Properties

Label 4400.2.a.bo.1.2
Level $4400$
Weight $2$
Character 4400.1
Self dual yes
Analytic conductor $35.134$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4400,2,Mod(1,4400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4400.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4400 = 2^{4} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4400.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,1,0,0,0,-3,0,-3,0,-2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.1341768894\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2200)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 4400.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.61803 q^{3} -2.61803 q^{7} -0.381966 q^{9} -1.00000 q^{11} +3.47214 q^{13} -6.09017 q^{17} +8.23607 q^{19} -4.23607 q^{21} +2.61803 q^{23} -5.47214 q^{27} -7.32624 q^{29} -4.70820 q^{31} -1.61803 q^{33} +4.23607 q^{37} +5.61803 q^{39} +2.70820 q^{41} -10.9443 q^{43} +2.23607 q^{47} -0.145898 q^{49} -9.85410 q^{51} -1.38197 q^{53} +13.3262 q^{57} -2.70820 q^{59} -13.0902 q^{61} +1.00000 q^{63} -12.0000 q^{67} +4.23607 q^{69} +14.1803 q^{71} -9.38197 q^{73} +2.61803 q^{77} +9.61803 q^{79} -7.70820 q^{81} +6.56231 q^{83} -11.8541 q^{87} +1.32624 q^{89} -9.09017 q^{91} -7.61803 q^{93} -12.6180 q^{97} +0.381966 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} - 3 q^{7} - 3 q^{9} - 2 q^{11} - 2 q^{13} - q^{17} + 12 q^{19} - 4 q^{21} + 3 q^{23} - 2 q^{27} + q^{29} + 4 q^{31} - q^{33} + 4 q^{37} + 9 q^{39} - 8 q^{41} - 4 q^{43} - 7 q^{49} - 13 q^{51}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.61803 0.934172 0.467086 0.884212i \(-0.345304\pi\)
0.467086 + 0.884212i \(0.345304\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.61803 −0.989524 −0.494762 0.869029i \(-0.664745\pi\)
−0.494762 + 0.869029i \(0.664745\pi\)
\(8\) 0 0
\(9\) −0.381966 −0.127322
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 3.47214 0.962997 0.481499 0.876447i \(-0.340093\pi\)
0.481499 + 0.876447i \(0.340093\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.09017 −1.47708 −0.738542 0.674208i \(-0.764485\pi\)
−0.738542 + 0.674208i \(0.764485\pi\)
\(18\) 0 0
\(19\) 8.23607 1.88948 0.944742 0.327815i \(-0.106312\pi\)
0.944742 + 0.327815i \(0.106312\pi\)
\(20\) 0 0
\(21\) −4.23607 −0.924386
\(22\) 0 0
\(23\) 2.61803 0.545898 0.272949 0.962029i \(-0.412001\pi\)
0.272949 + 0.962029i \(0.412001\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −5.47214 −1.05311
\(28\) 0 0
\(29\) −7.32624 −1.36045 −0.680224 0.733004i \(-0.738118\pi\)
−0.680224 + 0.733004i \(0.738118\pi\)
\(30\) 0 0
\(31\) −4.70820 −0.845618 −0.422809 0.906219i \(-0.638956\pi\)
−0.422809 + 0.906219i \(0.638956\pi\)
\(32\) 0 0
\(33\) −1.61803 −0.281664
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.23607 0.696405 0.348203 0.937419i \(-0.386792\pi\)
0.348203 + 0.937419i \(0.386792\pi\)
\(38\) 0 0
\(39\) 5.61803 0.899605
\(40\) 0 0
\(41\) 2.70820 0.422950 0.211475 0.977383i \(-0.432173\pi\)
0.211475 + 0.977383i \(0.432173\pi\)
\(42\) 0 0
\(43\) −10.9443 −1.66899 −0.834493 0.551019i \(-0.814239\pi\)
−0.834493 + 0.551019i \(0.814239\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.23607 0.326164 0.163082 0.986613i \(-0.447856\pi\)
0.163082 + 0.986613i \(0.447856\pi\)
\(48\) 0 0
\(49\) −0.145898 −0.0208426
\(50\) 0 0
\(51\) −9.85410 −1.37985
\(52\) 0 0
\(53\) −1.38197 −0.189828 −0.0949138 0.995485i \(-0.530258\pi\)
−0.0949138 + 0.995485i \(0.530258\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 13.3262 1.76510
\(58\) 0 0
\(59\) −2.70820 −0.352578 −0.176289 0.984338i \(-0.556409\pi\)
−0.176289 + 0.984338i \(0.556409\pi\)
\(60\) 0 0
\(61\) −13.0902 −1.67602 −0.838012 0.545651i \(-0.816282\pi\)
−0.838012 + 0.545651i \(0.816282\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 0 0
\(69\) 4.23607 0.509963
\(70\) 0 0
\(71\) 14.1803 1.68290 0.841448 0.540338i \(-0.181703\pi\)
0.841448 + 0.540338i \(0.181703\pi\)
\(72\) 0 0
\(73\) −9.38197 −1.09808 −0.549038 0.835797i \(-0.685006\pi\)
−0.549038 + 0.835797i \(0.685006\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.61803 0.298353
