Properties

Label 440.2.y.d.361.4
Level $440$
Weight $2$
Character 440.361
Analytic conductor $3.513$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [440,2,Mod(81,440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(440, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("440.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 440.y (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.51341768894\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 14 x^{14} - 32 x^{13} + 141 x^{12} - 220 x^{11} + 1105 x^{10} - 1935 x^{9} + \cdots + 10000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 361.4
Root \(-2.35019 + 1.70752i\) of defining polynomial
Character \(\chi\) \(=\) 440.361
Dual form 440.2.y.d.401.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.35019 - 1.70752i) q^{3} +(0.309017 + 0.951057i) q^{5} +(1.76616 + 1.28319i) q^{7} +(1.68075 - 5.17281i) q^{9} +(-2.98460 - 1.44644i) q^{11} +(1.90383 - 5.85939i) q^{13} +(2.35019 + 1.70752i) q^{15} +(2.20273 + 6.77930i) q^{17} +(-5.14521 + 3.73822i) q^{19} +6.34188 q^{21} +2.17735 q^{23} +(-0.809017 + 0.587785i) q^{25} +(-2.18949 - 6.73856i) q^{27} +(2.58318 + 1.87679i) q^{29} +(1.35789 - 4.17917i) q^{31} +(-9.48419 + 1.69684i) q^{33} +(-0.674612 + 2.07624i) q^{35} +(-4.28336 - 3.11205i) q^{37} +(-5.53062 - 17.0215i) q^{39} +(-2.65866 + 1.93163i) q^{41} -6.83874 q^{43} +5.43902 q^{45} +(3.48237 - 2.53009i) q^{47} +(-0.690378 - 2.12477i) q^{49} +(16.7526 + 12.1715i) q^{51} +(-3.28052 + 10.0964i) q^{53} +(0.453350 - 3.28549i) q^{55} +(-5.70918 + 17.5711i) q^{57} +(-11.1568 - 8.10589i) q^{59} +(2.27216 + 6.99299i) q^{61} +(9.60616 - 6.97929i) q^{63} +6.16092 q^{65} -7.67154 q^{67} +(5.11720 - 3.71787i) q^{69} +(1.77417 + 5.46033i) q^{71} +(3.96075 + 2.87765i) q^{73} +(-0.897694 + 2.76282i) q^{75} +(-3.41522 - 6.38444i) q^{77} +(-2.50738 + 7.71694i) q^{79} +(-3.45115 - 2.50741i) q^{81} +(1.30524 + 4.01711i) q^{83} +(-5.76682 + 4.18984i) q^{85} +9.27563 q^{87} +16.8037 q^{89} +(10.8812 - 7.90563i) q^{91} +(-3.94468 - 12.1405i) q^{93} +(-5.14521 - 3.73822i) q^{95} +(-1.01222 + 3.11531i) q^{97} +(-12.4985 + 13.0077i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 3 q^{3} - 4 q^{5} + 8 q^{7} - 7 q^{9} - 7 q^{11} - 11 q^{13} - 3 q^{15} + 9 q^{17} - 2 q^{19} + 12 q^{21} + 20 q^{23} - 4 q^{25} - 9 q^{27} + q^{29} - 2 q^{31} - 32 q^{33} - 2 q^{35} - 16 q^{37}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/440\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(221\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.35019 1.70752i 1.35688 0.985834i 0.358248 0.933626i \(-0.383374\pi\)
0.998636 0.0522082i \(-0.0166259\pi\)
\(4\) 0 0
\(5\) 0.309017 + 0.951057i 0.138197 + 0.425325i
\(6\) 0 0
\(7\) 1.76616 + 1.28319i 0.667545 + 0.485000i 0.869203 0.494456i \(-0.164633\pi\)
−0.201657 + 0.979456i \(0.564633\pi\)
\(8\) 0 0
\(9\) 1.68075 5.17281i 0.560250 1.72427i
\(10\) 0 0
\(11\) −2.98460 1.44644i −0.899890 0.436117i
\(12\) 0 0
\(13\) 1.90383 5.85939i 0.528028 1.62510i −0.230223 0.973138i \(-0.573945\pi\)
0.758250 0.651964i \(-0.226055\pi\)
\(14\) 0 0
\(15\) 2.35019 + 1.70752i 0.606817 + 0.440879i
\(16\) 0 0
\(17\) 2.20273 + 6.77930i 0.534240 + 1.64422i 0.745285 + 0.666746i \(0.232314\pi\)
−0.211044 + 0.977477i \(0.567686\pi\)
\(18\) 0 0
\(19\) −5.14521 + 3.73822i −1.18039 + 0.857606i −0.992216 0.124529i \(-0.960258\pi\)
−0.188177 + 0.982135i \(0.560258\pi\)
\(20\) 0 0
\(21\) 6.34188 1.38391
\(22\) 0 0
\(23\) 2.17735 0.454010 0.227005 0.973894i \(-0.427107\pi\)
0.227005 + 0.973894i \(0.427107\pi\)
\(24\) 0 0
\(25\) −0.809017 + 0.587785i −0.161803 + 0.117557i
\(26\) 0 0
\(27\) −2.18949 6.73856i −0.421368 1.29684i
\(28\) 0 0
\(29\) 2.58318 + 1.87679i 0.479685 + 0.348512i 0.801204 0.598392i \(-0.204193\pi\)
−0.321519 + 0.946903i \(0.604193\pi\)
\(30\) 0 0
\(31\) 1.35789 4.17917i 0.243885 0.750601i −0.751933 0.659240i \(-0.770878\pi\)
0.995818 0.0913612i \(-0.0291218\pi\)
\(32\) 0 0
\(33\) −9.48419 + 1.69684i −1.65099 + 0.295383i
\(34\) 0 0
\(35\) −0.674612 + 2.07624i −0.114030 + 0.350949i
\(36\) 0 0
\(37\) −4.28336 3.11205i −0.704180 0.511617i 0.177111 0.984191i \(-0.443325\pi\)
−0.881291 + 0.472574i \(0.843325\pi\)
\(38\) 0 0
\(39\) −5.53062 17.0215i −0.885609 2.72562i
\(40\) 0 0
\(41\) −2.65866 + 1.93163i −0.415214 + 0.301670i −0.775709 0.631091i \(-0.782608\pi\)
0.360495 + 0.932761i \(0.382608\pi\)
\(42\) 0 0
\(43\) −6.83874 −1.04290 −0.521449 0.853282i \(-0.674608\pi\)
−0.521449 + 0.853282i \(0.674608\pi\)
\(44\) 0 0
\(45\) 5.43902 0.810801
\(46\) 0 0
\(47\) 3.48237 2.53009i 0.507956 0.369052i −0.304092 0.952643i \(-0.598353\pi\)
0.812048 + 0.583591i \(0.198353\pi\)
\(48\) 0 0
\(49\) −0.690378 2.12477i −0.0986255 0.303538i
\(50\) 0 0
\(51\) 16.7526 + 12.1715i 2.34583 + 1.70435i
\(52\) 0 0
\(53\) −3.28052 + 10.0964i −0.450614 + 1.38685i 0.425593 + 0.904915i \(0.360066\pi\)
−0.876207 + 0.481934i \(0.839934\pi\)
\(54\) 0 0
\(55\) 0.453350 3.28549i 0.0611298 0.443016i
\(56\) 0 0
\(57\) −5.70918 + 17.5711i −0.756200 + 2.32734i
