# Properties

 Label 4400.2.a.be Level $4400$ Weight $2$ Character orbit 4400.a Self dual yes Analytic conductor $35.134$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$4400 = 2^{4} \cdot 5^{2} \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4400.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$35.1341768894$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 440) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q + 3 q^{3} + q^{7} + 6 q^{9} + O(q^{10})$$ $$q + 3 q^{3} + q^{7} + 6 q^{9} + q^{11} + 6 q^{13} - 3 q^{17} + 5 q^{19} + 3 q^{21} - 2 q^{23} + 9 q^{27} - 5 q^{29} - 5 q^{31} + 3 q^{33} + q^{37} + 18 q^{39} - 2 q^{41} + 12 q^{43} - 2 q^{47} - 6 q^{49} - 9 q^{51} + 13 q^{53} + 15 q^{57} - 2 q^{59} + q^{61} + 6 q^{63} + 16 q^{67} - 6 q^{69} - 15 q^{71} - 10 q^{73} + q^{77} - 2 q^{79} + 9 q^{81} - 14 q^{83} - 15 q^{87} + 9 q^{89} + 6 q^{91} - 15 q^{93} + 16 q^{97} + 6 q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 3.00000 0 0 0 1.00000 0 6.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$5$$ $$1$$
$$11$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4400.2.a.be 1
4.b odd 2 1 2200.2.a.a 1
5.b even 2 1 880.2.a.a 1
5.c odd 4 2 4400.2.b.a 2
15.d odd 2 1 7920.2.a.e 1
20.d odd 2 1 440.2.a.d 1
20.e even 4 2 2200.2.b.b 2
40.e odd 2 1 3520.2.a.a 1
40.f even 2 1 3520.2.a.bh 1
55.d odd 2 1 9680.2.a.a 1
60.h even 2 1 3960.2.a.f 1
220.g even 2 1 4840.2.a.i 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
440.2.a.d 1 20.d odd 2 1
880.2.a.a 1 5.b even 2 1
2200.2.a.a 1 4.b odd 2 1
2200.2.b.b 2 20.e even 4 2
3520.2.a.a 1 40.e odd 2 1
3520.2.a.bh 1 40.f even 2 1
3960.2.a.f 1 60.h even 2 1
4400.2.a.be 1 1.a even 1 1 trivial
4400.2.b.a 2 5.c odd 4 2
4840.2.a.i 1 220.g even 2 1
7920.2.a.e 1 15.d odd 2 1
9680.2.a.a 1 55.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(4400))$$:

 $$T_{3} - 3$$ $$T_{7} - 1$$ $$T_{13} - 6$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$-3 + T$$
$5$ $$T$$
$7$ $$-1 + T$$
$11$ $$-1 + T$$
$13$ $$-6 + T$$
$17$ $$3 + T$$
$19$ $$-5 + T$$
$23$ $$2 + T$$
$29$ $$5 + T$$
$31$ $$5 + T$$
$37$ $$-1 + T$$
$41$ $$2 + T$$
$43$ $$-12 + T$$
$47$ $$2 + T$$
$53$ $$-13 + T$$
$59$ $$2 + T$$
$61$ $$-1 + T$$
$67$ $$-16 + T$$
$71$ $$15 + T$$
$73$ $$10 + T$$
$79$ $$2 + T$$
$83$ $$14 + T$$
$89$ $$-9 + T$$
$97$ $$-16 + T$$