\(78\) 0 0
\(79\) 9.61803 1.08211 0.541057 0.840986i \(-0.318024\pi\)
0.541057 + 0.840986i \(0.318024\pi\)
\(80\) 0 0
\(81\) −7.70820 −0.856467
\(82\) 0 0
\(83\) 6.56231 0.720307 0.360153 0.932893i \(-0.382724\pi\)
0.360153 + 0.932893i \(0.382724\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −11.8541 −1.27089
\(88\) 0 0
\(89\) 1.32624 0.140581 0.0702905 0.997527i \(-0.477607\pi\)
0.0702905 + 0.997527i \(0.477607\pi\)
\(90\) 0 0
\(91\) −9.09017 −0.952909
\(92\) 0 0
\(93\) −7.61803 −0.789953
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −12.6180 −1.28117 −0.640584 0.767888i \(-0.721308\pi\)
−0.640584 + 0.767888i \(0.721308\pi\)
\(98\) 0 0
\(99\) 0.381966 0.0383890
\(100\) 0 0
\(101\) −11.3820 −1.13255 −0.566274 0.824217i \(-0.691616\pi\)
−0.566274 + 0.824217i \(0.691616\pi\)
\(102\) 0 0
\(103\) 3.32624 0.327744 0.163872 0.986482i \(-0.447602\pi\)
0.163872 + 0.986482i \(0.447602\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.18034 0.887497 0.443748 0.896151i \(-0.353648\pi\)
0.443748 + 0.896151i \(0.353648\pi\)
\(108\) 0 0
\(109\) −16.5623 −1.58638 −0.793191 0.608973i \(-0.791582\pi\)
−0.793191 + 0.608973i \(0.791582\pi\)
\(110\) 0 0
\(111\) 6.85410 0.650563
\(112\) 0 0
\(113\) −3.76393 −0.354081 −0.177040 0.984204i \(-0.556652\pi\)
−0.177040 + 0.984204i \(0.556652\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1.32624 −0.122611
\(118\) 0 0
\(119\) 15.9443 1.46161
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 4.38197 0.395109
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −8.85410 −0.785675 −0.392837 0.919608i \(-0.628506\pi\)
−0.392837 + 0.919608i \(0.628506\pi\)
\(128\) 0 0
\(129\) −17.7082 −1.55912
\(130\) 0 0
\(131\) −7.56231 −0.660722 −0.330361 0.943855i \(-0.607170\pi\)
−0.330361 + 0.943855i \(0.607170\pi\)
\(132\) 0 0
\(133\) −21.5623 −1.86969
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.5623 −0.902399 −0.451199 0.892423i \(-0.649004\pi\)
−0.451199 + 0.892423i \(0.649004\pi\)
\(138\) 0 0
\(139\) −11.1803 −0.948304 −0.474152 0.880443i \(-0.657245\pi\)
−0.474152 + 0.880443i \(0.657245\pi\)
\(140\) 0 0
\(141\) 3.61803 0.304693
\(142\) 0 0
\(143\) −3.47214 −0.290355
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −0.236068 −0.0194706
\(148\) 0 0
\(149\) 19.4164 1.59065 0.795327 0.606181i \(-0.207299\pi\)
0.795327 + 0.606181i \(0.207299\pi\)
\(150\) 0 0
\(151\) 1.94427 0.158223 0.0791113 0.996866i \(-0.474792\pi\)
0.0791113 + 0.996866i \(0.474792\pi\)
\(152\) 0 0
\(153\) 2.32624 0.188065
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −4.47214 −0.356915 −0.178458 0.983948i \(-0.557111\pi\)
−0.178458 + 0.983948i \(0.557111\pi\)
\(158\) 0 0
\(159\) −2.23607 −0.177332
\(160\) 0 0
\(161\) −6.85410 −0.540179
\(162\) 0 0
\(163\) −8.61803 −0.675017 −0.337508 0.941323i \(-0.609584\pi\)
−0.337508 + 0.941323i \(0.609584\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.70820 −0.519096 −0.259548 0.965730i \(-0.583574\pi\)
−0.259548 + 0.965730i \(0.583574\pi\)
\(168\) 0 0
\(169\) −0.944272 −0.0726363
\(170\) 0 0
\(171\) −3.14590 −0.240573
\(172\) 0 0
\(173\) −24.7082 −1.87853 −0.939265 0.343193i \(-0.888492\pi\)
−0.939265 + 0.343193i \(0.888492\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −4.38197 −0.329369
\(178\) 0 0
\(179\) 9.09017 0.679431 0.339716 0.940528i \(-0.389669\pi\)
0.339716 + 0.940528i \(0.389669\pi\)
\(180\) 0 0
\(181\) 6.61803 0.491915 0.245957 0.969281i \(-0.420898\pi\)
0.245957 + 0.969281i \(0.420898\pi\)
\(182\) 0 0
\(183\) −21.1803 −1.56570
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 6.09017 0.445357
\(188\) 0 0
\(189\) 14.3262 1.04208
\(190\) 0 0
\(191\) −17.0344 −1.23257 −0.616284 0.787524i \(-0.711363\pi\)
−0.616284 + 0.787524i \(0.711363\pi\)
\(192\) 0 0
\(193\) −18.4721 −1.32965 −0.664827 0.746998i \(-0.731495\pi\)
−0.664827 + 0.746998i \(0.731495\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.0344 1.28490 0.642450 0.766327i \(-0.277918\pi\)
0.642450 + 0.766327i \(0.277918\pi\)
\(198\) 0 0
\(199\) 12.3820 0.877734 0.438867 0.898552i \(-0.355380\pi\)