\(58\) 0 0
\(59\) −11.1568 8.10589i −1.45249 1.05530i −0.985241 0.171171i \(-0.945245\pi\)
−0.467250 0.884125i \(-0.654755\pi\)
\(60\) 0 0
\(61\) 2.27216 + 6.99299i 0.290920 + 0.895360i 0.984561 + 0.175039i \(0.0560053\pi\)
−0.693641 + 0.720321i \(0.743995\pi\)
\(62\) 0 0
\(63\) 9.60616 6.97929i 1.21026 0.879308i
\(64\) 0 0
\(65\) 6.16092 0.764169
\(66\) 0 0
\(67\) −7.67154 −0.937228 −0.468614 0.883403i \(-0.655246\pi\)
−0.468614 + 0.883403i \(0.655246\pi\)
\(68\) 0 0
\(69\) 5.11720 3.71787i 0.616039 0.447578i
\(70\) 0 0
\(71\) 1.77417 + 5.46033i 0.210555 + 0.648021i 0.999439 + 0.0334799i \(0.0106590\pi\)
−0.788884 + 0.614542i \(0.789341\pi\)
\(72\) 0 0
\(73\) 3.96075 + 2.87765i 0.463570 + 0.336803i 0.794930 0.606701i \(-0.207507\pi\)
−0.331360 + 0.943504i \(0.607507\pi\)
\(74\) 0 0
\(75\) −0.897694 + 2.76282i −0.103657 + 0.319023i
\(76\) 0 0
\(77\) −3.41522 6.38444i −0.389201 0.727574i
\(78\) 0 0
\(79\) −2.50738 + 7.71694i −0.282103 + 0.868223i 0.705149 + 0.709059i \(0.250880\pi\)
−0.987252 + 0.159164i \(0.949120\pi\)
\(80\) 0 0
\(81\) −3.45115 2.50741i −0.383461 0.278601i
\(82\) 0 0
\(83\) 1.30524 + 4.01711i 0.143268 + 0.440935i 0.996784 0.0801321i \(-0.0255342\pi\)
−0.853516 + 0.521067i \(0.825534\pi\)
\(84\) 0 0
\(85\) −5.76682 + 4.18984i −0.625500 + 0.454452i
\(86\) 0 0
\(87\) 9.27563 0.994452
\(88\) 0 0
\(89\) 16.8037 1.78119 0.890594 0.454800i \(-0.150289\pi\)
0.890594 + 0.454800i \(0.150289\pi\)
\(90\) 0 0
\(91\) 10.8812 7.90563i 1.14066 0.828735i
\(92\) 0 0
\(93\) −3.94468 12.1405i −0.409044 1.25891i
\(94\) 0 0
\(95\) −5.14521 3.73822i −0.527888 0.383533i
\(96\) 0 0
\(97\) −1.01222 + 3.11531i −0.102776 + 0.316311i −0.989202 0.146559i \(-0.953180\pi\)
0.886426 + 0.462870i \(0.153180\pi\)
\(98\) 0 0
\(99\) −12.4985 + 13.0077i −1.25615 + 1.30732i
\(100\) 0 0
\(101\) −2.13546 + 6.57226i −0.212486 + 0.653964i 0.786837 + 0.617161i \(0.211717\pi\)
−0.999323 + 0.0368028i \(0.988283\pi\)
\(102\) 0 0
\(103\) −6.13713 4.45889i −0.604709 0.439347i 0.242838 0.970067i \(-0.421922\pi\)
−0.847547 + 0.530720i \(0.821922\pi\)
\(104\) 0 0
\(105\) 1.95975 + 6.03148i 0.191252 + 0.588613i
\(106\) 0 0
\(107\) −2.26925 + 1.64871i −0.219377 + 0.159386i −0.692046 0.721853i \(-0.743290\pi\)
0.472669 + 0.881240i \(0.343290\pi\)
\(108\) 0 0
\(109\) 8.02896 0.769035 0.384517 0.923118i \(-0.374368\pi\)
0.384517 + 0.923118i \(0.374368\pi\)
\(110\) 0 0
\(111\) −15.3806 −1.45986
\(112\) 0 0
\(113\) −5.63030 + 4.09066i −0.529654 + 0.384816i −0.820228 0.572036i \(-0.806154\pi\)
0.290574 + 0.956853i \(0.406154\pi\)
\(114\) 0 0
\(115\) 0.672839 + 2.07079i 0.0627426 + 0.193102i
\(116\) 0 0
\(117\) −27.1097 19.6963i −2.50629 1.82092i
\(118\) 0 0
\(119\) −4.80876 + 14.7998i −0.440818 + 1.35670i
\(120\) 0 0
\(121\) 6.81565 + 8.63406i 0.619604 + 0.784914i
\(122\) 0 0
\(123\) −2.95008 + 9.07942i −0.266000 + 0.818664i
\(124\) 0 0
\(125\) −0.809017 0.587785i −0.0723607 0.0525731i
\(126\) 0 0
\(127\) −3.20983 9.87883i −0.284826 0.876604i −0.986451 0.164058i \(-0.947542\pi\)
0.701625 0.712547i \(-0.252458\pi\)
\(128\) 0 0
\(129\) −16.0724 + 11.6773i −1.41509 + 1.02812i
\(130\) 0 0
\(131\) 3.48613 0.304585 0.152292 0.988335i \(-0.451334\pi\)
0.152292 + 0.988335i \(0.451334\pi\)
\(132\) 0 0
\(133\) −13.8841 −1.20390
\(134\) 0 0
\(135\) 5.73216 4.16466i 0.493346 0.358437i
\(136\) 0 0
\(137\) −4.49530 13.8351i −0.384060 1.18201i −0.937160 0.348900i \(-0.886555\pi\)
0.553100 0.833115i \(-0.313445\pi\)
\(138\) 0 0
\(139\) 0.406040 + 0.295005i 0.0344398 + 0.0250220i 0.604872 0.796323i \(-0.293224\pi\)
−0.570432 + 0.821345i \(0.693224\pi\)
\(140\) 0 0
\(141\) 3.86407 11.8924i 0.325414 1.00152i
\(142\) 0 0
\(143\) −14.1574 + 14.7341i −1.18390 + 1.23213i
\(144\) 0 0
\(145\) −0.986688 + 3.03671i −0.0819400 + 0.252185i
\(146\) 0 0
\(147\) −5.25059 3.81478i −0.433062 0.314638i
\(148\) 0 0
\(149\) 0.231027 + 0.711029i 0.0189265 + 0.0582497i 0.960074 0.279747i \(-0.0902506\pi\)
−0.941147 + 0.337997i \(0.890251\pi\)
\(150\) 0 0
\(151\) 2.64821 1.92404i 0.215509 0.156576i −0.474794 0.880097i \(-0.657477\pi\)
0.690303 + 0.723521i \(0.257477\pi\)
\(152\) 0 0
\(153\) 38.7703 3.13439
\(154\) 0 0
\(155\) 4.39424 0.352954
\(156\) 0 0
\(157\) 12.1592 8.83418i 0.970410 0.705044i 0.0148654 0.999890i \(-0.495268\pi\)
0.955545 + 0.294845i \(0.0952680\pi\)
\(158\) 0 0
\(159\) 9.52991 + 29.3301i 0.755771 + 2.32603i
\(160\) 0 0
\(161\) 3.84555 + 2.79396i 0.303072 + 0.220195i
\(162\) 0 0
\(163\) 4.47497 13.7725i 0.350507 1.07875i −0.608063 0.793889i \(-0.708053\pi\)
0.958569 0.284860i \(-0.0919470\pi\)
\(164\) 0 0
\(165\) −4.54457 8.49565i −0.353794 0.661385i
\(166\) 0 0
\(167\) −0.0941502 + 0.289764i −0.00728556 + 0.0224226i −0.954633 0.297784i \(-0.903752\pi\)
0.947348 + 0.320207i \(0.103752\pi\)
\(168\) 0 0
\(169\) −20.1906 14.6693i −1.55313 1.12841i
\(170\) 0 0
\(171\) 10.6893 + 32.8982i 0.817430 + 2.51579i
\(172\) 0 0
\(173\) 7.85835 5.70942i 0.597459 0.434079i −0.247517 0.968884i \(-0.579615\pi\)
0.844976 + 0.534804i \(0.179615\pi\)
\(174\) 0 0
