Properties

Label 4400.2.a.bo.1.1
Level $4400$
Weight $2$
Character 4400.1
Self dual yes
Analytic conductor $35.134$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4400,2,Mod(1,4400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4400.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4400 = 2^{4} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4400.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,1,0,0,0,-3,0,-3,0,-2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.1341768894\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2200)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 4400.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.618034 q^{3} -0.381966 q^{7} -2.61803 q^{9} -1.00000 q^{11} -5.47214 q^{13} +5.09017 q^{17} +3.76393 q^{19} +0.236068 q^{21} +0.381966 q^{23} +3.47214 q^{27} +8.32624 q^{29} +8.70820 q^{31} +0.618034 q^{33} -0.236068 q^{37} +3.38197 q^{39} -10.7082 q^{41} +6.94427 q^{43} -2.23607 q^{47} -6.85410 q^{49} -3.14590 q^{51} -3.61803 q^{53} -2.32624 q^{57} +10.7082 q^{59} -1.90983 q^{61} +1.00000 q^{63} -12.0000 q^{67} -0.236068 q^{69} -8.18034 q^{71} -11.6180 q^{73} +0.381966 q^{77} +7.38197 q^{79} +5.70820 q^{81} -13.5623 q^{83} -5.14590 q^{87} -14.3262 q^{89} +2.09017 q^{91} -5.38197 q^{93} -10.3820 q^{97} +2.61803 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} - 3 q^{7} - 3 q^{9} - 2 q^{11} - 2 q^{13} - q^{17} + 12 q^{19} - 4 q^{21} + 3 q^{23} - 2 q^{27} + q^{29} + 4 q^{31} - q^{33} + 4 q^{37} + 9 q^{39} - 8 q^{41} - 4 q^{43} - 7 q^{49} - 13 q^{51}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.618034 −0.356822 −0.178411 0.983956i \(-0.557096\pi\)
−0.178411 + 0.983956i \(0.557096\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −0.381966 −0.144370 −0.0721848 0.997391i \(-0.522997\pi\)
−0.0721848 + 0.997391i \(0.522997\pi\)
\(8\) 0 0
\(9\) −2.61803 −0.872678
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −5.47214 −1.51770 −0.758849 0.651267i \(-0.774238\pi\)
−0.758849 + 0.651267i \(0.774238\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.09017 1.23455 0.617274 0.786748i \(-0.288237\pi\)
0.617274 + 0.786748i \(0.288237\pi\)
\(18\) 0 0
\(19\) 3.76393 0.863505 0.431753 0.901992i \(-0.357895\pi\)
0.431753 + 0.901992i \(0.357895\pi\)
\(20\) 0 0
\(21\) 0.236068 0.0515143
\(22\) 0 0
\(23\) 0.381966 0.0796454 0.0398227 0.999207i \(-0.487321\pi\)
0.0398227 + 0.999207i \(0.487321\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 3.47214 0.668213
\(28\) 0 0
\(29\) 8.32624 1.54614 0.773072 0.634319i \(-0.218719\pi\)
0.773072 + 0.634319i \(0.218719\pi\)
\(30\) 0 0
\(31\) 8.70820 1.56404 0.782020 0.623254i \(-0.214190\pi\)
0.782020 + 0.623254i \(0.214190\pi\)
\(32\) 0 0
\(33\) 0.618034 0.107586
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −0.236068 −0.0388093 −0.0194047 0.999812i \(-0.506177\pi\)
−0.0194047 + 0.999812i \(0.506177\pi\)
\(38\) 0 0
\(39\) 3.38197 0.541548
\(40\) 0 0
\(41\) −10.7082 −1.67234 −0.836170 0.548470i \(-0.815210\pi\)
−0.836170 + 0.548470i \(0.815210\pi\)
\(42\) 0 0
\(43\) 6.94427 1.05899 0.529496 0.848313i \(-0.322381\pi\)
0.529496 + 0.848313i \(0.322381\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.23607 −0.326164 −0.163082 0.986613i \(-0.552144\pi\)
−0.163082 + 0.986613i \(0.552144\pi\)
\(48\) 0 0
\(49\) −6.85410 −0.979157
\(50\) 0 0
\(51\) −3.14590 −0.440514
\(52\) 0 0
\(53\) −3.61803 −0.496975 −0.248488 0.968635i \(-0.579934\pi\)
−0.248488 + 0.968635i \(0.579934\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −2.32624 −0.308118
\(58\) 0 0
\(59\) 10.7082 1.39409 0.697045 0.717028i \(-0.254498\pi\)
0.697045 + 0.717028i \(0.254498\pi\)
\(60\) 0 0
\(61\) −1.90983 −0.244529 −0.122264 0.992498i \(-0.539016\pi\)
−0.122264 + 0.992498i \(0.539016\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 0 0
\(69\) −0.236068 −0.0284192
\(70\) 0 0
\(71\) −8.18034 −0.970828 −0.485414 0.874284i \(-0.661331\pi\)
−0.485414 + 0.874284i \(0.661331\pi\)
\(72\) 0 0
\(73\) −11.6180 −1.35979 −0.679894 0.733310i \(-0.737974\pi\)