0.438867 + 0.898552i \(0.355380\pi\)
\(200\) 0 0
\(201\) −19.4164 −1.36953
\(202\) 0 0
\(203\) 19.1803 1.34620
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1.00000 −0.0695048
\(208\) 0 0
\(209\) −8.23607 −0.569701
\(210\) 0 0
\(211\) 1.00000 0.0688428 0.0344214 0.999407i \(-0.489041\pi\)
0.0344214 + 0.999407i \(0.489041\pi\)
\(212\) 0 0
\(213\) 22.9443 1.57212
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 12.3262 0.836760
\(218\) 0 0
\(219\) −15.1803 −1.02579
\(220\) 0 0
\(221\) −21.1459 −1.42243
\(222\) 0 0
\(223\) 5.65248 0.378518 0.189259 0.981927i \(-0.439391\pi\)
0.189259 + 0.981927i \(0.439391\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.14590 0.474290 0.237145 0.971474i \(-0.423788\pi\)
0.237145 + 0.971474i \(0.423788\pi\)
\(228\) 0 0
\(229\) 10.3820 0.686060 0.343030 0.939325i \(-0.388547\pi\)
0.343030 + 0.939325i \(0.388547\pi\)
\(230\) 0 0
\(231\) 4.23607 0.278713
\(232\) 0 0
\(233\) −3.56231 −0.233374 −0.116687 0.993169i \(-0.537228\pi\)
−0.116687 + 0.993169i \(0.537228\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 15.5623 1.01088
\(238\) 0 0
\(239\) 24.6180 1.59241 0.796204 0.605028i \(-0.206838\pi\)
0.796204 + 0.605028i \(0.206838\pi\)
\(240\) 0 0
\(241\) 6.85410 0.441512 0.220756 0.975329i \(-0.429148\pi\)
0.220756 + 0.975329i \(0.429148\pi\)
\(242\) 0 0
\(243\) 3.94427 0.253025
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 28.5967 1.81957
\(248\) 0 0
\(249\) 10.6180 0.672891
\(250\) 0 0
\(251\) 19.5066 1.23124 0.615622 0.788041i \(-0.288905\pi\)
0.615622 + 0.788041i \(0.288905\pi\)
\(252\) 0 0
\(253\) −2.61803 −0.164594
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −22.9443 −1.43122 −0.715612 0.698498i \(-0.753852\pi\)
−0.715612 + 0.698498i \(0.753852\pi\)
\(258\) 0 0
\(259\) −11.0902 −0.689110
\(260\) 0 0
\(261\) 2.79837 0.173215
\(262\) 0 0
\(263\) −6.52786 −0.402525 −0.201263 0.979537i \(-0.564504\pi\)
−0.201263 + 0.979537i \(0.564504\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.14590 0.131327
\(268\) 0 0
\(269\) −0.381966 −0.0232889 −0.0116444 0.999932i \(-0.503707\pi\)
−0.0116444 + 0.999932i \(0.503707\pi\)
\(270\) 0 0
\(271\) 0.708204 0.0430203 0.0215102 0.999769i \(-0.493153\pi\)
0.0215102 + 0.999769i \(0.493153\pi\)
\(272\) 0 0
\(273\) −14.7082 −0.890181
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −14.1246 −0.848666 −0.424333 0.905506i \(-0.639491\pi\)
−0.424333 + 0.905506i \(0.639491\pi\)
\(278\) 0 0
\(279\) 1.79837 0.107666
\(280\) 0 0
\(281\) −0.236068 −0.0140826 −0.00704132 0.999975i \(-0.502241\pi\)
−0.00704132 + 0.999975i \(0.502241\pi\)
\(282\) 0 0
\(283\) −28.4508 −1.69123 −0.845614 0.533795i \(-0.820765\pi\)
−0.845614 + 0.533795i \(0.820765\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −7.09017 −0.418519
\(288\) 0 0
\(289\) 20.0902 1.18177
\(290\) 0 0
\(291\) −20.4164 −1.19683
\(292\) 0 0
\(293\) 20.4721 1.19599 0.597997 0.801498i \(-0.295963\pi\)
0.597997 + 0.801498i \(0.295963\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 5.47214 0.317526
\(298\) 0 0
\(299\) 9.09017 0.525698
\(300\) 0 0
\(301\) 28.6525 1.65150
\(302\) 0 0
\(303\) −18.4164 −1.05799
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −17.1459 −0.978568 −0.489284 0.872124i \(-0.662742\pi\)
−0.489284 + 0.872124i \(0.662742\pi\)
\(308\) 0 0
\(309\) 5.38197 0.306169
\(310\) 0 0
\(311\) 11.9443 0.677298 0.338649 0.940913i \(-0.390030\pi\)
0.338649 + 0.940913i \(0.390030\pi\)
\(312\) 0 0
\(313\) −20.6525 −1.16735 −0.583673 0.811988i \(-0.698385\pi\)
−0.583673 + 0.811988i \(0.698385\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.61803 −0.315540 −0.157770 0.987476i \(-0.550430\pi\)
−0.157770 + 0.987476i \(0.550430\pi\)
\(318\) 0 0
\(319\) 7.32624 0.410191
\(320\) 0 0
\(321\) 14.8541 0.829075
\(322\) 0 0
\(323\) −50.1591 −2.79092
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −26.7984 −1.48195
\(328\) 0 0
\(329\) −5.85410 −0.322747
\(330\) 0 0
\(331\) 31.3607 1.72374 0.861869 0.507130i \(-0.169294\pi\)
0.861869 + 0.507130i \(0.169294\pi\)
\(332\) 0 0
\(333\) −1.61803 −0.0886677