\(175\) −2.18309 −0.165026
\(176\) 0 0
\(177\) −40.0615 −3.01121
\(178\) 0 0
\(179\) −7.60610 + 5.52616i −0.568507 + 0.413044i −0.834562 0.550913i \(-0.814279\pi\)
0.266056 + 0.963958i \(0.414279\pi\)
\(180\) 0 0
\(181\) −4.07184 12.5318i −0.302657 0.931484i −0.980541 0.196314i \(-0.937103\pi\)
0.677884 0.735169i \(-0.262897\pi\)
\(182\) 0 0
\(183\) 17.2806 + 12.5551i 1.27742 + 0.928101i
\(184\) 0 0
\(185\) 1.63610 5.03539i 0.120288 0.370210i
\(186\) 0 0
\(187\) 3.23156 23.4196i 0.236315 1.71261i
\(188\) 0 0
\(189\) 4.77986 14.7109i 0.347684 1.07006i
\(190\) 0 0
\(191\) 5.95236 + 4.32464i 0.430698 + 0.312920i 0.781928 0.623369i \(-0.214236\pi\)
−0.351230 + 0.936289i \(0.614236\pi\)
\(192\) 0 0
\(193\) −5.70907 17.5707i −0.410948 1.26477i −0.915826 0.401576i \(-0.868463\pi\)
0.504878 0.863191i \(-0.331537\pi\)
\(194\) 0 0
\(195\) 14.4794 10.5199i 1.03689 0.753344i
\(196\) 0 0
\(197\) 9.58209 0.682696 0.341348 0.939937i \(-0.389117\pi\)
0.341348 + 0.939937i \(0.389117\pi\)
\(198\) 0 0
\(199\) 13.3287 0.944844 0.472422 0.881372i \(-0.343380\pi\)
0.472422 + 0.881372i \(0.343380\pi\)
\(200\) 0 0
\(201\) −18.0296 + 13.0993i −1.27171 + 0.923951i
\(202\) 0 0
\(203\) 2.15403 + 6.62943i 0.151183 + 0.465295i
\(204\) 0 0
\(205\) −2.65866 1.93163i −0.185689 0.134911i
\(206\) 0 0
\(207\) 3.65958 11.2630i 0.254359 0.782836i
\(208\) 0 0
\(209\) 20.7635 3.71485i 1.43624 0.256962i
\(210\) 0 0
\(211\) 3.11617 9.59060i 0.214526 0.660244i −0.784661 0.619926i \(-0.787163\pi\)
0.999187 0.0403183i \(-0.0128372\pi\)
\(212\) 0 0
\(213\) 13.4932 + 9.80340i 0.924541 + 0.671718i
\(214\) 0 0
\(215\) −2.11329 6.50403i −0.144125 0.443571i
\(216\) 0 0
\(217\) 7.76092 5.63864i 0.526846 0.382776i
\(218\) 0 0
\(219\) 14.2221 0.961044
\(220\) 0 0
\(221\) 43.9162 2.95412
\(222\) 0 0
\(223\) −8.37329 + 6.08355i −0.560717 + 0.407385i −0.831721 0.555193i \(-0.812644\pi\)
0.271004 + 0.962578i \(0.412644\pi\)
\(224\) 0 0
\(225\) 1.68075 + 5.17281i 0.112050 + 0.344854i
\(226\) 0 0
\(227\) −8.84689 6.42764i −0.587188 0.426617i 0.254120 0.967173i \(-0.418214\pi\)
−0.841308 + 0.540555i \(0.818214\pi\)
\(228\) 0 0
\(229\) 6.91720 21.2890i 0.457102 1.40681i −0.411548 0.911388i \(-0.635012\pi\)
0.868650 0.495426i \(-0.164988\pi\)
\(230\) 0 0
\(231\) −18.9280 9.17312i −1.24537 0.603547i
\(232\) 0 0
\(233\) −4.81006 + 14.8039i −0.315118 + 0.969833i 0.660588 + 0.750748i \(0.270307\pi\)
−0.975706 + 0.219084i \(0.929693\pi\)
\(234\) 0 0
\(235\) 3.48237 + 2.53009i 0.227165 + 0.165045i
\(236\) 0 0
\(237\) 7.28395 + 22.4177i 0.473143 + 1.45619i
\(238\) 0 0
\(239\) 19.7638 14.3592i 1.27841 0.928822i 0.278910 0.960317i \(-0.410027\pi\)
0.999504 + 0.0314955i \(0.0100270\pi\)
\(240\) 0 0
\(241\) −5.75661 −0.370816 −0.185408 0.982662i \(-0.559361\pi\)
−0.185408 + 0.982662i \(0.559361\pi\)
\(242\) 0 0
\(243\) 8.86372 0.568608
\(244\) 0 0
\(245\) 1.80743 1.31318i 0.115473 0.0838958i
\(246\) 0 0
\(247\) 12.1080 + 37.2647i 0.770416 + 2.37110i
\(248\) 0 0
\(249\) 9.92683 + 7.21227i 0.629087 + 0.457059i
\(250\) 0 0
\(251\) 3.71563 11.4355i 0.234529 0.721805i −0.762655 0.646805i \(-0.776105\pi\)
0.997184 0.0749992i \(-0.0238954\pi\)
\(252\) 0 0
\(253\) −6.49853 3.14940i −0.408559 0.198001i
\(254\) 0 0
\(255\) −6.39893 + 19.6939i −0.400716 + 1.23328i
\(256\) 0 0
\(257\) 15.8053 + 11.4832i 0.985906 + 0.716303i 0.959021 0.283336i \(-0.0914411\pi\)
0.0268855 + 0.999639i \(0.491441\pi\)
\(258\) 0 0
\(259\) −3.57175 10.9927i −0.221938 0.683055i
\(260\) 0 0
\(261\) 14.0500 10.2079i 0.869672 0.631854i
\(262\) 0 0
\(263\) −24.6213 −1.51821 −0.759106 0.650967i \(-0.774364\pi\)
−0.759106 + 0.650967i \(0.774364\pi\)
\(264\) 0 0
\(265\) −10.6160 −0.652135
\(266\) 0 0
\(267\) 39.4919 28.6925i 2.41687 1.75596i
\(268\) 0 0
\(269\) 0.477417 + 1.46934i 0.0291086 + 0.0895871i 0.964555 0.263881i \(-0.0850025\pi\)
−0.935447 + 0.353468i \(0.885002\pi\)
\(270\) 0 0
\(271\) −18.2552 13.2632i −1.10893 0.805683i −0.126433 0.991975i \(-0.540353\pi\)
−0.982494 + 0.186292i \(0.940353\pi\)
\(272\) 0 0
\(273\) 12.0739 37.1595i 0.730743 2.24900i
\(274\) 0 0
\(275\) 3.26478 0.584112i 0.196874 0.0352233i
\(276\) 0 0
\(277\) −4.27028 + 13.1426i −0.256576 + 0.789660i 0.736939 + 0.675959i \(0.236270\pi\)
−0.993515 + 0.113701i \(0.963730\pi\)
\(278\) 0 0
\(279\) −19.3358 14.0483i −1.15760 0.841048i
\(280\) 0 0
\(281\) −2.69067 8.28103i −0.160512 0.494005i 0.838166 0.545416i \(-0.183628\pi\)
−0.998678 + 0.0514109i \(0.983628\pi\)
\(282\) 0 0
\(283\) −1.23349 + 0.896181i −0.0733232 + 0.0532724i −0.623843 0.781550i \(-0.714430\pi\)
0.550520 + 0.834822i \(0.314430\pi\)
\(284\) 0 0
\(285\) −18.4753 −1.09438
\(286\) 0 0
\(287\) −7.17427 −0.423484
\(288\) 0 0
\(289\) −27.3537 + 19.8736i −1.60904 + 1.16904i
\(290\) 0 0
\(291\) 2.94051 + 9.04996i 0.172376 + 0.530518i
\(292\) 0 0
\(293\) −19.2037 13.9523i −1.12189 0.815103i −0.137398 0.990516i \(-0.543874\pi\)
−0.984495 + 0.175413i \(0.943874\pi\)
\(294\) 0 0
\(295\) 4.26152 13.1156i 0.248115 0.763620i
\(296\) 0 0
\(297\) −3.21214 + 23.2788i −0.186387 + 1.35078i
\(298\) 0 0
