Properties

Label 4400.2.a.bz.1.3
Level $4400$
Weight $2$
Character 4400.1
Self dual yes
Analytic conductor $35.134$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4400,2,Mod(1,4400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4400.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4400 = 2^{4} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4400.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,1,0,0,0,3,0,6,0,-3,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.1341768894\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1229.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 7x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2200)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.75153\) of defining polynomial
Character \(\chi\) \(=\) 4400.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.75153 q^{3} +3.57093 q^{7} +4.57093 q^{9} -1.00000 q^{11} -1.00000 q^{13} -0.751532 q^{17} +2.50306 q^{19} +9.82552 q^{21} +5.75153 q^{23} +4.32246 q^{27} -4.07399 q^{29} +6.14186 q^{31} -2.75153 q^{33} +2.81940 q^{37} -2.75153 q^{39} +1.18060 q^{41} +7.68367 q^{43} -9.82552 q^{47} +5.75153 q^{49} -2.06786 q^{51} -14.2159 q^{53} +6.88726 q^{57} +9.82552 q^{59} +7.07399 q^{61} +16.3225 q^{63} -14.6449 q^{67} +15.8255 q^{69} -5.81940 q^{71} +14.7128 q^{73} -3.57093 q^{77} +3.89339 q^{79} -1.81940 q^{81} -5.57706 q^{83} -11.2097 q^{87} +7.42907 q^{89} -3.57093 q^{91} +16.8995 q^{93} +0.609675 q^{97} -4.57093 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{3} + 3 q^{7} + 6 q^{9} - 3 q^{11} - 3 q^{13} + 5 q^{17} - 7 q^{19} + 10 q^{23} - 2 q^{27} + 10 q^{29} + 3 q^{31} - q^{33} + 8 q^{37} - q^{39} + 4 q^{41} + 9 q^{43} + 10 q^{49} - 13 q^{51} - 5 q^{53}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.75153 1.58860 0.794299 0.607527i \(-0.207838\pi\)
0.794299 + 0.607527i \(0.207838\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.57093 1.34968 0.674842 0.737962i \(-0.264212\pi\)
0.674842 + 0.737962i \(0.264212\pi\)
\(8\) 0 0
\(9\) 4.57093 1.52364
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.751532 −0.182273 −0.0911367 0.995838i \(-0.529050\pi\)
−0.0911367 + 0.995838i \(0.529050\pi\)
\(18\) 0 0
\(19\) 2.50306 0.574242 0.287121 0.957894i \(-0.407302\pi\)
0.287121 + 0.957894i \(0.407302\pi\)
\(20\) 0 0
\(21\) 9.82552 2.14411
\(22\) 0 0
\(23\) 5.75153 1.19928 0.599639 0.800271i \(-0.295311\pi\)
0.599639 + 0.800271i \(0.295311\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 4.32246 0.831858
\(28\) 0 0
\(29\) −4.07399 −0.756521 −0.378261 0.925699i \(-0.623478\pi\)
−0.378261 + 0.925699i \(0.623478\pi\)
\(30\) 0 0
\(31\) 6.14186 1.10311 0.551555 0.834138i \(-0.314035\pi\)
0.551555 + 0.834138i \(0.314035\pi\)
\(32\) 0 0
\(33\) −2.75153 −0.478980
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.81940 0.463506 0.231753 0.972775i \(-0.425554\pi\)
0.231753 + 0.972775i \(0.425554\pi\)
\(38\) 0 0
\(39\) −2.75153 −0.440598
\(40\) 0 0
\(41\) 1.18060 0.184379 0.0921896 0.995741i \(-0.470613\pi\)
0.0921896 + 0.995741i \(0.470613\pi\)
\(42\) 0 0
\(43\) 7.68367 1.17175 0.585874 0.810402i \(-0.300751\pi\)
0.585874 + 0.810402i \(0.300751\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −9.82552 −1.43320 −0.716600 0.697484i \(-0.754303\pi\)
−0.716600 + 0.697484i \(0.754303\pi\)
\(48\) 0 0
\(49\) 5.75153 0.821647
\(50\) 0 0
\(51\) −2.06786 −0.289559
\(52\) 0 0
\(53\) −14.2159 −1.95270 −0.976349 0.216202i \(-0.930633\pi\)
−0.976349 + 0.216202i \(0.930633\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 6.88726 0.912240
\(58\) 0 0
\(59\) 9.82552 1.27917 0.639587 0.768719i \(-0.279105\pi\)
0.639587 + 0.768719i \(0.279105\pi\)
\(60\) 0 0
\(61\) 7.07399 0.905732 0.452866 0.891579i \(-0.350402\pi\)
0.452866 + 0.891579i \(0.350402\pi\)
\(62\) 0 0
\(63\) 16.3225 2.05644
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −14.6449 −1.78916 −0.894581 0.446906i \(-0.852526\pi\)
−0.894581 + 0.446906i \(0.852526\pi\)
\(68\) 0 0
\(69\) 15.8255 1.90517
\(70\) 0 0
\(71\) −5.81940 −0.690635 −0.345318 0.938486i \(-0.612229\pi\)
−0.345318 + 0.938486i \(0.612229\pi\)