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −0.111456 −0.00607140 −0.00303570 0.999995i \(-0.500966\pi\)
−0.00303570 + 0.999995i \(0.500966\pi\)
\(338\) 0 0
\(339\) −6.09017 −0.330773
\(340\) 0 0
\(341\) 4.70820 0.254964
\(342\) 0 0
\(343\) 18.7082 1.01015
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.38197 0.0741878 0.0370939 0.999312i \(-0.488190\pi\)
0.0370939 + 0.999312i \(0.488190\pi\)
\(348\) 0 0
\(349\) 32.1246 1.71959 0.859796 0.510638i \(-0.170591\pi\)
0.859796 + 0.510638i \(0.170591\pi\)
\(350\) 0 0
\(351\) −19.0000 −1.01414
\(352\) 0 0
\(353\) 25.3607 1.34981 0.674906 0.737903i \(-0.264184\pi\)
0.674906 + 0.737903i \(0.264184\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 25.7984 1.36539
\(358\) 0 0
\(359\) 3.88854 0.205229 0.102615 0.994721i \(-0.467279\pi\)
0.102615 + 0.994721i \(0.467279\pi\)
\(360\) 0 0
\(361\) 48.8328 2.57015
\(362\) 0 0
\(363\) 1.61803 0.0849248
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −10.9787 −0.573084 −0.286542 0.958068i \(-0.592506\pi\)
−0.286542 + 0.958068i \(0.592506\pi\)
\(368\) 0 0
\(369\) −1.03444 −0.0538509
\(370\) 0 0
\(371\) 3.61803 0.187839
\(372\) 0 0
\(373\) 12.4164 0.642897 0.321449 0.946927i \(-0.395830\pi\)
0.321449 + 0.946927i \(0.395830\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −25.4377 −1.31011
\(378\) 0 0
\(379\) −20.5279 −1.05445 −0.527223 0.849727i \(-0.676767\pi\)
−0.527223 + 0.849727i \(0.676767\pi\)
\(380\) 0 0
\(381\) −14.3262 −0.733955
\(382\) 0 0
\(383\) −1.05573 −0.0539452 −0.0269726 0.999636i \(-0.508587\pi\)
−0.0269726 + 0.999636i \(0.508587\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.18034 0.212499
\(388\) 0 0
\(389\) 15.0557 0.763356 0.381678 0.924295i \(-0.375346\pi\)
0.381678 + 0.924295i \(0.375346\pi\)
\(390\) 0 0
\(391\) −15.9443 −0.806336
\(392\) 0 0
\(393\) −12.2361 −0.617228
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0.201626 0.0101193 0.00505966 0.999987i \(-0.498389\pi\)
0.00505966 + 0.999987i \(0.498389\pi\)
\(398\) 0 0
\(399\) −34.8885 −1.74661
\(400\) 0 0
\(401\) −8.47214 −0.423078 −0.211539 0.977370i \(-0.567848\pi\)
−0.211539 + 0.977370i \(0.567848\pi\)
\(402\) 0 0
\(403\) −16.3475 −0.814328
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.23607 −0.209974
\(408\) 0 0
\(409\) −29.4721 −1.45730 −0.728652 0.684884i \(-0.759853\pi\)
−0.728652 + 0.684884i \(0.759853\pi\)
\(410\) 0 0
\(411\) −17.0902 −0.842996
\(412\) 0 0
\(413\) 7.09017 0.348884
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −18.0902 −0.885879
\(418\) 0 0
\(419\) 21.4721 1.04898 0.524491 0.851416i \(-0.324256\pi\)
0.524491 + 0.851416i \(0.324256\pi\)
\(420\) 0 0
\(421\) 20.3262 0.990640 0.495320 0.868711i \(-0.335051\pi\)
0.495320 + 0.868711i \(0.335051\pi\)
\(422\) 0 0
\(423\) −0.854102 −0.0415279
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 34.2705 1.65847
\(428\) 0 0
\(429\) −5.61803 −0.271241
\(430\) 0 0
\(431\) 10.2361 0.493054 0.246527 0.969136i \(-0.420711\pi\)
0.246527 + 0.969136i \(0.420711\pi\)
\(432\) 0 0
\(433\) 24.8885 1.19607 0.598034 0.801471i \(-0.295949\pi\)
0.598034 + 0.801471i \(0.295949\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 21.5623 1.03146
\(438\) 0 0
\(439\) 40.9230 1.95315 0.976574 0.215183i \(-0.0690348\pi\)
0.976574 + 0.215183i \(0.0690348\pi\)
\(440\) 0 0
\(441\) 0.0557281 0.00265372
\(442\) 0 0
\(443\) −37.7082 −1.79157 −0.895785 0.444487i \(-0.853386\pi\)
−0.895785 + 0.444487i \(0.853386\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 31.4164 1.48595
\(448\) 0 0
\(449\) 41.2705 1.94768 0.973838 0.227244i \(-0.0729714\pi\)
0.973838 + 0.227244i \(0.0729714\pi\)
\(450\) 0 0
\(451\) −2.70820 −0.127524
\(452\) 0 0
\(453\) 3.14590 0.147807
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −25.8541 −1.20940 −0.604702 0.796452i \(-0.706708\pi\)
−0.604702 + 0.796452i \(0.706708\pi\)
\(458\) 0 0
\(459\) 33.3262 1.55554
\(460\) 0 0
\(461\) −28.8885 −1.34547 −0.672737 0.739882i \(-0.734881\pi\)
−0.672737 + 0.739882i \(0.734881\pi\)
\(462\) 0 0
\(463\) 31.7639 1.47620 0.738098 0.674694i \(-0.235724\pi\)