\(299\) 4.14531 12.7580i 0.239730 0.737812i
\(300\) 0 0
\(301\) −12.0783 8.77539i −0.696181 0.505805i
\(302\) 0 0
\(303\) 6.20349 + 19.0924i 0.356381 + 1.09683i
\(304\) 0 0
\(305\) −5.94859 + 4.32190i −0.340615 + 0.247471i
\(306\) 0 0
\(307\) −17.7127 −1.01092 −0.505458 0.862851i \(-0.668676\pi\)
−0.505458 + 0.862851i \(0.668676\pi\)
\(308\) 0 0
\(309\) −22.0371 −1.25364
\(310\) 0 0
\(311\) −5.48912 + 3.98808i −0.311260 + 0.226143i −0.732437 0.680835i \(-0.761617\pi\)
0.421177 + 0.906978i \(0.361617\pi\)
\(312\) 0 0
\(313\) 7.35633 + 22.6405i 0.415804 + 1.27971i 0.911530 + 0.411235i \(0.134902\pi\)
−0.495725 + 0.868479i \(0.665098\pi\)
\(314\) 0 0
\(315\) 9.60616 + 6.97929i 0.541246 + 0.393238i
\(316\) 0 0
\(317\) −0.571055 + 1.75753i −0.0320737 + 0.0987126i −0.965812 0.259244i \(-0.916527\pi\)
0.933738 + 0.357957i \(0.116527\pi\)
\(318\) 0 0
\(319\) −4.99511 9.33788i −0.279672 0.522821i
\(320\) 0 0
\(321\) −2.51798 + 7.74955i −0.140540 + 0.432538i
\(322\) 0 0
\(323\) −36.6760 26.6467i −2.04071 1.48266i
\(324\) 0 0
\(325\) 1.90383 + 5.85939i 0.105606 + 0.325020i
\(326\) 0 0
\(327\) 18.8696 13.7096i 1.04349 0.758141i
\(328\) 0 0
\(329\) 9.39700 0.518073
\(330\) 0 0
\(331\) 17.5654 0.965484 0.482742 0.875763i \(-0.339641\pi\)
0.482742 + 0.875763i \(0.339641\pi\)
\(332\) 0 0
\(333\) −23.2973 + 16.9265i −1.27668 + 0.927565i
\(334\) 0 0
\(335\) −2.37064 7.29607i −0.129522 0.398627i
\(336\) 0 0
\(337\) −17.2756 12.5515i −0.941064 0.683723i 0.00761239 0.999971i \(-0.497577\pi\)
−0.948677 + 0.316248i \(0.897577\pi\)
\(338\) 0 0
\(339\) −6.24745 + 19.2277i −0.339315 + 1.04430i
\(340\) 0 0
\(341\) −10.0977 + 10.5090i −0.546819 + 0.569096i
\(342\) 0 0
\(343\) 6.22945 19.1723i 0.336358 1.03520i
\(344\) 0 0
\(345\) 5.11720 + 3.71787i 0.275501 + 0.200163i
\(346\) 0 0
\(347\) 1.65675 + 5.09894i 0.0889387 + 0.273725i 0.985627 0.168938i \(-0.0540337\pi\)
−0.896688 + 0.442663i \(0.854034\pi\)
\(348\) 0 0
\(349\) 9.31693 6.76914i 0.498724 0.362344i −0.309806 0.950800i \(-0.600264\pi\)
0.808529 + 0.588456i \(0.200264\pi\)
\(350\) 0 0
\(351\) −43.6523 −2.32998
\(352\) 0 0
\(353\) 9.70208 0.516389 0.258195 0.966093i \(-0.416872\pi\)
0.258195 + 0.966093i \(0.416872\pi\)
\(354\) 0 0
\(355\) −4.64483 + 3.37467i −0.246522 + 0.179109i
\(356\) 0 0
\(357\) 13.9694 + 42.9935i 0.739341 + 2.27546i
\(358\) 0 0
\(359\) 26.3383 + 19.1359i 1.39008 + 1.00995i 0.995857 + 0.0909376i \(0.0289864\pi\)
0.394223 + 0.919015i \(0.371014\pi\)
\(360\) 0 0
\(361\) 6.62764 20.3978i 0.348823 1.07357i
\(362\) 0 0
\(363\) 30.7609 + 8.65388i 1.61453 + 0.454211i
\(364\) 0 0
\(365\) −1.51287 + 4.65614i −0.0791872 + 0.243713i
\(366\) 0 0
\(367\) 21.4415 + 15.5781i 1.11924 + 0.813172i 0.984093 0.177654i \(-0.0568509\pi\)
0.135142 + 0.990826i \(0.456851\pi\)
\(368\) 0 0
\(369\) 5.52343 + 16.9994i 0.287538 + 0.884952i
\(370\) 0 0
\(371\) −18.7495 + 13.6223i −0.973427 + 0.707236i
\(372\) 0 0
\(373\) 25.2185 1.30577 0.652883 0.757459i \(-0.273559\pi\)
0.652883 + 0.757459i \(0.273559\pi\)
\(374\) 0 0
\(375\) −2.90500 −0.150013
\(376\) 0 0
\(377\) 15.9148 11.5628i 0.819654 0.595513i
\(378\) 0 0
\(379\) −5.41871 16.6771i −0.278340 0.856644i −0.988316 0.152418i \(-0.951294\pi\)
0.709976 0.704226i \(-0.248706\pi\)
\(380\) 0 0
\(381\) −24.4120 17.7363i −1.25066 0.908660i
\(382\) 0 0
\(383\) −4.08098 + 12.5600i −0.208528 + 0.641784i 0.791022 + 0.611788i \(0.209549\pi\)
−0.999550 + 0.0299959i \(0.990451\pi\)
\(384\) 0 0
\(385\) 5.01660 5.22097i 0.255670 0.266085i
\(386\) 0 0
\(387\) −11.4942 + 35.3755i −0.584283 + 1.79824i
\(388\) 0 0
\(389\) −26.5730 19.3064i −1.34731 0.978876i −0.999141 0.0414426i \(-0.986805\pi\)
−0.348166 0.937433i \(-0.613195\pi\)
\(390\) 0 0
\(391\) 4.79612 + 14.7609i 0.242550 + 0.746493i
\(392\) 0 0
\(393\) 8.19309 5.95263i 0.413287 0.300270i
\(394\) 0 0
\(395\) −8.11407 −0.408263
\(396\) 0 0
\(397\) 25.2290 1.26621 0.633104 0.774066i \(-0.281780\pi\)
0.633104 + 0.774066i \(0.281780\pi\)
\(398\) 0 0
\(399\) −32.6303 + 23.7073i −1.63356 + 1.18685i
\(400\) 0 0
\(401\) 5.27641 + 16.2391i 0.263492 + 0.810944i 0.992037 + 0.125946i \(0.0401967\pi\)
−0.728546 + 0.684997i \(0.759803\pi\)
\(402\) 0 0
\(403\) −21.9022 15.9129i −1.09102 0.792676i
\(404\) 0 0
\(405\) 1.31822 4.05707i 0.0655030 0.201597i
\(406\) 0 0
\(407\) 8.28274 + 15.4838i 0.410560 + 0.767504i
\(408\) 0 0
\(409\) −0.246762 + 0.759454i −0.0122016 + 0.0375526i −0.956972 0.290180i \(-0.906285\pi\)
0.944770 + 0.327733i \(0.106285\pi\)
\(410\) 0 0
\(411\) −34.1885 24.8394i −1.68639 1.22524i
\(412\) 0 0
\(413\) −9.30328 28.6326i −0.457784 1.40892i
\(414\) 0 0
\(415\) −3.41716 + 2.48271i −0.167742 + 0.121871i
\(416\) 0 0
\(417\) 1.45800 0.0713984
\(418\) 0 0
\(419\) −3.76575 −0.183969 −0.0919844 0.995760i \(-0.529321\pi\)
−0.0919844 + 0.995760i \(0.529321\pi\)
\(420\) 0 0
\(421\) 13.7158 9.96512i 0.668468 0.485670i −0.201044 0.979582i \(-0.564433\pi\)
0.869512 + 0.493912i \(0.164433\pi\)
\(422\) 0 0
\(423\) −7.23469 22.2661i −0.351763 1.08261i
\(424\) 0 0
\(425\) −5.76682 4.18984i −0.279732 0.203237i