−0.679894 + 0.733310i \(0.737974\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.381966 0.0435291
\(78\) 0 0
\(79\) 7.38197 0.830536 0.415268 0.909699i \(-0.363688\pi\)
0.415268 + 0.909699i \(0.363688\pi\)
\(80\) 0 0
\(81\) 5.70820 0.634245
\(82\) 0 0
\(83\) −13.5623 −1.48866 −0.744328 0.667814i \(-0.767230\pi\)
−0.744328 + 0.667814i \(0.767230\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −5.14590 −0.551698
\(88\) 0 0
\(89\) −14.3262 −1.51858 −0.759289 0.650753i \(-0.774453\pi\)
−0.759289 + 0.650753i \(0.774453\pi\)
\(90\) 0 0
\(91\) 2.09017 0.219109
\(92\) 0 0
\(93\) −5.38197 −0.558084
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −10.3820 −1.05413 −0.527064 0.849825i \(-0.676707\pi\)
−0.527064 + 0.849825i \(0.676707\pi\)
\(98\) 0 0
\(99\) 2.61803 0.263122
\(100\) 0 0
\(101\) −13.6180 −1.35505 −0.677523 0.735502i \(-0.736946\pi\)
−0.677523 + 0.735502i \(0.736946\pi\)
\(102\) 0 0
\(103\) −12.3262 −1.21454 −0.607270 0.794495i \(-0.707735\pi\)
−0.607270 + 0.794495i \(0.707735\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13.1803 −1.27419 −0.637096 0.770785i \(-0.719864\pi\)
−0.637096 + 0.770785i \(0.719864\pi\)
\(108\) 0 0
\(109\) 3.56231 0.341207 0.170604 0.985340i \(-0.445428\pi\)
0.170604 + 0.985340i \(0.445428\pi\)
\(110\) 0 0
\(111\) 0.145898 0.0138480
\(112\) 0 0
\(113\) −8.23607 −0.774784 −0.387392 0.921915i \(-0.626624\pi\)
−0.387392 + 0.921915i \(0.626624\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 14.3262 1.32446
\(118\) 0 0
\(119\) −1.94427 −0.178231
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 6.61803 0.596728
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −2.14590 −0.190418 −0.0952088 0.995457i \(-0.530352\pi\)
−0.0952088 + 0.995457i \(0.530352\pi\)
\(128\) 0 0
\(129\) −4.29180 −0.377872
\(130\) 0 0
\(131\) 12.5623 1.09757 0.548787 0.835962i \(-0.315090\pi\)
0.548787 + 0.835962i \(0.315090\pi\)
\(132\) 0 0
\(133\) −1.43769 −0.124664
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.56231 0.816963 0.408481 0.912767i \(-0.366058\pi\)
0.408481 + 0.912767i \(0.366058\pi\)
\(138\) 0 0
\(139\) 11.1803 0.948304 0.474152 0.880443i \(-0.342755\pi\)
0.474152 + 0.880443i \(0.342755\pi\)
\(140\) 0 0
\(141\) 1.38197 0.116383
\(142\) 0 0
\(143\) 5.47214 0.457603
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 4.23607 0.349385
\(148\) 0 0
\(149\) −7.41641 −0.607576 −0.303788 0.952740i \(-0.598251\pi\)
−0.303788 + 0.952740i \(0.598251\pi\)
\(150\) 0 0
\(151\) −15.9443 −1.29753 −0.648763 0.760990i \(-0.724713\pi\)
−0.648763 + 0.760990i \(0.724713\pi\)
\(152\) 0 0
\(153\) −13.3262 −1.07736
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 4.47214 0.356915 0.178458 0.983948i \(-0.442889\pi\)
0.178458 + 0.983948i \(0.442889\pi\)
\(158\) 0 0
\(159\) 2.23607 0.177332
\(160\) 0 0
\(161\) −0.145898 −0.0114984
\(162\) 0 0
\(163\) −6.38197 −0.499874 −0.249937 0.968262i \(-0.580410\pi\)
−0.249937 + 0.968262i \(0.580410\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.70820 0.519096 0.259548 0.965730i \(-0.416426\pi\)
0.259548 + 0.965730i \(0.416426\pi\)
\(168\) 0 0
\(169\) 16.9443 1.30341
\(170\) 0 0
\(171\) −9.85410 −0.753562
\(172\) 0 0
\(173\) −11.2918 −0.858499 −0.429250 0.903186i \(-0.641222\pi\)
−0.429250 + 0.903186i \(0.641222\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −6.61803 −0.497442
\(178\) 0 0
\(179\) −2.09017 −0.156227 −0.0781133 0.996944i \(-0.524890\pi\)
−0.0781133 + 0.996944i \(0.524890\pi\)
\(180\) 0 0
\(181\) 4.38197 0.325709 0.162854 0.986650i \(-0.447930\pi\)
0.162854 + 0.986650i \(0.447930\pi\)
\(182\) 0 0
\(183\) 1.18034 0.0872532
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −5.09017 −0.372230
\(188\) 0 0
\(189\) −1.32624 −0.0964696
\(190\) 0 0
\(191\) 12.0344 0.870782 0.435391 0.900242i \(-0.356610\pi\)
0.435391 + 0.900242i \(0.356610\pi\)
\(192\) 0 0
\(193\) −9.52786 −0.685831 −0.342915 0.939366i \(-0.611414\pi\)
−0.342915 + 0.939366i \(0.611414\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −11.0344 −0.786171 −0.393086 0.919502i \(-0.628592\pi\)
−0.393086 + 0.919502i \(0.628592\pi\)
\(198\) 0 0
\(199\) 14.6180 1.03624 0.518122 0.855306i \(-0.326631\pi\)