0.738098 + 0.674694i \(0.235724\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 21.2918 0.985267 0.492633 0.870237i \(-0.336034\pi\)
0.492633 + 0.870237i \(0.336034\pi\)
\(468\) 0 0
\(469\) 31.4164 1.45067
\(470\) 0 0
\(471\) −7.23607 −0.333420
\(472\) 0 0
\(473\) 10.9443 0.503218
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.527864 0.0241692
\(478\) 0 0
\(479\) −22.4164 −1.02423 −0.512116 0.858916i \(-0.671138\pi\)
−0.512116 + 0.858916i \(0.671138\pi\)
\(480\) 0 0
\(481\) 14.7082 0.670636
\(482\) 0 0
\(483\) −11.0902 −0.504620
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −2.81966 −0.127771 −0.0638855 0.997957i \(-0.520349\pi\)
−0.0638855 + 0.997957i \(0.520349\pi\)
\(488\) 0 0
\(489\) −13.9443 −0.630582
\(490\) 0 0
\(491\) −23.6525 −1.06742 −0.533711 0.845667i \(-0.679203\pi\)
−0.533711 + 0.845667i \(0.679203\pi\)
\(492\) 0 0
\(493\) 44.6180 2.00950
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −37.1246 −1.66527
\(498\) 0 0
\(499\) −20.4377 −0.914917 −0.457458 0.889231i \(-0.651240\pi\)
−0.457458 + 0.889231i \(0.651240\pi\)
\(500\) 0 0
\(501\) −10.8541 −0.484926
\(502\) 0 0
\(503\) −5.81966 −0.259486 −0.129743 0.991548i \(-0.541415\pi\)
−0.129743 + 0.991548i \(0.541415\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −1.52786 −0.0678548
\(508\) 0 0
\(509\) 20.1459 0.892951 0.446476 0.894796i \(-0.352679\pi\)
0.446476 + 0.894796i \(0.352679\pi\)
\(510\) 0 0
\(511\) 24.5623 1.08657
\(512\) 0 0
\(513\) −45.0689 −1.98984
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −2.23607 −0.0983422
\(518\) 0 0
\(519\) −39.9787 −1.75487
\(520\) 0 0
\(521\) 7.23607 0.317018 0.158509 0.987358i \(-0.449331\pi\)
0.158509 + 0.987358i \(0.449331\pi\)
\(522\) 0 0
\(523\) 9.41641 0.411751 0.205875 0.978578i \(-0.433996\pi\)
0.205875 + 0.978578i \(0.433996\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 28.6738 1.24905
\(528\) 0 0
\(529\) −16.1459 −0.701996
\(530\) 0 0
\(531\) 1.03444 0.0448910
\(532\) 0 0
\(533\) 9.40325 0.407300
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 14.7082 0.634706
\(538\) 0 0
\(539\) 0.145898 0.00628427
\(540\) 0 0
\(541\) −15.4508 −0.664284 −0.332142 0.943229i \(-0.607771\pi\)
−0.332142 + 0.943229i \(0.607771\pi\)
\(542\) 0 0
\(543\) 10.7082 0.459533
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −18.3262 −0.783573 −0.391787 0.920056i \(-0.628143\pi\)
−0.391787 + 0.920056i \(0.628143\pi\)
\(548\) 0 0
\(549\) 5.00000 0.213395
\(550\) 0 0
\(551\) −60.3394 −2.57054
\(552\) 0 0
\(553\) −25.1803 −1.07078
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1.47214 −0.0623764 −0.0311882 0.999514i \(-0.509929\pi\)
−0.0311882 + 0.999514i \(0.509929\pi\)
\(558\) 0 0
\(559\) −38.0000 −1.60723
\(560\) 0 0
\(561\) 9.85410 0.416041
\(562\) 0 0
\(563\) 28.0344 1.18151 0.590755 0.806851i \(-0.298830\pi\)
0.590755 + 0.806851i \(0.298830\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 20.1803 0.847495
\(568\) 0 0
\(569\) −44.7984 −1.87805 −0.939023 0.343855i \(-0.888267\pi\)
−0.939023 + 0.343855i \(0.888267\pi\)
\(570\) 0 0
\(571\) −35.1591 −1.47136 −0.735680 0.677329i \(-0.763137\pi\)
−0.735680 + 0.677329i \(0.763137\pi\)
\(572\) 0 0
\(573\) −27.5623 −1.15143
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 12.7426 0.530483 0.265242 0.964182i \(-0.414548\pi\)
0.265242 + 0.964182i \(0.414548\pi\)
\(578\) 0 0
\(579\) −29.8885 −1.24213
\(580\) 0 0
\(581\) −17.1803 −0.712761
\(582\) 0 0
\(583\) 1.38197 0.0572352
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 31.7984 1.31246 0.656230 0.754561i \(-0.272150\pi\)
0.656230 + 0.754561i \(0.272150\pi\)
\(588\) 0 0
\(589\) −38.7771 −1.59778
\(590\) 0 0
\(591\) 29.1803 1.20032
\(592\) 0 0
\(593\) 47.6525 1.95685 0.978426 0.206596i \(-0.0662386\pi\)
0.978426 + 0.206596i \(0.0662386\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 20.0344 0.819955
\(598\) 0 0
\(599\) −39.3951 −1.60964 −0.804821 0.593518i \(-0.797738\pi\)
−0.804821 + 0.593518i \(0.797738\pi\)
\(600\) 0 0
\(601\) 20.3262 0.829125 0.414562 0.910021i \(-0.363935\pi\)
0.414562 + 0.910021i \(0.363935\pi\)