\(72\) 0 0
\(73\) 14.7128 1.72200 0.861001 0.508604i \(-0.169838\pi\)
0.861001 + 0.508604i \(0.169838\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.57093 −0.406945
\(78\) 0 0
\(79\) 3.89339 0.438041 0.219020 0.975720i \(-0.429714\pi\)
0.219020 + 0.975720i \(0.429714\pi\)
\(80\) 0 0
\(81\) −1.81940 −0.202155
\(82\) 0 0
\(83\) −5.57706 −0.612162 −0.306081 0.952006i \(-0.599018\pi\)
−0.306081 + 0.952006i \(0.599018\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −11.2097 −1.20181
\(88\) 0 0
\(89\) 7.42907 0.787480 0.393740 0.919222i \(-0.371181\pi\)
0.393740 + 0.919222i \(0.371181\pi\)
\(90\) 0 0
\(91\) −3.57093 −0.374335
\(92\) 0 0
\(93\) 16.8995 1.75240
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.609675 0.0619031 0.0309515 0.999521i \(-0.490146\pi\)
0.0309515 + 0.999521i \(0.490146\pi\)
\(98\) 0 0
\(99\) −4.57093 −0.459396
\(100\) 0 0
\(101\) 0.248468 0.0247235 0.0123617 0.999924i \(-0.496065\pi\)
0.0123617 + 0.999924i \(0.496065\pi\)
\(102\) 0 0
\(103\) 17.5771 1.73192 0.865959 0.500114i \(-0.166709\pi\)
0.865959 + 0.500114i \(0.166709\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.7868 1.42949 0.714746 0.699384i \(-0.246542\pi\)
0.714746 + 0.699384i \(0.246542\pi\)
\(108\) 0 0
\(109\) 3.42907 0.328445 0.164223 0.986423i \(-0.447488\pi\)
0.164223 + 0.986423i \(0.447488\pi\)
\(110\) 0 0
\(111\) 7.75766 0.736325
\(112\) 0 0
\(113\) 14.1867 1.33458 0.667288 0.744800i \(-0.267455\pi\)
0.667288 + 0.744800i \(0.267455\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −4.57093 −0.422583
\(118\) 0 0
\(119\) −2.68367 −0.246011
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 3.24847 0.292904
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −18.8995 −1.67706 −0.838531 0.544855i \(-0.816585\pi\)
−0.838531 + 0.544855i \(0.816585\pi\)
\(128\) 0 0
\(129\) 21.1419 1.86144
\(130\) 0 0
\(131\) −20.5322 −1.79391 −0.896953 0.442127i \(-0.854224\pi\)
−0.896953 + 0.442127i \(0.854224\pi\)
\(132\) 0 0
\(133\) 8.93826 0.775046
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.29334 0.281369 0.140685 0.990054i \(-0.455070\pi\)
0.140685 + 0.990054i \(0.455070\pi\)
\(138\) 0 0
\(139\) −18.4256 −1.56284 −0.781418 0.624008i \(-0.785503\pi\)
−0.781418 + 0.624008i \(0.785503\pi\)
\(140\) 0 0
\(141\) −27.0352 −2.27678
\(142\) 0 0
\(143\) 1.00000 0.0836242
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 15.8255 1.30527
\(148\) 0 0
\(149\) 8.36121 0.684977 0.342488 0.939522i \(-0.388730\pi\)
0.342488 + 0.939522i \(0.388730\pi\)
\(150\) 0 0
\(151\) −5.04487 −0.410546 −0.205273 0.978705i \(-0.565808\pi\)
−0.205273 + 0.978705i \(0.565808\pi\)
\(152\) 0 0
\(153\) −3.43520 −0.277719
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −12.2837 −0.980347 −0.490174 0.871625i \(-0.663067\pi\)
−0.490174 + 0.871625i \(0.663067\pi\)
\(158\) 0 0
\(159\) −39.1154 −3.10205
\(160\) 0 0
\(161\) 20.5383 1.61865
\(162\) 0 0
\(163\) −12.0801 −0.946188 −0.473094 0.881012i \(-0.656863\pi\)
−0.473094 + 0.881012i \(0.656863\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −20.8317 −1.61200 −0.806001 0.591914i \(-0.798372\pi\)
−0.806001 + 0.591914i \(0.798372\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 11.4413 0.874940
\(172\) 0 0
\(173\) −2.50306 −0.190304 −0.0951522 0.995463i \(-0.530334\pi\)
−0.0951522 + 0.995463i \(0.530334\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 27.0352 2.03209
\(178\) 0 0
\(179\) 11.5709 0.864852 0.432426 0.901669i \(-0.357658\pi\)
0.432426 + 0.901669i \(0.357658\pi\)
\(180\) 0 0
\(181\) −18.4413 −1.37073 −0.685367 0.728198i \(-0.740358\pi\)
−0.685367 + 0.728198i \(0.740358\pi\)
\(182\) 0 0
\(183\) 19.4643 1.43884
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0.751532 0.0549575
\(188\) 0 0
\(189\) 15.4352 1.12275
\(190\) 0 0
\(191\) −3.29334 −0.238298 −0.119149 0.992876i \(-0.538017\pi\)
−0.119149 + 0.992876i \(0.538017\pi\)
\(192\) 0 0
\(193\) 23.0061 1.65602 0.828009 0.560715i \(-0.189474\pi\)
0.828009 + 0.560715i \(0.189474\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −13.2546 −0.944351 −0.472175 0.881505i \(-0.656531\pi\)
