0.674575 + 0.738206i \(0.264327\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −36.0000 −1.38359 −0.691796 0.722093i \(-0.743180\pi\)
−0.691796 + 0.722093i \(0.743180\pi\)
\(678\) 0 0
\(679\) 16.0000 0.614024
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) −15.0000 −0.573959 −0.286980 0.957937i \(-0.592651\pi\)
−0.286980 + 0.957937i \(0.592651\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −12.0000 −0.457829
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −40.0000 −1.52167 −0.760836 0.648944i \(-0.775211\pi\)
−0.760836 + 0.648944i \(0.775211\pi\)
\(692\) 0 0
\(693\) −2.00000 −0.0759737
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 1.00000 0.0378235
\(700\) 0 0
\(701\) 33.0000 1.24639 0.623196 0.782065i \(-0.285834\pi\)
0.623196 + 0.782065i \(0.285834\pi\)
\(702\) 0 0
\(703\) 1.00000 0.0377157
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −10.0000 −0.376089
\(708\) 0 0
\(709\) 18.0000 0.676004 0.338002 0.941145i \(-0.390249\pi\)
0.338002 + 0.941145i \(0.390249\pi\)
\(710\) 0 0
\(711\) 8.00000 0.300023
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −16.0000 −0.597531
\(718\) 0 0
\(719\) 41.0000 1.52904 0.764521 0.644599i \(-0.222976\pi\)
0.764521 + 0.644599i \(0.222976\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −18.0000 −0.667583 −0.333792 0.942647i \(-0.608328\pi\)
−0.333792 + 0.942647i \(0.608328\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −6.00000 −0.221918
\(732\) 0 0
\(733\) 6.00000 0.221615 0.110808 0.993842i \(-0.464656\pi\)
0.110808 + 0.993842i \(0.464656\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.00000 −0.147342
\(738\) 0 0
\(739\) 16.0000 0.588570 0.294285 0.955718i \(-0.404919\pi\)
0.294285 + 0.955718i \(0.404919\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21.0000 0.770415 0.385208 0.922830i \(-0.374130\pi\)
0.385208 + 0.922830i \(0.374130\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −32.0000 −1.17082
\(748\) 0 0
\(749\) 8.00000 0.292314
\(750\) 0 0
\(751\) 29.0000 1.05823 0.529113 0.848552i \(-0.322525\pi\)
0.529113 + 0.848552i \(0.322525\pi\)
\(752\) 0 0
\(753\) 6.00000 0.218652
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −20.0000 −0.724999 −0.362500 0.931984i \(-0.618077\pi\)
−0.362500 + 0.931984i \(0.618077\pi\)
\(762\) 0 0
\(763\) 10.0000 0.362024
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −22.0000 −0.793340 −0.396670 0.917961i \(-0.629834\pi\)
−0.396670 + 0.917961i \(0.629834\pi\)
\(770\) 0 0
\(771\) 24.0000 0.864339
\(772\) 0 0
\(773\) −45.0000 −1.61854 −0.809269 0.587439i \(-0.800136\pi\)
−0.809269 + 0.587439i \(0.800136\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1.00000 0.0358748
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −5.00000 −0.178914
\(782\) 0 0
\(783\) −5.00000 −0.178685
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 30.0000 1.06938 0.534692 0.845047i \(-0.320428\pi\)
0.534692 + 0.845047i \(0.320428\pi\)
\(788\) 0 0
\(789\) 21.0000 0.747620
\(790\) 0 0
\(791\) −2.00000 −0.0711118
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 54.0000 1.91278 0.956389 0.292096i \(-0.0943526\pi\)