\(602\) 0 0
\(603\) 4.58359 0.186658
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −44.8328 −1.81971 −0.909854 0.414929i \(-0.863807\pi\)
−0.909854 + 0.414929i \(0.863807\pi\)
\(608\) 0 0
\(609\) 31.0344 1.25758
\(610\) 0 0
\(611\) 7.76393 0.314095
\(612\) 0 0
\(613\) −30.6738 −1.23890 −0.619451 0.785035i \(-0.712645\pi\)
−0.619451 + 0.785035i \(0.712645\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.76393 0.352823 0.176411 0.984317i \(-0.443551\pi\)
0.176411 + 0.984317i \(0.443551\pi\)
\(618\) 0 0
\(619\) −27.2918 −1.09695 −0.548475 0.836167i \(-0.684791\pi\)
−0.548475 + 0.836167i \(0.684791\pi\)
\(620\) 0 0
\(621\) −14.3262 −0.574892
\(622\) 0 0
\(623\) −3.47214 −0.139108
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −13.3262 −0.532199
\(628\) 0 0
\(629\) −25.7984 −1.02865
\(630\) 0 0
\(631\) 17.4508 0.694707 0.347354 0.937734i \(-0.387080\pi\)
0.347354 + 0.937734i \(0.387080\pi\)
\(632\) 0 0
\(633\) 1.61803 0.0643111
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −0.506578 −0.0200713
\(638\) 0 0
\(639\) −5.41641 −0.214270
\(640\) 0 0
\(641\) 16.4164 0.648409 0.324205 0.945987i \(-0.394903\pi\)
0.324205 + 0.945987i \(0.394903\pi\)
\(642\) 0 0
\(643\) −1.41641 −0.0558577 −0.0279288 0.999610i \(-0.508891\pi\)
−0.0279288 + 0.999610i \(0.508891\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −10.4164 −0.409511 −0.204756 0.978813i \(-0.565640\pi\)
−0.204756 + 0.978813i \(0.565640\pi\)
\(648\) 0 0
\(649\) 2.70820 0.106306
\(650\) 0 0
\(651\) 19.9443 0.781678
\(652\) 0 0
\(653\) 49.6180 1.94170 0.970852 0.239680i \(-0.0770426\pi\)
0.970852 + 0.239680i \(0.0770426\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 3.58359 0.139809
\(658\) 0 0
\(659\) −22.7426 −0.885928 −0.442964 0.896539i \(-0.646073\pi\)
−0.442964 + 0.896539i \(0.646073\pi\)
\(660\) 0 0
\(661\) −22.5967 −0.878912 −0.439456 0.898264i \(-0.644829\pi\)
−0.439456 + 0.898264i \(0.644829\pi\)
\(662\) 0 0
\(663\) −34.2148 −1.32879
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −19.1803 −0.742666
\(668\) 0 0
\(669\) 9.14590 0.353601
\(670\) 0 0
\(671\) 13.0902 0.505340
\(672\) 0 0
\(673\) 30.5967 1.17942 0.589709 0.807616i \(-0.299242\pi\)
0.589709 + 0.807616i \(0.299242\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −47.5967 −1.82929 −0.914646 0.404256i \(-0.867530\pi\)
−0.914646 + 0.404256i \(0.867530\pi\)
\(678\) 0 0
\(679\) 33.0344 1.26775
\(680\) 0 0
\(681\) 11.5623 0.443069
\(682\) 0 0
\(683\) 21.1803 0.810443 0.405222 0.914218i \(-0.367194\pi\)
0.405222 + 0.914218i \(0.367194\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 16.7984 0.640898
\(688\) 0 0
\(689\) −4.79837 −0.182803
\(690\) 0 0
\(691\) 37.6312 1.43156 0.715779 0.698327i \(-0.246072\pi\)
0.715779 + 0.698327i \(0.246072\pi\)
\(692\) 0 0
\(693\) −1.00000 −0.0379869
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −16.4934 −0.624733
\(698\) 0 0
\(699\) −5.76393 −0.218012
\(700\) 0 0
\(701\) −46.4721 −1.75523 −0.877614 0.479368i \(-0.840866\pi\)
−0.877614 + 0.479368i \(0.840866\pi\)
\(702\) 0 0
\(703\) 34.8885 1.31585
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 29.7984 1.12068
\(708\) 0 0
\(709\) 20.3607 0.764661 0.382331 0.924026i \(-0.375122\pi\)
0.382331 + 0.924026i \(0.375122\pi\)
\(710\) 0 0
\(711\) −3.67376 −0.137777
\(712\) 0 0
\(713\) −12.3262 −0.461621
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 39.8328 1.48758
\(718\) 0 0
\(719\) 3.83282 0.142940 0.0714700 0.997443i \(-0.477231\pi\)
0.0714700 + 0.997443i \(0.477231\pi\)
\(720\) 0 0
\(721\) −8.70820 −0.324310
\(722\) 0 0
\(723\) 11.0902 0.412448
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −1.90983 −0.0708317 −0.0354158 0.999373i \(-0.511276\pi\)
−0.0354158 + 0.999373i \(0.511276\pi\)
\(728\) 0 0
\(729\) 29.5066 1.09284
\(730\) 0 0
\(731\) 66.6525 2.46523
\(732\) 0 0
\(733\) 36.1246 1.33429 0.667146 0.744927i \(-0.267516\pi\)
0.667146 + 0.744927i \(0.267516\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12.0000 0.442026
\(738\) 0 0
\(739\) −3.85410 −0.141775 −0.0708877 0.997484i \(-0.522583\pi\)