−0.472175 + 0.881505i \(0.656531\pi\)
\(198\) 0 0
\(199\) −1.65455 −0.117288 −0.0586439 0.998279i \(-0.518678\pi\)
−0.0586439 + 0.998279i \(0.518678\pi\)
\(200\) 0 0
\(201\) −40.2960 −2.84226
\(202\) 0 0
\(203\) −14.5479 −1.02107
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 26.2898 1.82727
\(208\) 0 0
\(209\) −2.50306 −0.173141
\(210\) 0 0
\(211\) 20.9674 1.44345 0.721727 0.692178i \(-0.243349\pi\)
0.721727 + 0.692178i \(0.243349\pi\)
\(212\) 0 0
\(213\) −16.0123 −1.09714
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 21.9321 1.48885
\(218\) 0 0
\(219\) 40.4827 2.73557
\(220\) 0 0
\(221\) 0.751532 0.0505535
\(222\) 0 0
\(223\) −12.8317 −0.859271 −0.429636 0.903002i \(-0.641358\pi\)
−0.429636 + 0.903002i \(0.641358\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.42907 0.625829 0.312915 0.949781i \(-0.398695\pi\)
0.312915 + 0.949781i \(0.398695\pi\)
\(228\) 0 0
\(229\) −4.97701 −0.328890 −0.164445 0.986386i \(-0.552583\pi\)
−0.164445 + 0.986386i \(0.552583\pi\)
\(230\) 0 0
\(231\) −9.82552 −0.646472
\(232\) 0 0
\(233\) 3.93214 0.257603 0.128801 0.991670i \(-0.458887\pi\)
0.128801 + 0.991670i \(0.458887\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 10.7128 0.695870
\(238\) 0 0
\(239\) −27.7189 −1.79299 −0.896494 0.443056i \(-0.853894\pi\)
−0.896494 + 0.443056i \(0.853894\pi\)
\(240\) 0 0
\(241\) 12.1189 0.780645 0.390322 0.920678i \(-0.372364\pi\)
0.390322 + 0.920678i \(0.372364\pi\)
\(242\) 0 0
\(243\) −17.9735 −1.15300
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −2.50306 −0.159266
\(248\) 0 0
\(249\) −15.3455 −0.972478
\(250\) 0 0
\(251\) −14.1189 −0.891175 −0.445587 0.895238i \(-0.647005\pi\)
−0.445587 + 0.895238i \(0.647005\pi\)
\(252\) 0 0
\(253\) −5.75153 −0.361596
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 13.6062 0.848730 0.424365 0.905491i \(-0.360497\pi\)
0.424365 + 0.905491i \(0.360497\pi\)
\(258\) 0 0
\(259\) 10.0679 0.625587
\(260\) 0 0
\(261\) −18.6219 −1.15267
\(262\) 0 0
\(263\) 28.6959 1.76947 0.884733 0.466098i \(-0.154340\pi\)
0.884733 + 0.466098i \(0.154340\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 20.4413 1.25099
\(268\) 0 0
\(269\) −4.39033 −0.267683 −0.133841 0.991003i \(-0.542731\pi\)
−0.133841 + 0.991003i \(0.542731\pi\)
\(270\) 0 0
\(271\) −18.8317 −1.14394 −0.571971 0.820274i \(-0.693821\pi\)
−0.571971 + 0.820274i \(0.693821\pi\)
\(272\) 0 0
\(273\) −9.82552 −0.594668
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 22.1092 1.32842 0.664208 0.747548i \(-0.268769\pi\)
0.664208 + 0.747548i \(0.268769\pi\)
\(278\) 0 0
\(279\) 28.0740 1.68075
\(280\) 0 0
\(281\) −8.18673 −0.488379 −0.244190 0.969727i \(-0.578522\pi\)
−0.244190 + 0.969727i \(0.578522\pi\)
\(282\) 0 0
\(283\) 23.8934 1.42031 0.710157 0.704043i \(-0.248624\pi\)
0.710157 + 0.704043i \(0.248624\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.21585 0.248854
\(288\) 0 0
\(289\) −16.4352 −0.966776
\(290\) 0 0
\(291\) 1.67754 0.0983391
\(292\) 0 0
\(293\) 6.99387 0.408586 0.204293 0.978910i \(-0.434510\pi\)
0.204293 + 0.978910i \(0.434510\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −4.32246 −0.250815
\(298\) 0 0
\(299\) −5.75153 −0.332620
\(300\) 0 0
\(301\) 27.4378 1.58149
\(302\) 0 0
\(303\) 0.683667 0.0392757
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −11.0352 −0.629815 −0.314907 0.949122i \(-0.601973\pi\)
−0.314907 + 0.949122i \(0.601973\pi\)
\(308\) 0 0
\(309\) 48.3638 2.75132
\(310\) 0 0
\(311\) −23.6449 −1.34078 −0.670390 0.742009i \(-0.733873\pi\)
−0.670390 + 0.742009i \(0.733873\pi\)
\(312\) 0 0
\(313\) 3.50306 0.198005 0.0990024 0.995087i \(-0.468435\pi\)
0.0990024 + 0.995087i \(0.468435\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.10048 −0.0618092 −0.0309046 0.999522i \(-0.509839\pi\)
−0.0309046 + 0.999522i \(0.509839\pi\)
\(318\) 0 0
\(319\) 4.07399 0.228100
\(320\) 0 0
\(321\) 40.6863 2.27089
\(322\) 0 0
\(323\) −1.88113 −0.104669
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 9.43520 0.521768
\(328\) 0 0
\(329\) −35.0862 −1.93437
\(330\) 0 0
\(331\) 12.3225 0.677304 0.338652 0.940912i \(-0.390029\pi\)
