Properties

Label 4400.2.a.ba
Level $4400$
Weight $2$
Character orbit 4400.a
Self dual yes
Analytic conductor $35.134$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4400 = 2^{4} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4400.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(35.1341768894\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 2 q^{3} + q^{9} + O(q^{10}) \) \( q + 2 q^{3} + q^{9} - q^{11} + 2 q^{13} - 6 q^{17} - 4 q^{19} - 2 q^{23} - 4 q^{27} - 10 q^{29} + 8 q^{31} - 2 q^{33} - 8 q^{37} + 4 q^{39} - 2 q^{41} + 2 q^{47} - 7 q^{49} - 12 q^{51} - 8 q^{57} + 12 q^{59} - 10 q^{61} - 6 q^{67} - 4 q^{69} - 6 q^{73} - 12 q^{79} - 11 q^{81} + 16 q^{83} - 20 q^{87} + 18 q^{89} + 16 q^{93} + 12 q^{97} - q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 2.00000 0 0 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(-1\)
\(11\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4400.2.a.ba 1
4.b odd 2 1 550.2.a.c 1
5.b even 2 1 4400.2.a.f 1
5.c odd 4 2 880.2.b.e 2
12.b even 2 1 4950.2.a.bj 1
20.d odd 2 1 550.2.a.k 1
20.e even 4 2 110.2.b.b 2
44.c even 2 1 6050.2.a.x 1
60.h even 2 1 4950.2.a.j 1
60.l odd 4 2 990.2.c.c 2
220.g even 2 1 6050.2.a.q 1
220.i odd 4 2 1210.2.b.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.2.b.b 2 20.e even 4 2
550.2.a.c 1 4.b odd 2 1
550.2.a.k 1 20.d odd 2 1
880.2.b.e 2 5.c odd 4 2
990.2.c.c 2 60.l odd 4 2
1210.2.b.d 2 220.i odd 4 2
4400.2.a.f 1 5.b even 2 1
4400.2.a.ba 1 1.a even 1 1 trivial
4950.2.a.j 1 60.h even 2 1
4950.2.a.bj 1 12.b even 2 1
6050.2.a.q 1 220.g even 2 1
6050.2.a.x 1 44.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4400))\):

\( T_{3} - 2 \)
\( T_{7} \)
\( T_{13} - 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( -2 + T \)
$5$ \( T \)
$7$ \( T \)
$11$ \( 1 + T \)
$13$ \( -2 + T \)
$17$ \( 6 + T \)
$19$ \( 4 + T \)
$23$ \( 2 + T \)
$29$ \( 10 + T \)
$31$ \( -8 + T \)
$37$ \( 8 + T \)
$41$ \( 2 + T \)
$43$ \( T \)
$47$ \( -2 + T \)
$53$ \( T \)
$59$ \( -12 + T \)
$61$ \( 10 + T \)
$67$ \( 6 + T \)
$71$ \( T \)
$73$ \( 6 + T \)
$79$ \( 12 + T \)
$83$ \( -16 + T \)
$89$ \( -18 + T \)
$97$ \( -12 + T \)
show more
show less