Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [440,2,Mod(51,440)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(440, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 5, 0, 7]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("440.51");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 440 = 2^{3} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 440.z (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.51341768894\) |
Analytic rank: | \(0\) |
Dimension: | \(192\) |
Relative dimension: | \(48\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
51.1 | −1.41067 | + | 0.100069i | −0.666731 | + | 2.05199i | 1.97997 | − | 0.282327i | 0.587785 | + | 0.809017i | 0.735197 | − | 2.96139i | 0.587432 | + | 1.80793i | −2.76483 | + | 0.596404i | −1.33907 | − | 0.972894i | −0.910128 | − | 1.08244i |
51.2 | −1.40817 | + | 0.130636i | −0.594187 | + | 1.82872i | 1.96587 | − | 0.367913i | −0.587785 | − | 0.809017i | 0.597819 | − | 2.65277i | −0.938517 | − | 2.88846i | −2.72021 | + | 0.774896i | −0.564110 | − | 0.409850i | 0.933386 | + | 1.06245i |
51.3 | −1.39580 | + | 0.227480i | 0.306155 | − | 0.942248i | 1.89651 | − | 0.635032i | 0.587785 | + | 0.809017i | −0.212988 | + | 1.38483i | −0.491825 | − | 1.51368i | −2.50268 | + | 1.31779i | 1.63295 | + | 1.18641i | −1.00446 | − | 0.995515i |
51.4 | −1.39567 | + | 0.228239i | 0.998789 | − | 3.07396i | 1.89581 | − | 0.637095i | −0.587785 | − | 0.809017i | −0.692387 | + | 4.51821i | 0.520561 | + | 1.60212i | −2.50053 | + | 1.32188i | −6.02458 | − | 4.37711i | 1.00501 | + | 0.994969i |
51.5 | −1.35051 | − | 0.419669i | 0.109136 | − | 0.335887i | 1.64776 | + | 1.13353i | −0.587785 | − | 0.809017i | −0.288351 | + | 0.407818i | −0.624312 | − | 1.92144i | −1.74960 | − | 2.22236i | 2.32614 | + | 1.69004i | 0.454291 | + | 1.33926i |
51.6 | −1.30140 | − | 0.553504i | −1.02351 | + | 3.15004i | 1.38727 | + | 1.44066i | 0.587785 | + | 0.809017i | 3.07555 | − | 3.53293i | −0.961524 | − | 2.95927i | −1.00797 | − | 2.64272i | −6.44810 | − | 4.68482i | −0.317148 | − | 1.37819i |
51.7 | −1.29442 | + | 0.569632i | 0.168837 | − | 0.519626i | 1.35104 | − | 1.47468i | −0.587785 | − | 0.809017i | 0.0774504 | + | 0.768789i | 0.996469 | + | 3.06682i | −0.908781 | + | 2.67845i | 2.18555 | + | 1.58789i | 1.22168 | + | 0.712385i |
51.8 | −1.16000 | − | 0.808956i | 0.734943 | − | 2.26192i | 0.691182 | + | 1.87677i | 0.587785 | + | 0.809017i | −2.68233 | + | 2.02929i | 1.41521 | + | 4.35558i | 0.716456 | − | 2.73618i | −2.14910 | − | 1.56142i | −0.0273697 | − | 1.41395i |
51.9 | −1.10740 | + | 0.879582i | −0.399394 | + | 1.22921i | 0.452671 | − | 1.94810i | 0.587785 | + | 0.809017i | −0.638901 | − | 1.71253i | −1.45788 | − | 4.48690i | 1.21222 | + | 2.55549i | 1.07561 | + | 0.781477i | −1.36251 | − | 0.378900i |
51.10 | −1.08101 | + | 0.911823i | −0.438021 | + | 1.34809i | 0.337159 | − | 1.97138i | 0.587785 | + | 0.809017i | −0.755715 | − | 1.85670i | 0.797526 | + | 2.45453i | 1.43307 | + | 2.43850i | 0.801564 | + | 0.582370i | −1.37308 | − | 0.338598i |