0.518122 + 0.855306i \(0.326631\pi\)
\(200\) 0 0
\(201\) 7.41641 0.523113
\(202\) 0 0
\(203\) −3.18034 −0.223216
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1.00000 −0.0695048
\(208\) 0 0
\(209\) −3.76393 −0.260357
\(210\) 0 0
\(211\) 1.00000 0.0688428 0.0344214 0.999407i \(-0.489041\pi\)
0.0344214 + 0.999407i \(0.489041\pi\)
\(212\) 0 0
\(213\) 5.05573 0.346413
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −3.32624 −0.225800
\(218\) 0 0
\(219\) 7.18034 0.485202
\(220\) 0 0
\(221\) −27.8541 −1.87367
\(222\) 0 0
\(223\) −25.6525 −1.71782 −0.858908 0.512129i \(-0.828857\pi\)
−0.858908 + 0.512129i \(0.828857\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 13.8541 0.919529 0.459765 0.888041i \(-0.347934\pi\)
0.459765 + 0.888041i \(0.347934\pi\)
\(228\) 0 0
\(229\) 12.6180 0.833823 0.416912 0.908947i \(-0.363112\pi\)
0.416912 + 0.908947i \(0.363112\pi\)
\(230\) 0 0
\(231\) −0.236068 −0.0155321
\(232\) 0 0
\(233\) 16.5623 1.08503 0.542516 0.840045i \(-0.317472\pi\)
0.542516 + 0.840045i \(0.317472\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −4.56231 −0.296354
\(238\) 0 0
\(239\) 22.3820 1.44777 0.723885 0.689921i \(-0.242355\pi\)
0.723885 + 0.689921i \(0.242355\pi\)
\(240\) 0 0
\(241\) 0.145898 0.00939812 0.00469906 0.999989i \(-0.498504\pi\)
0.00469906 + 0.999989i \(0.498504\pi\)
\(242\) 0 0
\(243\) −13.9443 −0.894525
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −20.5967 −1.31054
\(248\) 0 0
\(249\) 8.38197 0.531186
\(250\) 0 0
\(251\) −18.5066 −1.16812 −0.584062 0.811709i \(-0.698538\pi\)
−0.584062 + 0.811709i \(0.698538\pi\)
\(252\) 0 0
\(253\) −0.381966 −0.0240140
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.05573 −0.315368 −0.157684 0.987490i \(-0.550403\pi\)
−0.157684 + 0.987490i \(0.550403\pi\)
\(258\) 0 0
\(259\) 0.0901699 0.00560289
\(260\) 0 0
\(261\) −21.7984 −1.34929
\(262\) 0 0
\(263\) −15.4721 −0.954053 −0.477026 0.878889i \(-0.658285\pi\)
−0.477026 + 0.878889i \(0.658285\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 8.85410 0.541862
\(268\) 0 0
\(269\) −2.61803 −0.159624 −0.0798122 0.996810i \(-0.525432\pi\)
−0.0798122 + 0.996810i \(0.525432\pi\)
\(270\) 0 0
\(271\) −12.7082 −0.771968 −0.385984 0.922505i \(-0.626138\pi\)
−0.385984 + 0.922505i \(0.626138\pi\)
\(272\) 0 0
\(273\) −1.29180 −0.0781831
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 26.1246 1.56968 0.784838 0.619701i \(-0.212746\pi\)
0.784838 + 0.619701i \(0.212746\pi\)
\(278\) 0 0
\(279\) −22.7984 −1.36490
\(280\) 0 0
\(281\) 4.23607 0.252703 0.126351 0.991986i \(-0.459673\pi\)
0.126351 + 0.991986i \(0.459673\pi\)
\(282\) 0 0
\(283\) 27.4508 1.63178 0.815892 0.578205i \(-0.196246\pi\)
0.815892 + 0.578205i \(0.196246\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.09017 0.241435
\(288\) 0 0
\(289\) 8.90983 0.524108
\(290\) 0 0
\(291\) 6.41641 0.376136
\(292\) 0 0
\(293\) 11.5279 0.673465 0.336733 0.941600i \(-0.390678\pi\)
0.336733 + 0.941600i \(0.390678\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −3.47214 −0.201474
\(298\) 0 0
\(299\) −2.09017 −0.120878
\(300\) 0 0
\(301\) −2.65248 −0.152886
\(302\) 0 0
\(303\) 8.41641 0.483510
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −23.8541 −1.36143 −0.680713 0.732550i \(-0.738330\pi\)
−0.680713 + 0.732550i \(0.738330\pi\)
\(308\) 0 0
\(309\) 7.61803 0.433375
\(310\) 0 0
\(311\) −5.94427 −0.337069 −0.168534 0.985696i \(-0.553903\pi\)
−0.168534 + 0.985696i \(0.553903\pi\)
\(312\) 0 0
\(313\) 10.6525 0.602114 0.301057 0.953606i \(-0.402661\pi\)
0.301057 + 0.953606i \(0.402661\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.38197 −0.189950 −0.0949751 0.995480i \(-0.530277\pi\)
−0.0949751 + 0.995480i \(0.530277\pi\)
\(318\) 0 0
\(319\) −8.32624 −0.466180
\(320\) 0 0
\(321\) 8.14590 0.454660
\(322\) 0 0
\(323\) 19.1591 1.06604
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −2.20163 −0.121750
\(328\) 0 0
\(329\) 0.854102 0.0470882
\(330\) 0 0
\(331\) −13.3607 −0.734369 −0.367185 0.930148i \(-0.619678\pi\)
−0.367185 + 0.930148i \(0.619678\pi\)
\(332\) 0 0