\(426\) 0 0
\(427\) −4.96033 + 15.2663i −0.240047 + 0.738789i
\(428\) 0 0
\(429\) −8.11383 + 58.8021i −0.391739 + 2.83899i
\(430\) 0 0
\(431\) 8.04778 24.7685i 0.387648 1.19306i −0.546893 0.837202i \(-0.684190\pi\)
0.934541 0.355855i \(-0.115810\pi\)
\(432\) 0 0
\(433\) 18.0358 + 13.1038i 0.866746 + 0.629728i 0.929712 0.368288i \(-0.120056\pi\)
−0.0629661 + 0.998016i \(0.520056\pi\)
\(434\) 0 0
\(435\) 2.86633 + 8.82165i 0.137430 + 0.422966i
\(436\) 0 0
\(437\) −11.2030 + 8.13942i −0.535910 + 0.389361i
\(438\) 0 0
\(439\) 13.8298 0.660060 0.330030 0.943970i \(-0.392941\pi\)
0.330030 + 0.943970i \(0.392941\pi\)
\(440\) 0 0
\(441\) −12.1514 −0.578637
\(442\) 0 0
\(443\) −12.2099 + 8.87103i −0.580111 + 0.421475i −0.838764 0.544495i \(-0.816721\pi\)
0.258653 + 0.965970i \(0.416721\pi\)
\(444\) 0 0
\(445\) 5.19262 + 15.9813i 0.246154 + 0.757584i
\(446\) 0 0
\(447\) 1.75705 + 1.27657i 0.0831057 + 0.0603798i
\(448\) 0 0
\(449\) 5.46057 16.8059i 0.257700 0.793120i −0.735585 0.677432i \(-0.763093\pi\)
0.993286 0.115688i \(-0.0369073\pi\)
\(450\) 0 0
\(451\) 10.7290 1.91956i 0.505210 0.0903886i
\(452\) 0 0
\(453\) 2.93849 9.04373i 0.138062 0.424911i
\(454\) 0 0
\(455\) 10.8812 + 7.90563i 0.510117 + 0.370622i
\(456\) 0 0
\(457\) −10.5786 32.5574i −0.494844 1.52297i −0.817200 0.576354i \(-0.804475\pi\)
0.322356 0.946618i \(-0.395525\pi\)
\(458\) 0 0
\(459\) 40.8599 29.6865i 1.90718 1.38564i
\(460\) 0 0
\(461\) −10.1143 −0.471069 −0.235534 0.971866i \(-0.575684\pi\)
−0.235534 + 0.971866i \(0.575684\pi\)
\(462\) 0 0
\(463\) −11.2505 −0.522857 −0.261429 0.965223i \(-0.584194\pi\)
−0.261429 + 0.965223i \(0.584194\pi\)
\(464\) 0 0
\(465\) 10.3273 7.50323i 0.478918 0.347954i
\(466\) 0 0
\(467\) 10.6269 + 32.7063i 0.491755 + 1.51347i 0.821953 + 0.569555i \(0.192884\pi\)
−0.330198 + 0.943912i \(0.607116\pi\)
\(468\) 0 0
\(469\) −13.5492 9.84403i −0.625642 0.454555i
\(470\) 0 0
\(471\) 13.4920 41.5241i 0.621678 1.91333i
\(472\) 0 0
\(473\) 20.4109 + 9.89179i 0.938494 + 0.454825i
\(474\) 0 0
\(475\) 1.96530 6.04856i 0.0901740 0.277527i
\(476\) 0 0
\(477\) 46.7131 + 33.9391i 2.13885 + 1.55396i
\(478\) 0 0
\(479\) −7.93273 24.4144i −0.362456 1.11552i −0.951559 0.307466i \(-0.900519\pi\)
0.589103 0.808058i \(-0.299481\pi\)
\(480\) 0 0
\(481\) −26.3895 + 19.1731i −1.20326 + 0.874217i
\(482\) 0 0
\(483\) 13.8085 0.628309
\(484\) 0 0
\(485\) −3.27563 −0.148739
\(486\) 0 0
\(487\) 15.6164 11.3460i 0.707646 0.514135i −0.174768 0.984610i \(-0.555917\pi\)
0.882413 + 0.470475i \(0.155917\pi\)
\(488\) 0 0
\(489\) −12.9998 40.0092i −0.587870 1.80928i
\(490\) 0 0
\(491\) 13.8850 + 10.0880i 0.626620 + 0.455266i 0.855227 0.518253i \(-0.173417\pi\)
−0.228608 + 0.973519i \(0.573417\pi\)
\(492\) 0 0
\(493\) −7.03330 + 21.6463i −0.316764 + 0.974899i
\(494\) 0 0
\(495\) −16.2333 7.86719i −0.729632 0.353604i
\(496\) 0 0
\(497\) −3.87317 + 11.9204i −0.173735 + 0.534703i
\(498\) 0 0
\(499\) 33.3620 + 24.2389i 1.49349 + 1.08508i 0.972886 + 0.231285i \(0.0742931\pi\)
0.520604 + 0.853798i \(0.325707\pi\)
\(500\) 0 0
\(501\) 0.273506 + 0.841765i 0.0122194 + 0.0376073i
\(502\) 0 0
\(503\) −21.6639 + 15.7397i −0.965944 + 0.701799i −0.954524 0.298135i \(-0.903635\pi\)
−0.0114203 + 0.999935i \(0.503635\pi\)
\(504\) 0 0
\(505\) −6.91048 −0.307512
\(506\) 0 0
\(507\) −72.5000 −3.21984
\(508\) 0 0
\(509\) 20.2770 14.7321i 0.898764 0.652990i −0.0393843 0.999224i \(-0.512540\pi\)
0.938148 + 0.346234i \(0.112540\pi\)
\(510\) 0 0
\(511\) 3.30273 + 10.1648i 0.146104 + 0.449663i
\(512\) 0 0
\(513\) 36.4556 + 26.4865i 1.60955 + 1.16941i
\(514\) 0 0
\(515\) 2.34417 7.21463i 0.103297 0.317914i
\(516\) 0 0
\(517\) −14.0531 + 2.51428i −0.618054 + 0.110578i
\(518\) 0 0
\(519\) 8.71971 26.8365i 0.382753 1.17799i
\(520\) 0 0
\(521\) −0.776493 0.564155i −0.0340188 0.0247161i 0.570646 0.821196i \(-0.306693\pi\)
−0.604665 + 0.796480i \(0.706693\pi\)
\(522\) 0 0
\(523\) −0.871151 2.68113i −0.0380928 0.117238i 0.930202 0.367048i \(-0.119632\pi\)
−0.968295 + 0.249811i \(0.919632\pi\)
\(524\) 0 0
\(525\) −5.13069 + 3.72766i −0.223922 + 0.162689i
\(526\) 0 0
\(527\) 31.3229 1.36445
\(528\) 0 0
\(529\) −18.2591 −0.793875
\(530\) 0 0
\(531\) −60.6820 + 44.0881i −2.63337 + 1.91326i
\(532\) 0 0
\(533\) 6.25654 + 19.2556i 0.271001 + 0.834055i
\(534\) 0 0
\(535\) −2.26925 1.64871i −0.0981082 0.0712798i
\(536\) 0 0
\(537\) −8.43981 + 25.9751i −0.364205 + 1.12091i
\(538\) 0 0
\(539\) −1.01284 + 7.34016i −0.0436259 + 0.316163i
\(540\) 0 0
\(541\) −7.51400 + 23.1257i −0.323052 + 0.994253i 0.649260 + 0.760567i \(0.275079\pi\)
−0.972312 + 0.233686i \(0.924921\pi\)
\(542\) 0 0
\(543\) −30.9679 22.4995i −1.32896 0.965546i
\(544\) 0 0
\(545\) 2.48108 + 7.63599i 0.106278 + 0.327090i
\(546\) 0 0
\(547\) 34.9573 25.3980i 1.49467 1.08594i 0.522220 0.852811i \(-0.325104\pi\)
0.972446 0.233128i \(-0.0748960\pi\)
\(548\) 0 0
\(549\) 39.9923 1.70683
\(550\) 0 0
\(551\) −20.3069 −0.865103
\(552\) 0 0
\(553\) −14.3307 + 10.4119i −0.609404 + 0.442758i
\(554\) 0 0