0.338652 + 0.940912i \(0.390029\pi\)
\(332\) 0 0
\(333\) 12.8873 0.706218
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 10.0000 0.544735 0.272367 0.962193i \(-0.412193\pi\)
0.272367 + 0.962193i \(0.412193\pi\)
\(338\) 0 0
\(339\) 39.0352 2.12010
\(340\) 0 0
\(341\) −6.14186 −0.332600
\(342\) 0 0
\(343\) −4.45819 −0.240720
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 15.5709 0.835891 0.417946 0.908472i \(-0.362750\pi\)
0.417946 + 0.908472i \(0.362750\pi\)
\(348\) 0 0
\(349\) −12.1541 −0.650595 −0.325297 0.945612i \(-0.605464\pi\)
−0.325297 + 0.945612i \(0.605464\pi\)
\(350\) 0 0
\(351\) −4.32246 −0.230716
\(352\) 0 0
\(353\) 18.0061 0.958370 0.479185 0.877714i \(-0.340932\pi\)
0.479185 + 0.877714i \(0.340932\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −7.38420 −0.390813
\(358\) 0 0
\(359\) 7.35508 0.388186 0.194093 0.980983i \(-0.437824\pi\)
0.194093 + 0.980983i \(0.437824\pi\)
\(360\) 0 0
\(361\) −12.7347 −0.670246
\(362\) 0 0
\(363\) 2.75153 0.144418
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 28.5322 1.48937 0.744684 0.667417i \(-0.232600\pi\)
0.744684 + 0.667417i \(0.232600\pi\)
\(368\) 0 0
\(369\) 5.39645 0.280928
\(370\) 0 0
\(371\) −50.7638 −2.63552
\(372\) 0 0
\(373\) −18.0510 −0.934645 −0.467323 0.884087i \(-0.654781\pi\)
−0.467323 + 0.884087i \(0.654781\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.07399 0.209821
\(378\) 0 0
\(379\) 2.32246 0.119297 0.0596484 0.998219i \(-0.481002\pi\)
0.0596484 + 0.998219i \(0.481002\pi\)
\(380\) 0 0
\(381\) −52.0026 −2.66418
\(382\) 0 0
\(383\) −5.67141 −0.289796 −0.144898 0.989447i \(-0.546285\pi\)
−0.144898 + 0.989447i \(0.546285\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 35.1215 1.78533
\(388\) 0 0
\(389\) −26.7347 −1.35550 −0.677751 0.735292i \(-0.737045\pi\)
−0.677751 + 0.735292i \(0.737045\pi\)
\(390\) 0 0
\(391\) −4.32246 −0.218596
\(392\) 0 0
\(393\) −56.4950 −2.84979
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −9.89339 −0.496535 −0.248267 0.968692i \(-0.579861\pi\)
−0.248267 + 0.968692i \(0.579861\pi\)
\(398\) 0 0
\(399\) 24.5939 1.23124
\(400\) 0 0
\(401\) −27.2572 −1.36116 −0.680580 0.732673i \(-0.738272\pi\)
−0.680580 + 0.732673i \(0.738272\pi\)
\(402\) 0 0
\(403\) −6.14186 −0.305948
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.81940 −0.139752
\(408\) 0 0
\(409\) −2.03875 −0.100809 −0.0504047 0.998729i \(-0.516051\pi\)
−0.0504047 + 0.998729i \(0.516051\pi\)
\(410\) 0 0
\(411\) 9.06174 0.446982
\(412\) 0 0
\(413\) 35.0862 1.72648
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −50.6986 −2.48272
\(418\) 0 0
\(419\) −0.310204 −0.0151545 −0.00757723 0.999971i \(-0.502412\pi\)
−0.00757723 + 0.999971i \(0.502412\pi\)
\(420\) 0 0
\(421\) −8.28109 −0.403595 −0.201798 0.979427i \(-0.564678\pi\)
−0.201798 + 0.979427i \(0.564678\pi\)
\(422\) 0 0
\(423\) −44.9118 −2.18369
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 25.2607 1.22245
\(428\) 0 0
\(429\) 2.75153 0.132845
\(430\) 0 0
\(431\) −4.45819 −0.214743 −0.107372 0.994219i \(-0.534243\pi\)
−0.107372 + 0.994219i \(0.534243\pi\)
\(432\) 0 0
\(433\) −22.9348 −1.10217 −0.551087 0.834448i \(-0.685787\pi\)
−0.551087 + 0.834448i \(0.685787\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 14.3965 0.688676
\(438\) 0 0
\(439\) 0.964753 0.0460451 0.0230226 0.999735i \(-0.492671\pi\)
0.0230226 + 0.999735i \(0.492671\pi\)
\(440\) 0 0
\(441\) 26.2898 1.25190
\(442\) 0 0
\(443\) −36.5092 −1.73460 −0.867302 0.497782i \(-0.834148\pi\)
−0.867302 + 0.497782i \(0.834148\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 23.0061 1.08815
\(448\) 0 0
\(449\) 8.68017 0.409642 0.204821 0.978799i \(-0.434339\pi\)
0.204821 + 0.978799i \(0.434339\pi\)
\(450\) 0 0
\(451\) −1.18060 −0.0555924
\(452\) 0 0
\(453\) −13.8811 −0.652193
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −11.4934 −0.537640 −0.268820 0.963190i \(-0.586634\pi\)
−0.268820 + 0.963190i \(0.586634\pi\)
\(458\) 0 0
\(459\) −3.24847 −0.151625
\(460\) 0 0
\(461\) 25.0571 1.16703 0.583513 0.812103i \(-0.301678\pi\)
0.583513 + 0.812103i \(0.301678\pi\)