−0.0708877 + 0.997484i \(0.522583\pi\)
\(740\) 0 0
\(741\) 46.2705 1.69979
\(742\) 0 0
\(743\) 4.21478 0.154625 0.0773127 0.997007i \(-0.475366\pi\)
0.0773127 + 0.997007i \(0.475366\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −2.50658 −0.0917109
\(748\) 0 0
\(749\) −24.0344 −0.878199
\(750\) 0 0
\(751\) −29.0344 −1.05948 −0.529741 0.848160i \(-0.677711\pi\)
−0.529741 + 0.848160i \(0.677711\pi\)
\(752\) 0 0
\(753\) 31.5623 1.15019
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 30.8885 1.12266 0.561332 0.827591i \(-0.310289\pi\)
0.561332 + 0.827591i \(0.310289\pi\)
\(758\) 0 0
\(759\) −4.23607 −0.153760
\(760\) 0 0
\(761\) 8.00000 0.290000 0.145000 0.989432i \(-0.453682\pi\)
0.145000 + 0.989432i \(0.453682\pi\)
\(762\) 0 0
\(763\) 43.3607 1.56976
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.40325 −0.339532
\(768\) 0 0
\(769\) −10.3475 −0.373141 −0.186571 0.982442i \(-0.559737\pi\)
−0.186571 + 0.982442i \(0.559737\pi\)
\(770\) 0 0
\(771\) −37.1246 −1.33701
\(772\) 0 0
\(773\) −29.6312 −1.06576 −0.532880 0.846191i \(-0.678890\pi\)
−0.532880 + 0.846191i \(0.678890\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −17.9443 −0.643747
\(778\) 0 0
\(779\) 22.3050 0.799158
\(780\) 0 0
\(781\) −14.1803 −0.507412
\(782\) 0 0
\(783\) 40.0902 1.43271
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −6.23607 −0.222292 −0.111146 0.993804i \(-0.535452\pi\)
−0.111146 + 0.993804i \(0.535452\pi\)
\(788\) 0 0
\(789\) −10.5623 −0.376028
\(790\) 0 0
\(791\) 9.85410 0.350372
\(792\) 0 0
\(793\) −45.4508 −1.61401
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 15.4377 0.546831 0.273416 0.961896i \(-0.411847\pi\)
0.273416 + 0.961896i \(0.411847\pi\)
\(798\) 0 0
\(799\) −13.6180 −0.481771
\(800\) 0 0
\(801\) −0.506578 −0.0178990
\(802\) 0 0
\(803\) 9.38197 0.331082
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −0.618034 −0.0217558
\(808\) 0 0
\(809\) 30.2492 1.06351 0.531753 0.846899i \(-0.321533\pi\)
0.531753 + 0.846899i \(0.321533\pi\)
\(810\) 0 0
\(811\) −3.94427 −0.138502 −0.0692511 0.997599i \(-0.522061\pi\)
−0.0692511 + 0.997599i \(0.522061\pi\)
\(812\) 0 0
\(813\) 1.14590 0.0401884
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −90.1378 −3.15352
\(818\) 0 0
\(819\) 3.47214 0.121326
\(820\) 0 0
\(821\) 36.7214 1.28158 0.640792 0.767714i \(-0.278606\pi\)
0.640792 + 0.767714i \(0.278606\pi\)
\(822\) 0 0
\(823\) −38.8328 −1.35363 −0.676813 0.736155i \(-0.736640\pi\)
−0.676813 + 0.736155i \(0.736640\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 4.76393 0.165658 0.0828291 0.996564i \(-0.473604\pi\)
0.0828291 + 0.996564i \(0.473604\pi\)
\(828\) 0 0
\(829\) 46.1591 1.60317 0.801585 0.597881i \(-0.203990\pi\)
0.801585 + 0.597881i \(0.203990\pi\)
\(830\) 0 0
\(831\) −22.8541 −0.792800
\(832\) 0 0
\(833\) 0.888544 0.0307862
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 25.7639 0.890532
\(838\) 0 0
\(839\) 2.14590 0.0740846 0.0370423 0.999314i \(-0.488206\pi\)
0.0370423 + 0.999314i \(0.488206\pi\)
\(840\) 0 0
\(841\) 24.6738 0.850819
\(842\) 0 0
\(843\) −0.381966 −0.0131556
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −2.61803 −0.0899567
\(848\) 0 0
\(849\) −46.0344 −1.57990
\(850\) 0 0
\(851\) 11.0902 0.380166
\(852\) 0 0
\(853\) −8.56231 −0.293168 −0.146584 0.989198i \(-0.546828\pi\)
−0.146584 + 0.989198i \(0.546828\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −41.8328 −1.42898 −0.714491 0.699645i \(-0.753342\pi\)
−0.714491 + 0.699645i \(0.753342\pi\)
\(858\) 0 0
\(859\) 8.29180 0.282912 0.141456 0.989945i \(-0.454822\pi\)
0.141456 + 0.989945i \(0.454822\pi\)
\(860\) 0 0
\(861\) −11.4721 −0.390969
\(862\) 0 0
\(863\) 25.5836 0.870876 0.435438 0.900219i \(-0.356594\pi\)
0.435438 + 0.900219i \(0.356594\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 32.5066 1.10398
\(868\) 0 0
\(869\) −9.61803 −0.326269
\(870\) 0 0
\(871\) −41.6656 −1.41179
\(872\) 0 0
\(873\) 4.81966 0.163121
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 10.1115 0.341440 0.170720 0.985320i \(-0.445391\pi\)
0.170720 + 0.985320i \(0.445391\pi\)