\(555\) −4.75287 14.6278i −0.201748 0.620916i
\(556\) 0 0
\(557\) −6.78989 4.93314i −0.287697 0.209024i 0.434571 0.900638i \(-0.356900\pi\)
−0.722268 + 0.691614i \(0.756900\pi\)
\(558\) 0 0
\(559\) −13.0198 + 40.0708i −0.550679 + 1.69482i
\(560\) 0 0
\(561\) −32.3945 60.5585i −1.36770 2.55678i
\(562\) 0 0
\(563\) −1.90302 + 5.85688i −0.0802026 + 0.246838i −0.983116 0.182985i \(-0.941424\pi\)
0.902913 + 0.429823i \(0.141424\pi\)
\(564\) 0 0
\(565\) −5.63030 4.09066i −0.236869 0.172095i
\(566\) 0 0
\(567\) −2.87780 8.85696i −0.120856 0.371957i
\(568\) 0 0
\(569\) −3.30458 + 2.40092i −0.138535 + 0.100652i −0.654894 0.755720i \(-0.727287\pi\)
0.516359 + 0.856372i \(0.327287\pi\)
\(570\) 0 0
\(571\) 30.8820 1.29237 0.646185 0.763181i \(-0.276363\pi\)
0.646185 + 0.763181i \(0.276363\pi\)
\(572\) 0 0
\(573\) 21.3736 0.892895
\(574\) 0 0
\(575\) −1.76152 + 1.27982i −0.0734603 + 0.0533720i
\(576\) 0 0
\(577\) −4.46694 13.7478i −0.185961 0.572329i 0.814003 0.580861i \(-0.197284\pi\)
−0.999964 + 0.00853208i \(0.997284\pi\)
\(578\) 0 0
\(579\) −43.4197 31.5462i −1.80446 1.31102i
\(580\) 0 0
\(581\) −2.84945 + 8.76971i −0.118215 + 0.363829i
\(582\) 0 0
\(583\) 24.3948 25.3887i 1.01033 1.05149i
\(584\) 0 0
\(585\) 10.3550 31.8693i 0.428125 1.31763i
\(586\) 0 0
\(587\) −24.9981 18.1622i −1.03178 0.749633i −0.0631164 0.998006i \(-0.520104\pi\)
−0.968664 + 0.248374i \(0.920104\pi\)
\(588\) 0 0
\(589\) 8.63598 + 26.5788i 0.355840 + 1.09516i
\(590\) 0 0
\(591\) 22.5198 16.3616i 0.926339 0.673025i
\(592\) 0 0
\(593\) −29.6191 −1.21631 −0.608156 0.793818i \(-0.708090\pi\)
−0.608156 + 0.793818i \(0.708090\pi\)
\(594\) 0 0
\(595\) −15.5615 −0.637958
\(596\) 0 0
\(597\) 31.3250 22.7589i 1.28205 0.931460i
\(598\) 0 0
\(599\) −2.09562 6.44965i −0.0856247 0.263526i 0.899072 0.437800i \(-0.144242\pi\)
−0.984697 + 0.174274i \(0.944242\pi\)
\(600\) 0 0
\(601\) 14.3815 + 10.4488i 0.586634 + 0.426215i 0.841110 0.540865i \(-0.181903\pi\)
−0.254476 + 0.967079i \(0.581903\pi\)
\(602\) 0 0
\(603\) −12.8939 + 39.6834i −0.525081 + 1.61603i
\(604\) 0 0
\(605\) −6.10532 + 9.15014i −0.248217 + 0.372006i
\(606\) 0 0
\(607\) −12.0194 + 36.9918i −0.487851 + 1.50145i 0.339958 + 0.940441i \(0.389587\pi\)
−0.827809 + 0.561010i \(0.810413\pi\)
\(608\) 0 0
\(609\) 16.3822 + 11.9024i 0.663842 + 0.482309i
\(610\) 0 0
\(611\) −8.19493 25.2214i −0.331532 1.02035i
\(612\) 0 0
\(613\) −24.8817 + 18.0776i −1.00496 + 0.730147i −0.963146 0.268979i \(-0.913314\pi\)
−0.0418146 + 0.999125i \(0.513314\pi\)
\(614\) 0 0
\(615\) −9.54667 −0.384959
\(616\) 0 0
\(617\) 23.3088 0.938377 0.469188 0.883098i \(-0.344547\pi\)
0.469188 + 0.883098i \(0.344547\pi\)
\(618\) 0 0
\(619\) −27.9978 + 20.3416i −1.12533 + 0.817598i −0.985008 0.172508i \(-0.944813\pi\)
−0.140319 + 0.990106i \(0.544813\pi\)
\(620\) 0 0
\(621\) −4.76730 14.6722i −0.191305 0.588776i
\(622\) 0 0
\(623\) 29.6780 + 21.5623i 1.18902 + 0.863875i
\(624\) 0 0
\(625\) 0.309017 0.951057i 0.0123607 0.0380423i
\(626\) 0 0
\(627\) 42.4550 44.1846i 1.69549 1.76456i
\(628\) 0 0
\(629\) 11.6624 35.8932i 0.465011 1.43116i
\(630\) 0 0
\(631\) −9.05056 6.57562i −0.360297 0.261771i 0.392879 0.919590i \(-0.371479\pi\)
−0.753176 + 0.657819i \(0.771479\pi\)
\(632\) 0 0
\(633\) −9.05248 27.8607i −0.359804 1.10736i
\(634\) 0 0
\(635\) 8.40343 6.10545i 0.333480 0.242287i
\(636\) 0 0
\(637\) −13.7642 −0.545357
\(638\) 0 0
\(639\) 31.2272 1.23533
\(640\) 0 0
\(641\) −28.1482 + 20.4508i −1.11179 + 0.807759i −0.982944 0.183906i \(-0.941126\pi\)
−0.128842 + 0.991665i \(0.541126\pi\)
\(642\) 0 0
\(643\) 7.55669 + 23.2571i 0.298007 + 0.917171i 0.982195 + 0.187865i \(0.0601567\pi\)
−0.684188 + 0.729306i \(0.739843\pi\)
\(644\) 0 0
\(645\) −16.0724 11.6773i −0.632848 0.459791i
\(646\) 0 0
\(647\) 5.80359 17.8616i 0.228163 0.702212i −0.769793 0.638294i \(-0.779640\pi\)
0.997955 0.0639180i \(-0.0203596\pi\)
\(648\) 0 0
\(649\) 21.5739 + 40.3304i 0.846850 + 1.58311i
\(650\) 0 0
\(651\) 8.61160 26.5038i 0.337515 1.03877i
\(652\) 0 0
\(653\) −32.2823 23.4545i −1.26330 0.917844i −0.264390 0.964416i \(-0.585170\pi\)
−0.998915 + 0.0465715i \(0.985170\pi\)
\(654\) 0 0
\(655\) 1.07727 + 3.31551i 0.0420926 + 0.129548i
\(656\) 0 0
\(657\) 21.5426 15.6516i 0.840455 0.610627i
\(658\) 0 0
\(659\) 17.6187 0.686326 0.343163 0.939276i \(-0.388502\pi\)
0.343163 + 0.939276i \(0.388502\pi\)
\(660\) 0 0
\(661\) 42.4404 1.65074 0.825371 0.564591i \(-0.190966\pi\)
0.825371 + 0.564591i \(0.190966\pi\)
\(662\) 0 0
\(663\) 103.212 74.9876i 4.00840 2.91228i
\(664\) 0 0
\(665\) −4.29042 13.2046i −0.166375 0.512051i
\(666\) 0 0
\(667\) 5.62451 + 4.08644i 0.217782 + 0.158228i
\(668\) 0 0
\(669\) −9.29110 + 28.5951i −0.359214 + 1.10555i
\(670\) 0 0
\(671\) 3.33342 24.1578i 0.128685 0.932601i
\(672\) 0 0
\(673\) 1.88078 5.78844i 0.0724987 0.223128i −0.908241 0.418448i \(-0.862574\pi\)
0.980740 + 0.195319i \(0.0625744\pi\)
\(674\) 0 0
\(675\) 5.73216 + 4.16466i 0.220631 + 0.160298i
\(676\) 0 0
\(677\) −3.22714 9.93211i −0.124029 0.381722i 0.869694 0.493591i \(-0.164316\pi\)