\(462\) 0 0
\(463\) 32.7868 1.52373 0.761865 0.647735i \(-0.224284\pi\)
0.761865 + 0.647735i \(0.224284\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −41.7603 −1.93244 −0.966218 0.257727i \(-0.917027\pi\)
−0.966218 + 0.257727i \(0.917027\pi\)
\(468\) 0 0
\(469\) −52.2960 −2.41480
\(470\) 0 0
\(471\) −33.7990 −1.55738
\(472\) 0 0
\(473\) −7.68367 −0.353295
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −64.9796 −2.97521
\(478\) 0 0
\(479\) −3.96125 −0.180994 −0.0904972 0.995897i \(-0.528846\pi\)
−0.0904972 + 0.995897i \(0.528846\pi\)
\(480\) 0 0
\(481\) −2.81940 −0.128553
\(482\) 0 0
\(483\) 56.5118 2.57138
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −22.7990 −1.03312 −0.516561 0.856250i \(-0.672788\pi\)
−0.516561 + 0.856250i \(0.672788\pi\)
\(488\) 0 0
\(489\) −33.2388 −1.50311
\(490\) 0 0
\(491\) 22.4256 1.01205 0.506026 0.862518i \(-0.331114\pi\)
0.506026 + 0.862518i \(0.331114\pi\)
\(492\) 0 0
\(493\) 3.06174 0.137894
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −20.7807 −0.932140
\(498\) 0 0
\(499\) 23.9321 1.07135 0.535675 0.844424i \(-0.320057\pi\)
0.535675 + 0.844424i \(0.320057\pi\)
\(500\) 0 0
\(501\) −57.3190 −2.56082
\(502\) 0 0
\(503\) −23.0766 −1.02894 −0.514468 0.857510i \(-0.672011\pi\)
−0.514468 + 0.857510i \(0.672011\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −33.0184 −1.46640
\(508\) 0 0
\(509\) 21.2220 0.940648 0.470324 0.882494i \(-0.344137\pi\)
0.470324 + 0.882494i \(0.344137\pi\)
\(510\) 0 0
\(511\) 52.5383 2.32416
\(512\) 0 0
\(513\) 10.8194 0.477688
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 9.82552 0.432126
\(518\) 0 0
\(519\) −6.88726 −0.302317
\(520\) 0 0
\(521\) 16.1806 0.708885 0.354443 0.935078i \(-0.384671\pi\)
0.354443 + 0.935078i \(0.384671\pi\)
\(522\) 0 0
\(523\) 31.8899 1.39445 0.697224 0.716854i \(-0.254418\pi\)
0.697224 + 0.716854i \(0.254418\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.61580 −0.201068
\(528\) 0 0
\(529\) 10.0801 0.438266
\(530\) 0 0
\(531\) 44.9118 1.94901
\(532\) 0 0
\(533\) −1.18060 −0.0511376
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 31.8378 1.37390
\(538\) 0 0
\(539\) −5.75153 −0.247736
\(540\) 0 0
\(541\) 12.4739 0.536297 0.268148 0.963378i \(-0.413588\pi\)
0.268148 + 0.963378i \(0.413588\pi\)
\(542\) 0 0
\(543\) −50.7419 −2.17754
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 12.1250 0.518427 0.259214 0.965820i \(-0.416537\pi\)
0.259214 + 0.965820i \(0.416537\pi\)
\(548\) 0 0
\(549\) 32.3347 1.38001
\(550\) 0 0
\(551\) −10.1975 −0.434427
\(552\) 0 0
\(553\) 13.9030 0.591216
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −28.3673 −1.20196 −0.600981 0.799263i \(-0.705223\pi\)
−0.600981 + 0.799263i \(0.705223\pi\)
\(558\) 0 0
\(559\) −7.68367 −0.324985
\(560\) 0 0
\(561\) 2.06786 0.0873053
\(562\) 0 0
\(563\) 4.08012 0.171957 0.0859783 0.996297i \(-0.472598\pi\)
0.0859783 + 0.996297i \(0.472598\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −6.49694 −0.272846
\(568\) 0 0
\(569\) −23.0088 −0.964577 −0.482289 0.876012i \(-0.660194\pi\)
−0.482289 + 0.876012i \(0.660194\pi\)
\(570\) 0 0
\(571\) 34.5322 1.44513 0.722563 0.691305i \(-0.242964\pi\)
0.722563 + 0.691305i \(0.242964\pi\)
\(572\) 0 0
\(573\) −9.06174 −0.378559
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 25.1710 1.04788 0.523941 0.851755i \(-0.324461\pi\)
0.523941 + 0.851755i \(0.324461\pi\)
\(578\) 0 0
\(579\) 63.3021 2.63075
\(580\) 0 0
\(581\) −19.9153 −0.826225
\(582\) 0 0
\(583\) 14.2159 0.588760
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10.2546 0.423252 0.211626 0.977351i \(-0.432124\pi\)
0.211626 + 0.977351i \(0.432124\pi\)
\(588\) 0 0
\(589\) 15.3735 0.633453
\(590\) 0 0
\(591\) −36.4704 −1.50019
\(592\) 0 0
\(593\) 10.9091 0.447985 0.223992 0.974591i \(-0.428091\pi\)
0.223992 + 0.974591i \(0.428091\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −4.55254 −0.186323
\(598\) 0 0
\(599\) −29.2607 −1.19556 −0.597780 0.801660i \(-0.703951\pi\)
−0.597780 + 0.801660i \(0.703951\pi\)
\(600\) 0 0
\(601\) −27.2220 −1.11041 −0.555204 0.831714i \(-0.687360\pi\)
