Properties

Label 440.2.z.a
Level $440$
Weight $2$
Character orbit 440.z
Analytic conductor $3.513$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [440,2,Mod(51,440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(440, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 0, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("440.51");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 440.z (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.51341768894\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(48\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 192 q - 4 q^{4} - 48 q^{9} + 8 q^{11} - 10 q^{14} - 16 q^{16} - 50 q^{18} + 4 q^{20} - 56 q^{22} + 60 q^{24} + 48 q^{25} + 20 q^{26} + 50 q^{28} + 8 q^{33} - 12 q^{34} - 64 q^{36} - 50 q^{38} - 110 q^{42}+ \cdots - 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
51.1 −1.41067 + 0.100069i −0.666731 + 2.05199i 1.97997 0.282327i 0.587785 + 0.809017i 0.735197 2.96139i 0.587432 + 1.80793i −2.76483 + 0.596404i −1.33907 0.972894i −0.910128 1.08244i
51.2 −1.40817 + 0.130636i −0.594187 + 1.82872i 1.96587 0.367913i −0.587785 0.809017i 0.597819 2.65277i −0.938517 2.88846i −2.72021 + 0.774896i −0.564110 0.409850i 0.933386 + 1.06245i
51.3 −1.39580 + 0.227480i 0.306155 0.942248i 1.89651 0.635032i 0.587785 + 0.809017i −0.212988 + 1.38483i −0.491825 1.51368i −2.50268 + 1.31779i 1.63295 + 1.18641i −1.00446 0.995515i
51.4 −1.39567 + 0.228239i 0.998789 3.07396i 1.89581 0.637095i −0.587785 0.809017i −0.692387 + 4.51821i 0.520561 + 1.60212i −2.50053 + 1.32188i −6.02458 4.37711i 1.00501 + 0.994969i
51.5 −1.35051 0.419669i 0.109136 0.335887i 1.64776 + 1.13353i −0.587785 0.809017i −0.288351 + 0.407818i −0.624312 1.92144i −1.74960 2.22236i 2.32614 + 1.69004i 0.454291 + 1.33926i
51.6 −1.30140 0.553504i −1.02351 + 3.15004i 1.38727 + 1.44066i 0.587785 + 0.809017i 3.07555 3.53293i −0.961524 2.95927i −1.00797 2.64272i −6.44810 4.68482i −0.317148 1.37819i
51.7 −1.29442 + 0.569632i 0.168837 0.519626i 1.35104 1.47468i −0.587785 0.809017i 0.0774504 + 0.768789i 0.996469 + 3.06682i −0.908781 + 2.67845i 2.18555 + 1.58789i 1.22168 + 0.712385i
51.8 −1.16000 0.808956i 0.734943 2.26192i 0.691182 + 1.87677i 0.587785 + 0.809017i −2.68233 + 2.02929i 1.41521 + 4.35558i 0.716456 2.73618i −2.14910 1.56142i −0.0273697 1.41395i
51.9 −1.10740 + 0.879582i −0.399394 + 1.22921i 0.452671 1.94810i 0.587785 + 0.809017i −0.638901 1.71253i −1.45788 4.48690i 1.21222 + 2.55549i 1.07561 + 0.781477i −1.36251 0.378900i
51.10 −1.08101 + 0.911823i −0.438021 + 1.34809i 0.337159 1.97138i 0.587785 + 0.809017i −0.755715 1.85670i 0.797526 + 2.45453i 1.43307 + 2.43850i 0.801564 + 0.582370i −1.37308 0.338598i
51.11 −1.07561 0.918190i −0.214814 + 0.661130i 0.313853 + 1.97522i 0.587785 + 0.809017i 0.838099 0.513875i 0.110386 + 0.339734i 1.47605 2.41273i 2.03610 + 1.47932i 0.110607 1.40988i
51.12 −0.971538 1.02767i −0.610310 + 1.87834i −0.112226 + 1.99685i −0.587785 0.809017i 2.52326 1.19768i −0.0910362 0.280181i 2.16114 1.82468i −0.728640 0.529388i −0.260349 + 1.39004i
51.13 −0.925734 1.06912i 0.319915 0.984597i −0.286035 + 1.97944i −0.587785 0.809017i −1.34881 + 0.569447i 0.427803 + 1.31664i 2.38105 1.52663i 1.55997 + 1.13338i −0.320804 + 1.37735i
51.14 −0.916258 + 1.07725i 0.732229 2.25357i −0.320942 1.97408i 0.587785 + 0.809017i 1.75675 + 2.85365i 1.04806 + 3.22559i 2.42065 + 1.46303i −2.11536 1.53690i −1.41008 0.108076i
51.15 −0.741388 + 1.20430i 0.732229 2.25357i −0.900688 1.78571i −0.587785 0.809017i 2.17111 + 2.55259i −1.04806 3.22559i 2.81829 + 0.239202i −2.11536 1.53690i 1.41008 0.108076i
51.16 −0.697229 1.23040i 0.475935 1.46478i −1.02774 + 1.71573i 0.587785 + 0.809017i −2.13409 + 0.435697i −1.24708 3.83812i 2.82760 + 0.0682723i 0.507994 + 0.369080i 0.585590 1.28728i
51.17 −0.605678 1.27795i 0.877118 2.69949i −1.26631 + 1.54805i −0.587785 0.809017i −3.98106 + 0.514110i 0.316509 + 0.974113i 2.74531 + 0.680657i −4.09087 2.97219i −0.677874 + 1.24116i
51.18 −0.533145 + 1.30987i −0.438021 + 1.34809i −1.43151 1.39670i −0.587785 0.809017i −1.53229 1.29248i −0.797526 2.45453i 2.59270 1.13045i 0.801564 + 0.582370i 1.37308 0.338598i
51.19 −0.494327 + 1.32501i −0.399394 + 1.22921i −1.51128 1.30997i −0.587785 0.809017i −1.43128 1.13683i 1.45788 + 4.48690i 2.48279 1.35490i 1.07561 + 0.781477i 1.36251 0.378900i
51.20 −0.241174 1.39350i −0.827456 + 2.54665i −1.88367 + 0.672150i −0.587785 0.809017i 3.74831 + 0.538873i 0.147083 + 0.452674i 1.39093 + 2.46279i −3.37367 2.45112i −0.985605 + 1.01419i
See next 80 embeddings (of 192 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 51.48
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner
11.d odd 10 1 inner
88.k even 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 440.2.z.a 192
8.d odd 2 1 inner 440.2.z.a 192
11.d odd 10 1 inner 440.2.z.a 192
88.k even 10 1 inner 440.2.z.a 192
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
440.2.z.a 192 1.a even 1 1 trivial
440.2.z.a 192 8.d odd 2 1 inner
440.2.z.a 192 11.d odd 10 1 inner
440.2.z.a 192 88.k even 10 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(440, [\chi])\).