0.956389 + 0.292096i \(0.0943526\pi\)
\(798\) 0 0
\(799\) −8.00000 −0.283020
\(800\) 0 0
\(801\) 14.0000 0.494666
\(802\) 0 0
\(803\) −14.0000 −0.494049
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −8.00000 −0.281613
\(808\) 0 0
\(809\) 34.0000 1.19538 0.597688 0.801729i \(-0.296086\pi\)
0.597688 + 0.801729i \(0.296086\pi\)
\(810\) 0 0
\(811\) 17.0000 0.596951 0.298475 0.954417i \(-0.403522\pi\)
0.298475 + 0.954417i \(0.403522\pi\)
\(812\) 0 0
\(813\) −6.00000 −0.210429
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −6.00000 −0.209913
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 42.0000 1.46581 0.732905 0.680331i \(-0.238164\pi\)
0.732905 + 0.680331i \(0.238164\pi\)
\(822\) 0 0
\(823\) 2.00000 0.0697156 0.0348578 0.999392i \(-0.488902\pi\)
0.0348578 + 0.999392i \(0.488902\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −14.0000 −0.486828 −0.243414 0.969923i \(-0.578267\pi\)
−0.243414 + 0.969923i \(0.578267\pi\)
\(828\) 0 0
\(829\) 4.00000 0.138926 0.0694629 0.997585i \(-0.477871\pi\)
0.0694629 + 0.997585i \(0.477871\pi\)
\(830\) 0 0
\(831\) −8.00000 −0.277517
\(832\) 0 0
\(833\) 6.00000 0.207888
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 5.00000 0.172825
\(838\) 0 0
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) −28.0000 −0.965517
\(842\) 0 0
\(843\) 22.0000 0.757720
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1.00000 0.0343604
\(848\) 0 0
\(849\) 20.0000 0.686398
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 16.0000 0.547830 0.273915 0.961754i \(-0.411681\pi\)
0.273915 + 0.961754i \(0.411681\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −53.0000 −1.81045 −0.905223 0.424937i \(-0.860296\pi\)
−0.905223 + 0.424937i \(0.860296\pi\)
\(858\) 0 0
\(859\) −2.00000 −0.0682391 −0.0341196 0.999418i \(-0.510863\pi\)
−0.0341196 + 0.999418i \(0.510863\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 52.0000 1.77010 0.885050 0.465495i \(-0.154124\pi\)
0.885050 + 0.465495i \(0.154124\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 16.0000 0.543388
\(868\) 0 0
\(869\) −4.00000 −0.135691
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −32.0000 −1.08304
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 38.0000 1.28317 0.641584 0.767052i \(-0.278277\pi\)
0.641584 + 0.767052i \(0.278277\pi\)
\(878\) 0 0
\(879\) 16.0000 0.539667
\(880\) 0 0
\(881\) −10.0000 −0.336909 −0.168454 0.985709i \(-0.553878\pi\)
−0.168454 + 0.985709i \(0.553878\pi\)
\(882\) 0 0
\(883\) 41.0000 1.37976 0.689880 0.723924i \(-0.257663\pi\)
0.689880 + 0.723924i \(0.257663\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 48.0000 1.61168 0.805841 0.592132i \(-0.201714\pi\)
0.805841 + 0.592132i \(0.201714\pi\)
\(888\) 0 0
\(889\) −16.0000 −0.536623
\(890\) 0 0
\(891\) 1.00000 0.0335013
\(892\) 0 0
\(893\) −8.00000 −0.267710
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1.00000 −0.0333519
\(900\) 0 0
\(901\) 9.00000 0.299833
\(902\) 0 0
\(903\) −6.00000 −0.199667
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 7.00000 0.232431 0.116216 0.993224i \(-0.462924\pi\)
0.116216 + 0.993224i \(0.462924\pi\)
\(908\) 0 0