\(333\) 0.618034 0.0338681
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −35.8885 −1.95497 −0.977487 0.210997i \(-0.932329\pi\)
−0.977487 + 0.210997i \(0.932329\pi\)
\(338\) 0 0
\(339\) 5.09017 0.276460
\(340\) 0 0
\(341\) −8.70820 −0.471576
\(342\) 0 0
\(343\) 5.29180 0.285730
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.61803 0.194226 0.0971131 0.995273i \(-0.469039\pi\)
0.0971131 + 0.995273i \(0.469039\pi\)
\(348\) 0 0
\(349\) −8.12461 −0.434900 −0.217450 0.976071i \(-0.569774\pi\)
−0.217450 + 0.976071i \(0.569774\pi\)
\(350\) 0 0
\(351\) −19.0000 −1.01414
\(352\) 0 0
\(353\) −19.3607 −1.03047 −0.515233 0.857050i \(-0.672294\pi\)
−0.515233 + 0.857050i \(0.672294\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1.20163 0.0635968
\(358\) 0 0
\(359\) −31.8885 −1.68301 −0.841506 0.540247i \(-0.818331\pi\)
−0.841506 + 0.540247i \(0.818331\pi\)
\(360\) 0 0
\(361\) −4.83282 −0.254359
\(362\) 0 0
\(363\) −0.618034 −0.0324384
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 35.9787 1.87807 0.939037 0.343817i \(-0.111720\pi\)
0.939037 + 0.343817i \(0.111720\pi\)
\(368\) 0 0
\(369\) 28.0344 1.45941
\(370\) 0 0
\(371\) 1.38197 0.0717481
\(372\) 0 0
\(373\) −14.4164 −0.746453 −0.373227 0.927740i \(-0.621749\pi\)
−0.373227 + 0.927740i \(0.621749\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −45.5623 −2.34658
\(378\) 0 0
\(379\) −29.4721 −1.51388 −0.756941 0.653483i \(-0.773307\pi\)
−0.756941 + 0.653483i \(0.773307\pi\)
\(380\) 0 0
\(381\) 1.32624 0.0679452
\(382\) 0 0
\(383\) −18.9443 −0.968007 −0.484004 0.875066i \(-0.660818\pi\)
−0.484004 + 0.875066i \(0.660818\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −18.1803 −0.924159
\(388\) 0 0
\(389\) 32.9443 1.67034 0.835170 0.549991i \(-0.185369\pi\)
0.835170 + 0.549991i \(0.185369\pi\)
\(390\) 0 0
\(391\) 1.94427 0.0983261
\(392\) 0 0
\(393\) −7.76393 −0.391639
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 24.7984 1.24459 0.622297 0.782781i \(-0.286199\pi\)
0.622297 + 0.782781i \(0.286199\pi\)
\(398\) 0 0
\(399\) 0.888544 0.0444828
\(400\) 0 0
\(401\) 0.472136 0.0235773 0.0117887 0.999931i \(-0.496247\pi\)
0.0117887 + 0.999931i \(0.496247\pi\)
\(402\) 0 0
\(403\) −47.6525 −2.37374
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.236068 0.0117015
\(408\) 0 0
\(409\) −20.5279 −1.01504 −0.507519 0.861641i \(-0.669437\pi\)
−0.507519 + 0.861641i \(0.669437\pi\)
\(410\) 0 0
\(411\) −5.90983 −0.291510
\(412\) 0 0
\(413\) −4.09017 −0.201264
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −6.90983 −0.338376
\(418\) 0 0
\(419\) 12.5279 0.612026 0.306013 0.952027i \(-0.401005\pi\)
0.306013 + 0.952027i \(0.401005\pi\)
\(420\) 0 0
\(421\) 4.67376 0.227785 0.113893 0.993493i \(-0.463668\pi\)
0.113893 + 0.993493i \(0.463668\pi\)
\(422\) 0 0
\(423\) 5.85410 0.284636
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0.729490 0.0353025
\(428\) 0 0
\(429\) −3.38197 −0.163283
\(430\) 0 0
\(431\) 5.76393 0.277639 0.138819 0.990318i \(-0.455669\pi\)
0.138819 + 0.990318i \(0.455669\pi\)
\(432\) 0 0
\(433\) −10.8885 −0.523270 −0.261635 0.965167i \(-0.584262\pi\)
−0.261635 + 0.965167i \(0.584262\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.43769 0.0687742
\(438\) 0 0
\(439\) −23.9230 −1.14178 −0.570891 0.821026i \(-0.693402\pi\)
−0.570891 + 0.821026i \(0.693402\pi\)
\(440\) 0 0
\(441\) 17.9443 0.854489
\(442\) 0 0
\(443\) −24.2918 −1.15414 −0.577069 0.816695i \(-0.695804\pi\)
−0.577069 + 0.816695i \(0.695804\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 4.58359 0.216796
\(448\) 0 0
\(449\) 7.72949 0.364777 0.182389 0.983227i \(-0.441617\pi\)
0.182389 + 0.983227i \(0.441617\pi\)
\(450\) 0 0
\(451\) 10.7082 0.504230
\(452\) 0 0
\(453\) 9.85410 0.462986
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −19.1459 −0.895607 −0.447804 0.894132i \(-0.647794\pi\)
−0.447804 + 0.894132i \(0.647794\pi\)
\(458\) 0 0
\(459\) 17.6738 0.824941
\(460\) 0 0
\(461\) 6.88854 0.320831 0.160416 0.987050i \(-0.448717\pi\)
0.160416 + 0.987050i \(0.448717\pi\)
\(462\) 0 0
\(463\) 36.2361 1.68403 0.842016 0.539452i \(-0.181369\pi\)
