Defining parameters
| Level: | \( N \) | \(=\) | \( 4400 = 2^{4} \cdot 5^{2} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 4400.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 57 \) | ||
| Sturm bound: | \(1440\) | ||
| Trace bound: | \(13\) | ||
| Distinguishing \(T_p\): | \(3\), \(7\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4400))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 756 | 95 | 661 |
| Cusp forms | 685 | 95 | 590 |
| Eisenstein series | 71 | 0 | 71 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(5\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(90\) | \(10\) | \(80\) | \(82\) | \(10\) | \(72\) | \(8\) | \(0\) | \(8\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(99\) | \(13\) | \(86\) | \(90\) | \(13\) | \(77\) | \(9\) | \(0\) | \(9\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(96\) | \(15\) | \(81\) | \(87\) | \(15\) | \(72\) | \(9\) | \(0\) | \(9\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(93\) | \(9\) | \(84\) | \(84\) | \(9\) | \(75\) | \(9\) | \(0\) | \(9\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(99\) | \(11\) | \(88\) | \(90\) | \(11\) | \(79\) | \(9\) | \(0\) | \(9\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(90\) | \(11\) | \(79\) | \(81\) | \(11\) | \(70\) | \(9\) | \(0\) | \(9\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(93\) | \(13\) | \(80\) | \(84\) | \(13\) | \(71\) | \(9\) | \(0\) | \(9\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(96\) | \(13\) | \(83\) | \(87\) | \(13\) | \(74\) | \(9\) | \(0\) | \(9\) | |||
| Plus space | \(+\) | \(366\) | \(43\) | \(323\) | \(331\) | \(43\) | \(288\) | \(35\) | \(0\) | \(35\) | |||||
| Minus space | \(-\) | \(390\) | \(52\) | \(338\) | \(354\) | \(52\) | \(302\) | \(36\) | \(0\) | \(36\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4400))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4400))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4400)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(200))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(220))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(275))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(400))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(440))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(550))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(880))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1100))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2200))\)\(^{\oplus 2}\)