−0.555204 + 0.831714i \(0.687360\pi\)
\(602\) 0 0
\(603\) −66.9409 −2.72604
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −32.7347 −1.32866 −0.664330 0.747440i \(-0.731283\pi\)
−0.664330 + 0.747440i \(0.731283\pi\)
\(608\) 0 0
\(609\) −40.0291 −1.62206
\(610\) 0 0
\(611\) 9.82552 0.397498
\(612\) 0 0
\(613\) 14.1894 0.573103 0.286551 0.958065i \(-0.407491\pi\)
0.286551 + 0.958065i \(0.407491\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −24.4766 −0.985390 −0.492695 0.870202i \(-0.663988\pi\)
−0.492695 + 0.870202i \(0.663988\pi\)
\(618\) 0 0
\(619\) −31.7603 −1.27655 −0.638277 0.769807i \(-0.720353\pi\)
−0.638277 + 0.769807i \(0.720353\pi\)
\(620\) 0 0
\(621\) 24.8608 0.997628
\(622\) 0 0
\(623\) 26.5287 1.06285
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −6.88726 −0.275051
\(628\) 0 0
\(629\) −2.11887 −0.0844848
\(630\) 0 0
\(631\) 24.0219 0.956296 0.478148 0.878279i \(-0.341308\pi\)
0.478148 + 0.878279i \(0.341308\pi\)
\(632\) 0 0
\(633\) 57.6924 2.29307
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −5.75153 −0.227884
\(638\) 0 0
\(639\) −26.6000 −1.05228
\(640\) 0 0
\(641\) 16.0061 0.632204 0.316102 0.948725i \(-0.397626\pi\)
0.316102 + 0.948725i \(0.397626\pi\)
\(642\) 0 0
\(643\) −11.0836 −0.437095 −0.218548 0.975826i \(-0.570132\pi\)
−0.218548 + 0.975826i \(0.570132\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 29.0449 1.14187 0.570936 0.820995i \(-0.306580\pi\)
0.570936 + 0.820995i \(0.306580\pi\)
\(648\) 0 0
\(649\) −9.82552 −0.385686
\(650\) 0 0
\(651\) 60.3470 2.36518
\(652\) 0 0
\(653\) 50.3251 1.96937 0.984686 0.174335i \(-0.0557774\pi\)
0.984686 + 0.174335i \(0.0557774\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 67.2511 2.62372
\(658\) 0 0
\(659\) −26.7189 −1.04082 −0.520411 0.853916i \(-0.674221\pi\)
−0.520411 + 0.853916i \(0.674221\pi\)
\(660\) 0 0
\(661\) −4.83165 −0.187930 −0.0939648 0.995576i \(-0.529954\pi\)
−0.0939648 + 0.995576i \(0.529954\pi\)
\(662\) 0 0
\(663\) 2.06786 0.0803092
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −23.4317 −0.907279
\(668\) 0 0
\(669\) −35.3067 −1.36504
\(670\) 0 0
\(671\) −7.07399 −0.273088
\(672\) 0 0
\(673\) 20.7542 0.800014 0.400007 0.916512i \(-0.369008\pi\)
0.400007 + 0.916512i \(0.369008\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5.53568 −0.212754 −0.106377 0.994326i \(-0.533925\pi\)
−0.106377 + 0.994326i \(0.533925\pi\)
\(678\) 0 0
\(679\) 2.17710 0.0835496
\(680\) 0 0
\(681\) 25.9444 0.994191
\(682\) 0 0
\(683\) −41.0256 −1.56980 −0.784901 0.619621i \(-0.787286\pi\)
−0.784901 + 0.619621i \(0.787286\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −13.6944 −0.522474
\(688\) 0 0
\(689\) 14.2159 0.541581
\(690\) 0 0
\(691\) −51.5180 −1.95984 −0.979918 0.199403i \(-0.936100\pi\)
−0.979918 + 0.199403i \(0.936100\pi\)
\(692\) 0 0
\(693\) −16.3225 −0.620039
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −0.887261 −0.0336074
\(698\) 0 0
\(699\) 10.8194 0.409227
\(700\) 0 0
\(701\) 19.2450 0.726872 0.363436 0.931619i \(-0.381603\pi\)
0.363436 + 0.931619i \(0.381603\pi\)
\(702\) 0 0
\(703\) 7.05713 0.266165
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.887261 0.0333689
\(708\) 0 0
\(709\) −8.99387 −0.337772 −0.168886 0.985636i \(-0.554017\pi\)
−0.168886 + 0.985636i \(0.554017\pi\)
\(710\) 0 0
\(711\) 17.7964 0.667417
\(712\) 0 0
\(713\) 35.3251 1.32294
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −76.2695 −2.84834
\(718\) 0 0
\(719\) 10.6837 0.398434 0.199217 0.979955i \(-0.436160\pi\)
0.199217 + 0.979955i \(0.436160\pi\)
\(720\) 0 0
\(721\) 62.7664 2.33754
\(722\) 0 0
\(723\) 33.3455 1.24013
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1.98424 0.0735916 0.0367958 0.999323i \(-0.488285\pi\)
0.0367958 + 0.999323i \(0.488285\pi\)
\(728\) 0 0
\(729\) −43.9965 −1.62950
\(730\) 0 0
\(731\) −5.77452 −0.213578
\(732\) 0 0
\(733\) 32.8765 1.21432 0.607161 0.794579i \(-0.292308\pi\)
0.607161 + 0.794579i \(0.292308\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14.6449 0.539453
\(738\) 0 0
\(739\) −31.4352 −1.15636 −0.578181 0.815908i \(-0.696237\pi\)