0.842016 + 0.539452i \(0.181369\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 34.7082 1.60610 0.803052 0.595909i \(-0.203208\pi\)
0.803052 + 0.595909i \(0.203208\pi\)
\(468\) 0 0
\(469\) 4.58359 0.211651
\(470\) 0 0
\(471\) −2.76393 −0.127355
\(472\) 0 0
\(473\) −6.94427 −0.319298
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 9.47214 0.433699
\(478\) 0 0
\(479\) 4.41641 0.201791 0.100895 0.994897i \(-0.467829\pi\)
0.100895 + 0.994897i \(0.467829\pi\)
\(480\) 0 0
\(481\) 1.29180 0.0589008
\(482\) 0 0
\(483\) 0.0901699 0.00410287
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −25.1803 −1.14103 −0.570515 0.821287i \(-0.693256\pi\)
−0.570515 + 0.821287i \(0.693256\pi\)
\(488\) 0 0
\(489\) 3.94427 0.178366
\(490\) 0 0
\(491\) 7.65248 0.345351 0.172676 0.984979i \(-0.444759\pi\)
0.172676 + 0.984979i \(0.444759\pi\)
\(492\) 0 0
\(493\) 42.3820 1.90879
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.12461 0.140158
\(498\) 0 0
\(499\) −40.5623 −1.81582 −0.907909 0.419167i \(-0.862322\pi\)
−0.907909 + 0.419167i \(0.862322\pi\)
\(500\) 0 0
\(501\) −4.14590 −0.185225
\(502\) 0 0
\(503\) −28.1803 −1.25650 −0.628250 0.778012i \(-0.716228\pi\)
−0.628250 + 0.778012i \(0.716228\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −10.4721 −0.465084
\(508\) 0 0
\(509\) 26.8541 1.19029 0.595144 0.803619i \(-0.297095\pi\)
0.595144 + 0.803619i \(0.297095\pi\)
\(510\) 0 0
\(511\) 4.43769 0.196312
\(512\) 0 0
\(513\) 13.0689 0.577005
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 2.23607 0.0983422
\(518\) 0 0
\(519\) 6.97871 0.306332
\(520\) 0 0
\(521\) 2.76393 0.121090 0.0605450 0.998165i \(-0.480716\pi\)
0.0605450 + 0.998165i \(0.480716\pi\)
\(522\) 0 0
\(523\) −17.4164 −0.761566 −0.380783 0.924664i \(-0.624346\pi\)
−0.380783 + 0.924664i \(0.624346\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 44.3262 1.93088
\(528\) 0 0
\(529\) −22.8541 −0.993657
\(530\) 0 0
\(531\) −28.0344 −1.21659
\(532\) 0 0
\(533\) 58.5967 2.53811
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 1.29180 0.0557451
\(538\) 0 0
\(539\) 6.85410 0.295227
\(540\) 0 0
\(541\) 40.4508 1.73912 0.869559 0.493829i \(-0.164403\pi\)
0.869559 + 0.493829i \(0.164403\pi\)
\(542\) 0 0
\(543\) −2.70820 −0.116220
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −2.67376 −0.114322 −0.0571609 0.998365i \(-0.518205\pi\)
−0.0571609 + 0.998365i \(0.518205\pi\)
\(548\) 0 0
\(549\) 5.00000 0.213395
\(550\) 0 0
\(551\) 31.3394 1.33510
\(552\) 0 0
\(553\) −2.81966 −0.119904
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7.47214 0.316605 0.158302 0.987391i \(-0.449398\pi\)
0.158302 + 0.987391i \(0.449398\pi\)
\(558\) 0 0
\(559\) −38.0000 −1.60723
\(560\) 0 0
\(561\) 3.14590 0.132820
\(562\) 0 0
\(563\) −1.03444 −0.0435965 −0.0217983 0.999762i \(-0.506939\pi\)
−0.0217983 + 0.999762i \(0.506939\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −2.18034 −0.0915657
\(568\) 0 0
\(569\) −20.2016 −0.846896 −0.423448 0.905920i \(-0.639180\pi\)
−0.423448 + 0.905920i \(0.639180\pi\)
\(570\) 0 0
\(571\) 34.1591 1.42951 0.714756 0.699374i \(-0.246538\pi\)
0.714756 + 0.699374i \(0.246538\pi\)
\(572\) 0 0
\(573\) −7.43769 −0.310714
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −29.7426 −1.23820 −0.619101 0.785311i \(-0.712503\pi\)
−0.619101 + 0.785311i \(0.712503\pi\)
\(578\) 0 0
\(579\) 5.88854 0.244720
\(580\) 0 0
\(581\) 5.18034 0.214917
\(582\) 0 0
\(583\) 3.61803 0.149844
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.20163 0.297243 0.148621 0.988894i \(-0.452516\pi\)
0.148621 + 0.988894i \(0.452516\pi\)
\(588\) 0 0
\(589\) 32.7771 1.35056
\(590\) 0 0
\(591\) 6.81966 0.280523
\(592\) 0 0
\(593\) 16.3475 0.671312 0.335656 0.941985i \(-0.391042\pi\)
0.335656 + 0.941985i \(0.391042\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −9.03444 −0.369755
\(598\) 0 0
\(599\) 34.3951 1.40535 0.702673 0.711513i \(-0.251990\pi\)
0.702673 + 0.711513i \(0.251990\pi\)
\(600\) 0 0
\(601\) 4.67376 0.190647 0.0953234 0.995446i \(-0.469611\pi\)
0.0953234 + 0.995446i \(0.469611\pi\)
\(602\) 0 0