−0.993723 + 0.111869i \(0.964316\pi\)
\(678\) 0 0
\(679\) −5.78527 + 4.20325i −0.222018 + 0.161306i
\(680\) 0 0
\(681\) −31.7672 −1.21732
\(682\) 0 0
\(683\) 28.7312 1.09937 0.549685 0.835372i \(-0.314748\pi\)
0.549685 + 0.835372i \(0.314748\pi\)
\(684\) 0 0
\(685\) 11.7689 8.55057i 0.449665 0.326701i
\(686\) 0 0
\(687\) −20.0945 61.8444i −0.766652 2.35951i
\(688\) 0 0
\(689\) 52.9132 + 38.4437i 2.01583 + 1.46459i
\(690\) 0 0
\(691\) −8.67788 + 26.7078i −0.330122 + 1.01601i 0.638953 + 0.769246i \(0.279368\pi\)
−0.969075 + 0.246766i \(0.920632\pi\)
\(692\) 0 0
\(693\) −38.7656 + 6.93567i −1.47258 + 0.263464i
\(694\) 0 0
\(695\) −0.155093 + 0.477328i −0.00588303 + 0.0181061i
\(696\) 0 0
\(697\) −18.9514 13.7690i −0.717837 0.521539i
\(698\) 0 0
\(699\) 13.9732 + 43.0052i 0.528516 + 1.62661i
\(700\) 0 0
\(701\) −9.76350 + 7.09360i −0.368762 + 0.267921i −0.756698 0.653765i \(-0.773188\pi\)
0.387935 + 0.921687i \(0.373188\pi\)
\(702\) 0 0
\(703\) 33.6723 1.26998
\(704\) 0 0
\(705\) 12.5044 0.470943
\(706\) 0 0
\(707\) −12.2050 + 8.86745i −0.459016 + 0.333495i
\(708\) 0 0
\(709\) 9.86241 + 30.3534i 0.370390 + 1.13994i 0.946536 + 0.322598i \(0.104556\pi\)
−0.576146 + 0.817347i \(0.695444\pi\)
\(710\) 0 0
\(711\) 35.7040 + 25.9405i 1.33900 + 0.972843i
\(712\) 0 0
\(713\) 2.95662 9.09953i 0.110726 0.340780i
\(714\) 0 0
\(715\) −18.3879 8.91138i −0.687668 0.333267i
\(716\) 0 0
\(717\) 21.9301 67.4940i 0.818995 2.52061i
\(718\) 0 0
\(719\) 2.14443 + 1.55802i 0.0799739 + 0.0581044i 0.627054 0.778976i \(-0.284261\pi\)
−0.547080 + 0.837080i \(0.684261\pi\)
\(720\) 0 0
\(721\) −5.11755 15.7502i −0.190587 0.586568i
\(722\) 0 0
\(723\) −13.5291 + 9.82950i −0.503154 + 0.365563i
\(724\) 0 0
\(725\) −3.19299 −0.118585
\(726\) 0 0
\(727\) −1.73626 −0.0643944 −0.0321972 0.999482i \(-0.510250\pi\)
−0.0321972 + 0.999482i \(0.510250\pi\)
\(728\) 0 0
\(729\) 31.1849 22.6572i 1.15500 0.839154i
\(730\) 0 0
\(731\) −15.0639 46.3619i −0.557158 1.71476i
\(732\) 0 0
\(733\) −27.0175 19.6294i −0.997914 0.725027i −0.0362742 0.999342i \(-0.511549\pi\)
−0.961640 + 0.274315i \(0.911549\pi\)
\(734\) 0 0
\(735\) 2.00555 6.17244i 0.0739758 0.227674i
\(736\) 0 0
\(737\) 22.8965 + 11.0964i 0.843402 + 0.408741i
\(738\) 0 0
\(739\) −12.6811 + 39.0284i −0.466482 + 1.43568i 0.390627 + 0.920549i \(0.372258\pi\)
−0.857109 + 0.515135i \(0.827742\pi\)
\(740\) 0 0
\(741\) 92.0864 + 66.9047i 3.38288 + 2.45780i
\(742\) 0 0
\(743\) 12.9409 + 39.8280i 0.474755 + 1.46115i 0.846287 + 0.532727i \(0.178833\pi\)
−0.371532 + 0.928420i \(0.621167\pi\)
\(744\) 0 0
\(745\) −0.604837 + 0.439440i −0.0221595 + 0.0160998i
\(746\) 0 0
\(747\) 22.9735 0.840557
\(748\) 0 0
\(749\) −6.12345 −0.223746
\(750\) 0 0
\(751\) 15.0799 10.9562i 0.550274 0.399798i −0.277612 0.960693i \(-0.589543\pi\)
0.827887 + 0.560895i \(0.189543\pi\)
\(752\) 0 0
\(753\) −10.7939 33.2202i −0.393352 1.21061i
\(754\) 0 0
\(755\) 2.64821 + 1.92404i 0.0963783 + 0.0700230i
\(756\) 0 0
\(757\) −4.41678 + 13.5934i −0.160531 + 0.494062i −0.998679 0.0513797i \(-0.983638\pi\)
0.838149 + 0.545442i \(0.183638\pi\)
\(758\) 0 0
\(759\) −20.6504 + 3.69463i −0.749564 + 0.134107i
\(760\) 0 0
\(761\) −4.87309 + 14.9978i −0.176649 + 0.543671i −0.999705 0.0242900i \(-0.992267\pi\)
0.823056 + 0.567961i \(0.192267\pi\)
\(762\) 0 0
\(763\) 14.1804 + 10.3027i 0.513365 + 0.372982i
\(764\) 0 0
\(765\) 11.9807 + 36.8728i 0.433163 + 1.33314i
\(766\) 0 0
\(767\) −68.7362 + 49.9397i −2.48192 + 1.80322i
\(768\) 0 0
\(769\) −16.5268 −0.595971 −0.297986 0.954570i \(-0.596315\pi\)
−0.297986 + 0.954570i \(0.596315\pi\)
\(770\) 0 0
\(771\) 56.7532 2.04392
\(772\) 0 0
\(773\) −31.6031 + 22.9610i −1.13669 + 0.825851i −0.986654 0.162830i \(-0.947938\pi\)
−0.150032 + 0.988681i \(0.547938\pi\)
\(774\) 0 0
\(775\) 1.35789 + 4.17917i 0.0487770 + 0.150120i
\(776\) 0 0
\(777\) −27.1646 19.7362i −0.974523 0.708033i
\(778\) 0 0
\(779\) 6.45854 19.8773i 0.231401 0.712179i
\(780\) 0 0
\(781\) 2.60283 18.8631i 0.0931367 0.674975i
\(782\) 0 0
\(783\) 6.99102 21.5162i 0.249839 0.768925i
\(784\) 0 0
\(785\) 12.1592 + 8.83418i 0.433981 + 0.315305i
\(786\) 0 0
\(787\) 1.52369 + 4.68945i 0.0543138 + 0.167161i 0.974534 0.224241i \(-0.0719903\pi\)
−0.920220 + 0.391402i \(0.871990\pi\)
\(788\) 0 0
\(789\) −57.8647 + 42.0412i −2.06004 + 1.49671i
\(790\) 0 0
\(791\) −15.1931 −0.540204
\(792\) 0 0
\(793\) 45.3004 1.60866
\(794\) 0 0
\(795\) −24.9496 + 18.1270i −0.884873 + 0.642898i
\(796\) 0 0
\(797\) −15.5757 47.9370i −0.551719 1.69802i −0.704455 0.709748i \(-0.748809\pi\)
0.152737 0.988267i \(-0.451191\pi\)
\(798\) 0 0
\(799\) 24.8230 + 18.0349i 0.878174 + 0.638030i
\(800\) 0 0
\(801\) 28.2428 86.9223i 0.997909 3.07125i
\(802\) 0 0
\(803\) −7.65890 14.3176i −0.270277 0.505257i
\(804\) 0 0
\(805\) −1.46887 + 4.52072i −0.0517709 + 0.159334i
\(806\) 0 0
\(807\) 3.63094 + 2.63803i 0.127815 + 0.0928630i
\(808\) 0 0
\(809\) −16.8685 51.9158i −0.593064 1.82526i −0.564136 0.825682i \(-0.690790\pi\)
−0.0289285 0.999581i \(-0.509210\pi\)
\(810\) 0 0