\(909\) 20.0000 0.663358
\(910\) 0 0
\(911\) 27.0000 0.894550 0.447275 0.894397i \(-0.352395\pi\)
0.447275 + 0.894397i \(0.352395\pi\)
\(912\) 0 0
\(913\) 16.0000 0.529523
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −21.0000 −0.693481
\(918\) 0 0
\(919\) 26.0000 0.857661 0.428830 0.903385i \(-0.358926\pi\)
0.428830 + 0.903385i \(0.358926\pi\)
\(920\) 0 0
\(921\) 16.0000 0.527218
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −16.0000 −0.525509
\(928\) 0 0
\(929\) 15.0000 0.492134 0.246067 0.969253i \(-0.420862\pi\)
0.246067 + 0.969253i \(0.420862\pi\)
\(930\) 0 0
\(931\) 6.00000 0.196642
\(932\) 0 0
\(933\) −13.0000 −0.425601
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −10.0000 −0.326686 −0.163343 0.986569i \(-0.552228\pi\)
−0.163343 + 0.986569i \(0.552228\pi\)
\(938\) 0 0
\(939\) −18.0000 −0.587408
\(940\) 0 0
\(941\) 27.0000 0.880175 0.440087 0.897955i \(-0.354947\pi\)
0.440087 + 0.897955i \(0.354947\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −35.0000 −1.13735 −0.568674 0.822563i \(-0.692543\pi\)
−0.568674 + 0.822563i \(0.692543\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −1.00000 −0.0324272
\(952\) 0 0
\(953\) −39.0000 −1.26333 −0.631667 0.775240i \(-0.717629\pi\)
−0.631667 + 0.775240i \(0.717629\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1.00000 0.0323254
\(958\) 0 0
\(959\) −12.0000 −0.387500
\(960\) 0 0
\(961\) −30.0000 −0.967742
\(962\) 0 0
\(963\) −16.0000 −0.515593
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −25.0000 −0.803946 −0.401973 0.915652i \(-0.631675\pi\)
−0.401973 + 0.915652i \(0.631675\pi\)
\(968\) 0 0
\(969\) −1.00000 −0.0321246
\(970\) 0 0
\(971\) 48.0000 1.54039 0.770197 0.637806i \(-0.220158\pi\)
0.770197 + 0.637806i \(0.220158\pi\)
\(972\) 0 0
\(973\) −12.0000 −0.384702
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) −7.00000 −0.223721
\(980\) 0 0
\(981\) −20.0000 −0.638551
\(982\) 0 0
\(983\) 42.0000 1.33959 0.669796 0.742545i \(-0.266382\pi\)
0.669796 + 0.742545i \(0.266382\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −8.00000 −0.254643
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −24.0000 −0.762385 −0.381193 0.924496i \(-0.624487\pi\)
−0.381193 + 0.924496i \(0.624487\pi\)
\(992\) 0 0
\(993\) −34.0000 −1.07896
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −10.0000 −0.316703 −0.158352 0.987383i \(-0.550618\pi\)
−0.158352 + 0.987383i \(0.550618\pi\)
\(998\) 0 0
\(999\) −5.00000 −0.158193
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4400.2.a.j.1.1 1
4.3 odd 2 2200.2.a.h.1.1 1
5.2 odd 4 880.2.b.g.529.2 2
5.3 odd 4 880.2.b.g.529.1 2
5.4 even 2 4400.2.a.u.1.1 1
20.3 even 4 440.2.b.c.89.2 yes 2
20.7 even 4 440.2.b.c.89.1 2
20.19 odd 2 2200.2.a.d.1.1 1
60.23 odd 4 3960.2.d.a.3169.1 2
60.47 odd 4 3960.2.d.a.3169.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.b.c.89.1 2 20.7 even 4
440.2.b.c.89.2 yes 2 20.3 even 4
880.2.b.g.529.1 2 5.3 odd 4
880.2.b.g.529.2 2 5.2 odd 4
2200.2.a.d.1.1 1 20.19 odd 2
2200.2.a.h.1.1 1 4.3 odd 2
3960.2.d.a.3169.1 2 60.23 odd 4
3960.2.d.a.3169.2 2 60.47 odd 4
4400.2.a.j.1.1 1 1.1 even 1 trivial
4400.2.a.u.1.1 1 5.4 even 2