\(603\) 31.4164 1.27938
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 8.83282 0.358513 0.179256 0.983802i \(-0.442631\pi\)
0.179256 + 0.983802i \(0.442631\pi\)
\(608\) 0 0
\(609\) 1.96556 0.0796484
\(610\) 0 0
\(611\) 12.2361 0.495018
\(612\) 0 0
\(613\) −46.3262 −1.87110 −0.935550 0.353195i \(-0.885095\pi\)
−0.935550 + 0.353195i \(0.885095\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13.2361 0.532864 0.266432 0.963854i \(-0.414155\pi\)
0.266432 + 0.963854i \(0.414155\pi\)
\(618\) 0 0
\(619\) −40.7082 −1.63620 −0.818100 0.575075i \(-0.804973\pi\)
−0.818100 + 0.575075i \(0.804973\pi\)
\(620\) 0 0
\(621\) 1.32624 0.0532201
\(622\) 0 0
\(623\) 5.47214 0.219236
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 2.32624 0.0929010
\(628\) 0 0
\(629\) −1.20163 −0.0479120
\(630\) 0 0
\(631\) −38.4508 −1.53070 −0.765352 0.643612i \(-0.777435\pi\)
−0.765352 + 0.643612i \(0.777435\pi\)
\(632\) 0 0
\(633\) −0.618034 −0.0245646
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 37.5066 1.48606
\(638\) 0 0
\(639\) 21.4164 0.847220
\(640\) 0 0
\(641\) −10.4164 −0.411423 −0.205712 0.978613i \(-0.565951\pi\)
−0.205712 + 0.978613i \(0.565951\pi\)
\(642\) 0 0
\(643\) 25.4164 1.00233 0.501163 0.865353i \(-0.332906\pi\)
0.501163 + 0.865353i \(0.332906\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.4164 0.645396 0.322698 0.946502i \(-0.395410\pi\)
0.322698 + 0.946502i \(0.395410\pi\)
\(648\) 0 0
\(649\) −10.7082 −0.420334
\(650\) 0 0
\(651\) 2.05573 0.0805703
\(652\) 0 0
\(653\) 47.3820 1.85420 0.927100 0.374815i \(-0.122294\pi\)
0.927100 + 0.374815i \(0.122294\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 30.4164 1.18666
\(658\) 0 0
\(659\) 19.7426 0.769064 0.384532 0.923112i \(-0.374363\pi\)
0.384532 + 0.923112i \(0.374363\pi\)
\(660\) 0 0
\(661\) 26.5967 1.03449 0.517247 0.855836i \(-0.326957\pi\)
0.517247 + 0.855836i \(0.326957\pi\)
\(662\) 0 0
\(663\) 17.2148 0.668567
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 3.18034 0.123143
\(668\) 0 0
\(669\) 15.8541 0.612955
\(670\) 0 0
\(671\) 1.90983 0.0737282
\(672\) 0 0
\(673\) −18.5967 −0.716852 −0.358426 0.933558i \(-0.616686\pi\)
−0.358426 + 0.933558i \(0.616686\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.59675 0.0613680 0.0306840 0.999529i \(-0.490231\pi\)
0.0306840 + 0.999529i \(0.490231\pi\)
\(678\) 0 0
\(679\) 3.96556 0.152184
\(680\) 0 0
\(681\) −8.56231 −0.328108
\(682\) 0 0
\(683\) −1.18034 −0.0451645 −0.0225822 0.999745i \(-0.507189\pi\)
−0.0225822 + 0.999745i \(0.507189\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −7.79837 −0.297527
\(688\) 0 0
\(689\) 19.7984 0.754258
\(690\) 0 0
\(691\) −40.6312 −1.54568 −0.772842 0.634599i \(-0.781165\pi\)
−0.772842 + 0.634599i \(0.781165\pi\)
\(692\) 0 0
\(693\) −1.00000 −0.0379869
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −54.5066 −2.06458
\(698\) 0 0
\(699\) −10.2361 −0.387164
\(700\) 0 0
\(701\) −37.5279 −1.41741 −0.708704 0.705506i \(-0.750720\pi\)
−0.708704 + 0.705506i \(0.750720\pi\)
\(702\) 0 0
\(703\) −0.888544 −0.0335121
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.20163 0.195627
\(708\) 0 0
\(709\) −24.3607 −0.914885 −0.457442 0.889239i \(-0.651234\pi\)
−0.457442 + 0.889239i \(0.651234\pi\)
\(710\) 0 0
\(711\) −19.3262 −0.724791
\(712\) 0 0
\(713\) 3.32624 0.124569
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −13.8328 −0.516596
\(718\) 0 0
\(719\) −49.8328 −1.85845 −0.929225 0.369514i \(-0.879524\pi\)
−0.929225 + 0.369514i \(0.879524\pi\)
\(720\) 0 0
\(721\) 4.70820 0.175343
\(722\) 0 0
\(723\) −0.0901699 −0.00335346
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −13.0902 −0.485488 −0.242744 0.970090i \(-0.578047\pi\)
−0.242744 + 0.970090i \(0.578047\pi\)
\(728\) 0 0
\(729\) −8.50658 −0.315058
\(730\) 0 0
\(731\) 35.3475 1.30738
\(732\) 0 0
\(733\) −4.12461 −0.152346 −0.0761730 0.997095i \(-0.524270\pi\)
−0.0761730 + 0.997095i \(0.524270\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12.0000 0.442026
\(738\) 0 0
\(739\) 2.85410 0.104990 0.0524949 0.998621i \(-0.483283\pi\)
0.0524949 + 0.998621i \(0.483283\pi\)