−0.578181 + 0.815908i \(0.696237\pi\)
\(740\) 0 0
\(741\) −6.88726 −0.253010
\(742\) 0 0
\(743\) −28.3638 −1.04057 −0.520284 0.853993i \(-0.674174\pi\)
−0.520284 + 0.853993i \(0.674174\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −25.4923 −0.932716
\(748\) 0 0
\(749\) 52.8025 1.92936
\(750\) 0 0
\(751\) 17.4291 0.635996 0.317998 0.948091i \(-0.396989\pi\)
0.317998 + 0.948091i \(0.396989\pi\)
\(752\) 0 0
\(753\) −38.8485 −1.41572
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 21.8838 0.795379 0.397689 0.917520i \(-0.369812\pi\)
0.397689 + 0.917520i \(0.369812\pi\)
\(758\) 0 0
\(759\) −15.8255 −0.574430
\(760\) 0 0
\(761\) 32.7224 1.18619 0.593093 0.805134i \(-0.297907\pi\)
0.593093 + 0.805134i \(0.297907\pi\)
\(762\) 0 0
\(763\) 12.2450 0.443298
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.82552 −0.354779
\(768\) 0 0
\(769\) −9.54181 −0.344086 −0.172043 0.985089i \(-0.555037\pi\)
−0.172043 + 0.985089i \(0.555037\pi\)
\(770\) 0 0
\(771\) 37.4378 1.34829
\(772\) 0 0
\(773\) 0.0556080 0.00200008 0.00100004 0.999999i \(-0.499682\pi\)
0.00100004 + 0.999999i \(0.499682\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 27.7021 0.993806
\(778\) 0 0
\(779\) 2.95513 0.105878
\(780\) 0 0
\(781\) 5.81940 0.208234
\(782\) 0 0
\(783\) −17.6097 −0.629318
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 22.0970 0.787672 0.393836 0.919181i \(-0.371148\pi\)
0.393836 + 0.919181i \(0.371148\pi\)
\(788\) 0 0
\(789\) 78.9578 2.81097
\(790\) 0 0
\(791\) 50.6598 1.80126
\(792\) 0 0
\(793\) −7.07399 −0.251205
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −35.7577 −1.26660 −0.633301 0.773906i \(-0.718300\pi\)
−0.633301 + 0.773906i \(0.718300\pi\)
\(798\) 0 0
\(799\) 7.38420 0.261234
\(800\) 0 0
\(801\) 33.9578 1.19984
\(802\) 0 0
\(803\) −14.7128 −0.519203
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −12.0801 −0.425240
\(808\) 0 0
\(809\) 24.9286 0.876444 0.438222 0.898867i \(-0.355608\pi\)
0.438222 + 0.898867i \(0.355608\pi\)
\(810\) 0 0
\(811\) −29.6123 −1.03983 −0.519914 0.854218i \(-0.674036\pi\)
−0.519914 + 0.854218i \(0.674036\pi\)
\(812\) 0 0
\(813\) −51.8159 −1.81726
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 19.2327 0.672867
\(818\) 0 0
\(819\) −16.3225 −0.570353
\(820\) 0 0
\(821\) 0.328589 0.0114678 0.00573392 0.999984i \(-0.498175\pi\)
0.00573392 + 0.999984i \(0.498175\pi\)
\(822\) 0 0
\(823\) −42.5797 −1.48423 −0.742117 0.670270i \(-0.766178\pi\)
−0.742117 + 0.670270i \(0.766178\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −23.1867 −0.806282 −0.403141 0.915138i \(-0.632082\pi\)
−0.403141 + 0.915138i \(0.632082\pi\)
\(828\) 0 0
\(829\) −36.2546 −1.25917 −0.629587 0.776930i \(-0.716776\pi\)
−0.629587 + 0.776930i \(0.716776\pi\)
\(830\) 0 0
\(831\) 60.8343 2.11032
\(832\) 0 0
\(833\) −4.32246 −0.149764
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 26.5479 0.917631
\(838\) 0 0
\(839\) 13.6607 0.471619 0.235809 0.971799i \(-0.424226\pi\)
0.235809 + 0.971799i \(0.424226\pi\)
\(840\) 0 0
\(841\) −12.4026 −0.427675
\(842\) 0 0
\(843\) −22.5261 −0.775839
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 3.57093 0.122699
\(848\) 0 0
\(849\) 65.7434 2.25631
\(850\) 0 0
\(851\) 16.2159 0.555872
\(852\) 0 0
\(853\) −54.2476 −1.85740 −0.928701 0.370829i \(-0.879074\pi\)
−0.928701 + 0.370829i \(0.879074\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −6.41221 −0.219037 −0.109518 0.993985i \(-0.534931\pi\)
−0.109518 + 0.993985i \(0.534931\pi\)
\(858\) 0 0
\(859\) −51.5031 −1.75726 −0.878631 0.477501i \(-0.841543\pi\)
−0.878631 + 0.477501i \(0.841543\pi\)
\(860\) 0 0
\(861\) 11.6000 0.395329
\(862\) 0 0
\(863\) −43.2837 −1.47339 −0.736697 0.676223i \(-0.763616\pi\)
−0.736697 + 0.676223i \(0.763616\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −45.2220 −1.53582
\(868\) 0 0
\(869\) −3.89339 −0.132074
\(870\) 0 0
\(871\) 14.6449 0.496224
\(872\) 0 0
\(873\) 2.78678 0.0943182
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −10.2511 −0.346155 −0.173077 0.984908i \(-0.555371\pi\)
−0.173077 + 0.984908i \(0.555371\pi\)
\(878\) 0 0