51.11 | −1.07561 | − | 0.918190i | −0.214814 | + | 0.661130i | 0.313853 | + | 1.97522i | 0.587785 | + | 0.809017i | 0.838099 | − | 0.513875i | 0.110386 | + | 0.339734i | 1.47605 | − | 2.41273i | 2.03610 | + | 1.47932i | 0.110607 | − | 1.40988i |
51.12 | −0.971538 | − | 1.02767i | −0.610310 | + | 1.87834i | −0.112226 | + | 1.99685i | −0.587785 | − | 0.809017i | 2.52326 | − | 1.19768i | −0.0910362 | − | 0.280181i | 2.16114 | − | 1.82468i | −0.728640 | − | 0.529388i | −0.260349 | + | 1.39004i |
51.13 | −0.925734 | − | 1.06912i | 0.319915 | − | 0.984597i | −0.286035 | + | 1.97944i | −0.587785 | − | 0.809017i | −1.34881 | + | 0.569447i | 0.427803 | + | 1.31664i | 2.38105 | − | 1.52663i | 1.55997 | + | 1.13338i | −0.320804 | + | 1.37735i |
51.14 | −0.916258 | + | 1.07725i | 0.732229 | − | 2.25357i | −0.320942 | − | 1.97408i | 0.587785 | + | 0.809017i | 1.75675 | + | 2.85365i | 1.04806 | + | 3.22559i | 2.42065 | + | 1.46303i | −2.11536 | − | 1.53690i | −1.41008 | − | 0.108076i |
51.15 | −0.741388 | + | 1.20430i | 0.732229 | − | 2.25357i | −0.900688 | − | 1.78571i | −0.587785 | − | 0.809017i | 2.17111 | + | 2.55259i | −1.04806 | − | 3.22559i | 2.81829 | + | 0.239202i | −2.11536 | − | 1.53690i | 1.41008 | − | 0.108076i |
51.16 | −0.697229 | − | 1.23040i | 0.475935 | − | 1.46478i | −1.02774 | + | 1.71573i | 0.587785 | + | 0.809017i | −2.13409 | + | 0.435697i | −1.24708 | − | 3.83812i | 2.82760 | + | 0.0682723i | 0.507994 | + | 0.369080i | 0.585590 | − | 1.28728i |
51.17 | −0.605678 | − | 1.27795i | 0.877118 | − | 2.69949i | −1.26631 | + | 1.54805i | −0.587785 | − | 0.809017i | −3.98106 | + | 0.514110i | 0.316509 | + | 0.974113i | 2.74531 | + | 0.680657i | −4.09087 | − | 2.97219i | −0.677874 | + | 1.24116i |
51.18 | −0.533145 | + | 1.30987i | −0.438021 | + | 1.34809i | −1.43151 | − | 1.39670i | −0.587785 | − | 0.809017i | −1.53229 | − | 1.29248i | −0.797526 | − | 2.45453i | 2.59270 | − | 1.13045i | 0.801564 | + | 0.582370i | 1.37308 | − | 0.338598i |
51.19 | −0.494327 | + | 1.32501i | −0.399394 | + | 1.22921i | −1.51128 | − | 1.30997i | −0.587785 | − | 0.809017i | −1.43128 | − | 1.13683i | 1.45788 | + | 4.48690i | 2.48279 | − | 1.35490i | 1.07561 | + | 0.781477i | 1.36251 | − | 0.378900i |
51.20 | −0.241174 | − | 1.39350i | −0.827456 | + | 2.54665i | −1.88367 | + | 0.672150i | −0.587785 | − | 0.809017i | 3.74831 | + | 0.538873i | 0.147083 | + | 0.452674i | 1.39093 | + | 2.46279i | −3.37367 | − | 2.45112i | −0.985605 | + | 1.01419i |
See next 80 embeddings (of 192 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | inner |
11.d | odd | 10 | 1 | inner |
88.k | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 440.2.z.a | ✓ | 192 |
8.d | odd | 2 | 1 | inner | 440.2.z.a | ✓ | 192 |
11.d | odd | 10 | 1 | inner | 440.2.z.a | ✓ | 192 |
88.k | even | 10 | 1 | inner | 440.2.z.a | ✓ | 192 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
440.2.z.a | ✓ | 192 | 1.a | even | 1 | 1 | trivial |
440.2.z.a | ✓ | 192 | 8.d | odd | 2 | 1 | inner |
440.2.z.a | ✓ | 192 | 11.d | odd | 10 | 1 | inner |
440.2.z.a | ✓ | 192 | 88.k | even | 10 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(440, [\chi])\).