\(740\) 0 0
\(741\) 12.7295 0.467630
\(742\) 0 0
\(743\) −47.2148 −1.73214 −0.866071 0.499921i \(-0.833362\pi\)
−0.866071 + 0.499921i \(0.833362\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 35.5066 1.29912
\(748\) 0 0
\(749\) 5.03444 0.183955
\(750\) 0 0
\(751\) 0.0344419 0.00125680 0.000628401 1.00000i \(-0.499800\pi\)
0.000628401 1.00000i \(0.499800\pi\)
\(752\) 0 0
\(753\) 11.4377 0.416813
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −4.88854 −0.177677 −0.0888386 0.996046i \(-0.528316\pi\)
−0.0888386 + 0.996046i \(0.528316\pi\)
\(758\) 0 0
\(759\) 0.236068 0.00856872
\(760\) 0 0
\(761\) 8.00000 0.290000 0.145000 0.989432i \(-0.453682\pi\)
0.145000 + 0.989432i \(0.453682\pi\)
\(762\) 0 0
\(763\) −1.36068 −0.0492599
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −58.5967 −2.11581
\(768\) 0 0
\(769\) −41.6525 −1.50203 −0.751013 0.660287i \(-0.770435\pi\)
−0.751013 + 0.660287i \(0.770435\pi\)
\(770\) 0 0
\(771\) 3.12461 0.112530
\(772\) 0 0
\(773\) 48.6312 1.74914 0.874571 0.484897i \(-0.161143\pi\)
0.874571 + 0.484897i \(0.161143\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −0.0557281 −0.00199923
\(778\) 0 0
\(779\) −40.3050 −1.44407
\(780\) 0 0
\(781\) 8.18034 0.292716
\(782\) 0 0
\(783\) 28.9098 1.03315
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −1.76393 −0.0628774 −0.0314387 0.999506i \(-0.510009\pi\)
−0.0314387 + 0.999506i \(0.510009\pi\)
\(788\) 0 0
\(789\) 9.56231 0.340427
\(790\) 0 0
\(791\) 3.14590 0.111855
\(792\) 0 0
\(793\) 10.4508 0.371121
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 35.5623 1.25968 0.629841 0.776724i \(-0.283120\pi\)
0.629841 + 0.776724i \(0.283120\pi\)
\(798\) 0 0
\(799\) −11.3820 −0.402665
\(800\) 0 0
\(801\) 37.5066 1.32523
\(802\) 0 0
\(803\) 11.6180 0.409992
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.61803 0.0569575
\(808\) 0 0
\(809\) −50.2492 −1.76667 −0.883334 0.468744i \(-0.844707\pi\)
−0.883334 + 0.468744i \(0.844707\pi\)
\(810\) 0 0
\(811\) 13.9443 0.489650 0.244825 0.969567i \(-0.421270\pi\)
0.244825 + 0.969567i \(0.421270\pi\)
\(812\) 0 0
\(813\) 7.85410 0.275455
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 26.1378 0.914445
\(818\) 0 0
\(819\) −5.47214 −0.191212
\(820\) 0 0
\(821\) −52.7214 −1.83999 −0.919994 0.391932i \(-0.871807\pi\)
−0.919994 + 0.391932i \(0.871807\pi\)
\(822\) 0 0
\(823\) 14.8328 0.517039 0.258520 0.966006i \(-0.416765\pi\)
0.258520 + 0.966006i \(0.416765\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 9.23607 0.321170 0.160585 0.987022i \(-0.448662\pi\)
0.160585 + 0.987022i \(0.448662\pi\)
\(828\) 0 0
\(829\) −23.1591 −0.804347 −0.402174 0.915563i \(-0.631745\pi\)
−0.402174 + 0.915563i \(0.631745\pi\)
\(830\) 0 0
\(831\) −16.1459 −0.560095
\(832\) 0 0
\(833\) −34.8885 −1.20882
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 30.2361 1.04511
\(838\) 0 0
\(839\) 8.85410 0.305678 0.152839 0.988251i \(-0.451158\pi\)
0.152839 + 0.988251i \(0.451158\pi\)
\(840\) 0 0
\(841\) 40.3262 1.39056
\(842\) 0 0
\(843\) −2.61803 −0.0901699
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −0.381966 −0.0131245
\(848\) 0 0
\(849\) −16.9656 −0.582256
\(850\) 0 0
\(851\) −0.0901699 −0.00309099
\(852\) 0 0
\(853\) 11.5623 0.395886 0.197943 0.980214i \(-0.436574\pi\)
0.197943 + 0.980214i \(0.436574\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 11.8328 0.404201 0.202101 0.979365i \(-0.435223\pi\)
0.202101 + 0.979365i \(0.435223\pi\)
\(858\) 0 0
\(859\) 21.7082 0.740674 0.370337 0.928897i \(-0.379242\pi\)
0.370337 + 0.928897i \(0.379242\pi\)
\(860\) 0 0
\(861\) −2.52786 −0.0861494
\(862\) 0 0
\(863\) 52.4164 1.78428 0.892138 0.451764i \(-0.149205\pi\)
0.892138 + 0.451764i \(0.149205\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −5.50658 −0.187013
\(868\) 0 0
\(869\) −7.38197 −0.250416
\(870\) 0 0
\(871\) 65.6656 2.22500
\(872\) 0 0
\(873\) 27.1803 0.919915
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 45.8885 1.54955 0.774773 0.632239i \(-0.217864\pi\)
0.774773 + 0.632239i \(0.217864\pi\)
\(878\) 0 0
\(879\) −7.12461 −0.240307