\(879\) 19.2439 0.649079
\(880\) 0 0
\(881\) 8.19023 0.275936 0.137968 0.990437i \(-0.455943\pi\)
0.137968 + 0.990437i \(0.455943\pi\)
\(882\) 0 0
\(883\) 6.76116 0.227531 0.113766 0.993508i \(-0.463709\pi\)
0.113766 + 0.993508i \(0.463709\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −10.3225 −0.346594 −0.173297 0.984870i \(-0.555442\pi\)
−0.173297 + 0.984870i \(0.555442\pi\)
\(888\) 0 0
\(889\) −67.4888 −2.26350
\(890\) 0 0
\(891\) 1.81940 0.0609521
\(892\) 0 0
\(893\) −24.5939 −0.823004
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −15.8255 −0.528399
\(898\) 0 0
\(899\) −25.0219 −0.834527
\(900\) 0 0
\(901\) 10.6837 0.355925
\(902\) 0 0
\(903\) 75.4961 2.51235
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 11.9348 0.396287 0.198144 0.980173i \(-0.436509\pi\)
0.198144 + 0.980173i \(0.436509\pi\)
\(908\) 0 0
\(909\) 1.13573 0.0376698
\(910\) 0 0
\(911\) 7.35508 0.243685 0.121842 0.992549i \(-0.461120\pi\)
0.121842 + 0.992549i \(0.461120\pi\)
\(912\) 0 0
\(913\) 5.57706 0.184574
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −73.3190 −2.42121
\(918\) 0 0
\(919\) 25.0184 0.825280 0.412640 0.910894i \(-0.364607\pi\)
0.412640 + 0.910894i \(0.364607\pi\)
\(920\) 0 0
\(921\) −30.3638 −1.00052
\(922\) 0 0
\(923\) 5.81940 0.191548
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 80.3435 2.63883
\(928\) 0 0
\(929\) 4.42557 0.145198 0.0725992 0.997361i \(-0.476871\pi\)
0.0725992 + 0.997361i \(0.476871\pi\)
\(930\) 0 0
\(931\) 14.3965 0.471825
\(932\) 0 0
\(933\) −65.0598 −2.12996
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 40.3612 1.31854 0.659272 0.751905i \(-0.270865\pi\)
0.659272 + 0.751905i \(0.270865\pi\)
\(938\) 0 0
\(939\) 9.63879 0.314550
\(940\) 0 0
\(941\) 13.2704 0.432601 0.216301 0.976327i \(-0.430601\pi\)
0.216301 + 0.976327i \(0.430601\pi\)
\(942\) 0 0
\(943\) 6.79028 0.221122
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.81940 −0.156609 −0.0783047 0.996929i \(-0.524951\pi\)
−0.0783047 + 0.996929i \(0.524951\pi\)
\(948\) 0 0
\(949\) −14.7128 −0.477597
\(950\) 0 0
\(951\) −3.02801 −0.0981900
\(952\) 0 0
\(953\) −16.0123 −0.518688 −0.259344 0.965785i \(-0.583506\pi\)
−0.259344 + 0.965785i \(0.583506\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 11.2097 0.362359
\(958\) 0 0
\(959\) 11.7603 0.379760
\(960\) 0 0
\(961\) 6.72241 0.216852
\(962\) 0 0
\(963\) 67.5893 2.17804
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 50.6211 1.62786 0.813932 0.580960i \(-0.197323\pi\)
0.813932 + 0.580960i \(0.197323\pi\)
\(968\) 0 0
\(969\) −5.17600 −0.166277
\(970\) 0 0
\(971\) −27.5249 −0.883318 −0.441659 0.897183i \(-0.645610\pi\)
−0.441659 + 0.897183i \(0.645610\pi\)
\(972\) 0 0
\(973\) −65.7964 −2.10934
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −48.1215 −1.53954 −0.769772 0.638320i \(-0.779630\pi\)
−0.769772 + 0.638320i \(0.779630\pi\)
\(978\) 0 0
\(979\) −7.42907 −0.237434
\(980\) 0 0
\(981\) 15.6740 0.500434
\(982\) 0 0
\(983\) 12.8960 0.411319 0.205660 0.978624i \(-0.434066\pi\)
0.205660 + 0.978624i \(0.434066\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −96.5409 −3.07293
\(988\) 0 0
\(989\) 44.1929 1.40525
\(990\) 0 0
\(991\) −1.53218 −0.0486714 −0.0243357 0.999704i \(-0.507747\pi\)
−0.0243357 + 0.999704i \(0.507747\pi\)
\(992\) 0 0
\(993\) 33.9056 1.07596
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −31.9831 −1.01292 −0.506458 0.862265i \(-0.669046\pi\)
−0.506458 + 0.862265i \(0.669046\pi\)
\(998\) 0 0
\(999\) 12.1867 0.385571
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4400.2.a.bz.1.3 3
4.3 odd 2 2200.2.a.u.1.1 3
5.2 odd 4 4400.2.b.bb.4049.1 6
5.3 odd 4 4400.2.b.bb.4049.6 6
5.4 even 2 4400.2.a.by.1.1 3
20.3 even 4 2200.2.b.m.1849.1 6
20.7 even 4 2200.2.b.m.1849.6 6
20.19 odd 2 2200.2.a.v.1.3 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2200.2.a.u.1.1 3 4.3 odd 2
2200.2.a.v.1.3 yes 3 20.19 odd 2
2200.2.b.m.1849.1 6 20.3 even 4
2200.2.b.m.1849.6 6 20.7 even 4
4400.2.a.by.1.1 3 5.4 even 2
4400.2.a.bz.1.3 3 1.1 even 1 trivial
4400.2.b.bb.4049.1 6 5.2 odd 4
4400.2.b.bb.4049.6 6 5.3 odd 4