\(878\) 0 0
\(879\) 33.1246 1.11727
\(880\) 0 0
\(881\) −41.4508 −1.39651 −0.698257 0.715847i \(-0.746041\pi\)
−0.698257 + 0.715847i \(0.746041\pi\)
\(882\) 0 0
\(883\) 27.8328 0.936649 0.468324 0.883557i \(-0.344858\pi\)
0.468324 + 0.883557i \(0.344858\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 17.0000 0.570804 0.285402 0.958408i \(-0.407873\pi\)
0.285402 + 0.958408i \(0.407873\pi\)
\(888\) 0 0
\(889\) 23.1803 0.777444
\(890\) 0 0
\(891\) 7.70820 0.258235
\(892\) 0 0
\(893\) 18.4164 0.616282
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 14.7082 0.491093
\(898\) 0 0
\(899\) 34.4934 1.15042
\(900\) 0 0
\(901\) 8.41641 0.280391
\(902\) 0 0
\(903\) 46.3607 1.54279
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −47.7771 −1.58641 −0.793206 0.608953i \(-0.791590\pi\)
−0.793206 + 0.608953i \(0.791590\pi\)
\(908\) 0 0
\(909\) 4.34752 0.144198
\(910\) 0 0
\(911\) 30.9443 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(912\) 0 0
\(913\) −6.56231 −0.217181
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 19.7984 0.653800
\(918\) 0 0
\(919\) 7.63932 0.251998 0.125999 0.992030i \(-0.459786\pi\)
0.125999 + 0.992030i \(0.459786\pi\)
\(920\) 0 0
\(921\) −27.7426 −0.914151
\(922\) 0 0
\(923\) 49.2361 1.62062
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −1.27051 −0.0417290
\(928\) 0 0
\(929\) −59.1803 −1.94164 −0.970822 0.239801i \(-0.922918\pi\)
−0.970822 + 0.239801i \(0.922918\pi\)
\(930\) 0 0
\(931\) −1.20163 −0.0393817
\(932\) 0 0
\(933\) 19.3262 0.632713
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 27.4164 0.895655 0.447828 0.894120i \(-0.352198\pi\)
0.447828 + 0.894120i \(0.352198\pi\)
\(938\) 0 0
\(939\) −33.4164 −1.09050
\(940\) 0 0
\(941\) −31.1803 −1.01645 −0.508225 0.861224i \(-0.669698\pi\)
−0.508225 + 0.861224i \(0.669698\pi\)
\(942\) 0 0
\(943\) 7.09017 0.230888
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −32.1246 −1.04391 −0.521955 0.852973i \(-0.674797\pi\)
−0.521955 + 0.852973i \(0.674797\pi\)
\(948\) 0 0
\(949\) −32.5755 −1.05744
\(950\) 0 0
\(951\) −9.09017 −0.294769
\(952\) 0 0
\(953\) 35.8885 1.16254 0.581272 0.813709i \(-0.302555\pi\)
0.581272 + 0.813709i \(0.302555\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 11.8541 0.383189
\(958\) 0 0
\(959\) 27.6525 0.892945
\(960\) 0 0
\(961\) −8.83282 −0.284930
\(962\) 0 0
\(963\) −3.50658 −0.112998
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −36.2705 −1.16638 −0.583190 0.812335i \(-0.698196\pi\)
−0.583190 + 0.812335i \(0.698196\pi\)
\(968\) 0 0
\(969\) −81.1591 −2.60720
\(970\) 0 0
\(971\) 2.61803 0.0840167 0.0420084 0.999117i \(-0.486624\pi\)
0.0420084 + 0.999117i \(0.486624\pi\)
\(972\) 0 0
\(973\) 29.2705 0.938369
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 33.5410 1.07307 0.536536 0.843877i \(-0.319733\pi\)
0.536536 + 0.843877i \(0.319733\pi\)
\(978\) 0 0
\(979\) −1.32624 −0.0423867
\(980\) 0 0
\(981\) 6.32624 0.201981
\(982\) 0 0
\(983\) −23.0557 −0.735364 −0.367682 0.929952i \(-0.619848\pi\)
−0.367682 + 0.929952i \(0.619848\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −9.47214 −0.301501
\(988\) 0 0
\(989\) −28.6525 −0.911096
\(990\) 0 0
\(991\) 37.9098 1.20425 0.602123 0.798404i \(-0.294322\pi\)
0.602123 + 0.798404i \(0.294322\pi\)
\(992\) 0 0
\(993\) 50.7426 1.61027
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −26.9656 −0.854008 −0.427004 0.904250i \(-0.640431\pi\)
−0.427004 + 0.904250i \(0.640431\pi\)
\(998\) 0 0
\(999\) −23.1803 −0.733393
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4400.2.a.bo.1.2 2
4.3 odd 2 2200.2.a.p.1.1 2
5.2 odd 4 4400.2.b.z.4049.1 4
5.3 odd 4 4400.2.b.z.4049.4 4
5.4 even 2 4400.2.a.bm.1.1 2
20.3 even 4 2200.2.b.k.1849.1 4
20.7 even 4 2200.2.b.k.1849.4 4
20.19 odd 2 2200.2.a.q.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2200.2.a.p.1.1 2 4.3 odd 2
2200.2.a.q.1.2 yes 2 20.19 odd 2
2200.2.b.k.1849.1 4 20.3 even 4
2200.2.b.k.1849.4 4 20.7 even 4
4400.2.a.bm.1.1 2 5.4 even 2
4400.2.a.bo.1.2 2 1.1 even 1 trivial
4400.2.b.z.4049.1 4 5.2 odd 4
4400.2.b.z.4049.4 4 5.3 odd 4