\(880\) 0 0
\(881\) 14.4508 0.486861 0.243431 0.969918i \(-0.421727\pi\)
0.243431 + 0.969918i \(0.421727\pi\)
\(882\) 0 0
\(883\) −25.8328 −0.869343 −0.434672 0.900589i \(-0.643136\pi\)
−0.434672 + 0.900589i \(0.643136\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 17.0000 0.570804 0.285402 0.958408i \(-0.407873\pi\)
0.285402 + 0.958408i \(0.407873\pi\)
\(888\) 0 0
\(889\) 0.819660 0.0274905
\(890\) 0 0
\(891\) −5.70820 −0.191232
\(892\) 0 0
\(893\) −8.41641 −0.281644
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1.29180 0.0431318
\(898\) 0 0
\(899\) 72.5066 2.41823
\(900\) 0 0
\(901\) −18.4164 −0.613540
\(902\) 0 0
\(903\) 1.63932 0.0545532
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 23.7771 0.789505 0.394753 0.918787i \(-0.370830\pi\)
0.394753 + 0.918787i \(0.370830\pi\)
\(908\) 0 0
\(909\) 35.6525 1.18252
\(910\) 0 0
\(911\) 13.0557 0.432556 0.216278 0.976332i \(-0.430608\pi\)
0.216278 + 0.976332i \(0.430608\pi\)
\(912\) 0 0
\(913\) 13.5623 0.448847
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −4.79837 −0.158456
\(918\) 0 0
\(919\) 52.3607 1.72722 0.863610 0.504161i \(-0.168198\pi\)
0.863610 + 0.504161i \(0.168198\pi\)
\(920\) 0 0
\(921\) 14.7426 0.485787
\(922\) 0 0
\(923\) 44.7639 1.47342
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 32.2705 1.05990
\(928\) 0 0
\(929\) −36.8197 −1.20801 −0.604007 0.796979i \(-0.706430\pi\)
−0.604007 + 0.796979i \(0.706430\pi\)
\(930\) 0 0
\(931\) −25.7984 −0.845508
\(932\) 0 0
\(933\) 3.67376 0.120274
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0.583592 0.0190651 0.00953256 0.999955i \(-0.496966\pi\)
0.00953256 + 0.999955i \(0.496966\pi\)
\(938\) 0 0
\(939\) −6.58359 −0.214847
\(940\) 0 0
\(941\) −8.81966 −0.287513 −0.143756 0.989613i \(-0.545918\pi\)
−0.143756 + 0.989613i \(0.545918\pi\)
\(942\) 0 0
\(943\) −4.09017 −0.133194
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8.12461 0.264014 0.132007 0.991249i \(-0.457858\pi\)
0.132007 + 0.991249i \(0.457858\pi\)
\(948\) 0 0
\(949\) 63.5755 2.06375
\(950\) 0 0
\(951\) 2.09017 0.0677784
\(952\) 0 0
\(953\) 0.111456 0.00361042 0.00180521 0.999998i \(-0.499425\pi\)
0.00180521 + 0.999998i \(0.499425\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 5.14590 0.166343
\(958\) 0 0
\(959\) −3.65248 −0.117945
\(960\) 0 0
\(961\) 44.8328 1.44622
\(962\) 0 0
\(963\) 34.5066 1.11196
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −2.72949 −0.0877745 −0.0438872 0.999036i \(-0.513974\pi\)
−0.0438872 + 0.999036i \(0.513974\pi\)
\(968\) 0 0
\(969\) −11.8409 −0.380386
\(970\) 0 0
\(971\) 0.381966 0.0122579 0.00612894 0.999981i \(-0.498049\pi\)
0.00612894 + 0.999981i \(0.498049\pi\)
\(972\) 0 0
\(973\) −4.27051 −0.136906
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −33.5410 −1.07307 −0.536536 0.843877i \(-0.680267\pi\)
−0.536536 + 0.843877i \(0.680267\pi\)
\(978\) 0 0
\(979\) 14.3262 0.457869
\(980\) 0 0
\(981\) −9.32624 −0.297764
\(982\) 0 0
\(983\) −40.9443 −1.30592 −0.652960 0.757393i \(-0.726473\pi\)
−0.652960 + 0.757393i \(0.726473\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −0.527864 −0.0168021
\(988\) 0 0
\(989\) 2.65248 0.0843438
\(990\) 0 0
\(991\) 49.0902 1.55940 0.779700 0.626153i \(-0.215371\pi\)
0.779700 + 0.626153i \(0.215371\pi\)
\(992\) 0 0
\(993\) 8.25735 0.262039
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −56.0344 −1.77463 −0.887314 0.461165i \(-0.847432\pi\)
−0.887314 + 0.461165i \(0.847432\pi\)
\(998\) 0 0
\(999\) −0.819660 −0.0259329
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4400.2.a.bo.1.1 2
4.3 odd 2 2200.2.a.p.1.2 2
5.2 odd 4 4400.2.b.z.4049.3 4
5.3 odd 4 4400.2.b.z.4049.2 4
5.4 even 2 4400.2.a.bm.1.2 2
20.3 even 4 2200.2.b.k.1849.3 4
20.7 even 4 2200.2.b.k.1849.2 4
20.19 odd 2 2200.2.a.q.1.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2200.2.a.p.1.2 2 4.3 odd 2
2200.2.a.q.1.1 yes 2 20.19 odd 2
2200.2.b.k.1849.2 4 20.7 even 4
2200.2.b.k.1849.3 4 20.3 even 4
4400.2.a.bm.1.2 2 5.4 even 2
4400.2.a.bo.1.1 2 1.1 even 1 trivial
4400.2.b.z.4049.2 4 5.3 odd 4
4400.2.b.z.4049.3 4 5.2 odd 4