\(811\) −11.0409 + 8.02170i −0.387699 + 0.281680i −0.764512 0.644609i \(-0.777020\pi\)
0.376813 + 0.926289i \(0.377020\pi\)
\(812\) 0 0
\(813\) −65.5505 −2.29896
\(814\) 0 0
\(815\) 14.4813 0.507258
\(816\) 0 0
\(817\) 35.1868 25.5647i 1.23103 0.894395i
\(818\) 0 0
\(819\) −22.6058 69.5736i −0.789912 2.43110i
\(820\) 0 0
\(821\) 30.2323 + 21.9651i 1.05512 + 0.766586i 0.973178 0.230052i \(-0.0738895\pi\)
0.0819367 + 0.996638i \(0.473889\pi\)
\(822\) 0 0
\(823\) −8.50293 + 26.1693i −0.296394 + 0.912206i 0.686356 + 0.727266i \(0.259209\pi\)
−0.982750 + 0.184940i \(0.940791\pi\)
\(824\) 0 0
\(825\) 6.67549 6.94744i 0.232411 0.241879i
\(826\) 0 0
\(827\) −12.0378 + 37.0486i −0.418596 + 1.28831i 0.490399 + 0.871498i \(0.336851\pi\)
−0.908995 + 0.416807i \(0.863149\pi\)
\(828\) 0 0
\(829\) −6.48669 4.71286i −0.225292 0.163684i 0.469413 0.882978i \(-0.344465\pi\)
−0.694706 + 0.719294i \(0.744465\pi\)
\(830\) 0 0
\(831\) 12.4051 + 38.1791i 0.430330 + 1.32442i
\(832\) 0 0
\(833\) 12.8837 9.36057i 0.446394 0.324325i
\(834\) 0 0
\(835\) −0.304676 −0.0105438
\(836\) 0 0
\(837\) −31.1347 −1.07617
\(838\) 0 0
\(839\) 16.0692 11.6749i 0.554769 0.403064i −0.274771 0.961510i \(-0.588602\pi\)
0.829541 + 0.558446i \(0.188602\pi\)
\(840\) 0 0
\(841\) −5.81101 17.8844i −0.200379 0.616705i
\(842\) 0 0
\(843\) −20.4636 14.8677i −0.704803 0.512069i
\(844\) 0 0
\(845\) 7.71213 23.7355i 0.265305 0.816526i
\(846\) 0 0
\(847\) 0.958388 + 23.9949i 0.0329306 + 0.824474i
\(848\) 0 0
\(849\) −1.36869 + 4.21240i −0.0469733 + 0.144569i
\(850\) 0 0
\(851\) −9.32640 6.77602i −0.319705 0.232279i
\(852\) 0 0
\(853\) 7.58692 + 23.3501i 0.259771 + 0.799493i 0.992852 + 0.119352i \(0.0380816\pi\)
−0.733081 + 0.680141i \(0.761918\pi\)
\(854\) 0 0
\(855\) −27.9849 + 20.3322i −0.957064 + 0.695347i
\(856\) 0 0
\(857\) 9.17203 0.313311 0.156655 0.987653i \(-0.449929\pi\)
0.156655 + 0.987653i \(0.449929\pi\)
\(858\) 0 0
\(859\) 2.83353 0.0966786 0.0483393 0.998831i \(-0.484607\pi\)
0.0483393 + 0.998831i \(0.484607\pi\)
\(860\) 0 0
\(861\) −16.8609 + 12.2502i −0.574619 + 0.417485i
\(862\) 0 0
\(863\) 12.5909 + 38.7509i 0.428601 + 1.31910i 0.899504 + 0.436913i \(0.143928\pi\)
−0.470903 + 0.882185i \(0.656072\pi\)
\(864\) 0 0
\(865\) 7.85835 + 5.70942i 0.267192 + 0.194126i
\(866\) 0 0
\(867\) −30.3519 + 93.4136i −1.03081 + 3.17249i
\(868\) 0 0
\(869\) 18.6456 19.4052i 0.632508 0.658276i
\(870\) 0 0
\(871\) −14.6053 + 44.9505i −0.494882 + 1.52309i
\(872\) 0 0
\(873\) 14.4136 + 10.4721i 0.487826 + 0.354427i
\(874\) 0 0
\(875\) −0.674612 2.07624i −0.0228061 0.0701898i
\(876\) 0 0
\(877\) 2.30156 1.67218i 0.0777183 0.0564656i −0.548248 0.836316i \(-0.684705\pi\)
0.625966 + 0.779850i \(0.284705\pi\)
\(878\) 0 0
\(879\) −68.9562 −2.32584
\(880\) 0 0
\(881\) −25.7884 −0.868834 −0.434417 0.900712i \(-0.643046\pi\)
−0.434417 + 0.900712i \(0.643046\pi\)
\(882\) 0 0
\(883\) −6.87135 + 4.99233i −0.231239 + 0.168005i −0.697371 0.716710i \(-0.745647\pi\)
0.466132 + 0.884715i \(0.345647\pi\)
\(884\) 0 0
\(885\) −12.3797 38.1008i −0.416139 1.28074i
\(886\) 0 0
\(887\) −20.7442 15.0716i −0.696524 0.506054i 0.182275 0.983248i \(-0.441654\pi\)
−0.878798 + 0.477194i \(0.841654\pi\)
\(888\) 0 0
\(889\) 7.00734 21.5664i 0.235019 0.723313i
\(890\) 0 0
\(891\) 6.67349 + 12.4755i 0.223570 + 0.417944i
\(892\) 0 0
\(893\) −8.45951 + 26.0357i −0.283087 + 0.871252i
\(894\) 0 0
\(895\) −7.60610 5.52616i −0.254244 0.184719i
\(896\) 0 0
\(897\) −12.0421 37.0619i −0.402075 1.23746i
\(898\) 0 0
\(899\) 11.3511 8.24708i 0.378581 0.275055i
\(900\) 0 0
\(901\) −75.6728 −2.52102
\(902\) 0 0
\(903\) −43.3704 −1.44328
\(904\) 0 0
\(905\) 10.6602 7.74510i 0.354357 0.257456i
\(906\) 0 0
\(907\) −7.30339 22.4775i −0.242505 0.746354i −0.996037 0.0889426i \(-0.971651\pi\)
0.753532 0.657412i \(-0.228349\pi\)
\(908\) 0 0
\(909\) 30.4079 + 22.0926i 1.00857 + 0.732766i
\(910\) 0 0
\(911\) −14.6445 + 45.0710i −0.485193 + 1.49327i 0.346509 + 0.938047i \(0.387367\pi\)
−0.831701 + 0.555223i \(0.812633\pi\)
\(912\) 0 0
\(913\) 1.91488 13.8774i 0.0633732 0.459275i
\(914\) 0 0
\(915\) −6.60062 + 20.3146i −0.218210 + 0.671580i
\(916\) 0 0
\(917\) 6.15706 + 4.47337i 0.203324 + 0.147724i
\(918\) 0 0
\(919\) −12.3341 37.9604i −0.406864 1.25220i −0.919329 0.393490i \(-0.871268\pi\)
0.512465 0.858708i \(-0.328732\pi\)
\(920\) 0 0
\(921\) −41.6282 + 30.2447i −1.37170 + 0.996595i
\(922\) 0 0
\(923\) 35.3719 1.16428
\(924\) 0 0
\(925\) 5.29453 0.174083
\(926\) 0 0
\(927\) −33.3799 + 24.2520i −1.09634 + 0.796539i
\(928\) 0 0
\(929\) −3.33281 10.2573i −0.109346 0.336533i 0.881380 0.472408i \(-0.156615\pi\)
−0.990726 + 0.135876i \(0.956615\pi\)
\(930\) 0 0
\(931\) 11.4950 + 8.35159i 0.376733 + 0.273712i
\(932\) 0 0
\(933\) −6.09079 + 18.7455i −0.199404 + 0.613701i
\(934\) 0 0
\(935\) 23.2720 4.16366i 0.761075 0.136166i
\(936\) 0 0
\(937\) −11.7069 + 36.0300i −0.382447 + 1.17705i 0.555869 + 0.831270i \(0.312386\pi\)
−0.938316 + 0.345780i \(0.887614\pi\)
\(938\) 0 0
\(939\) 55.9477 + 40.6484i 1.82578 + 1.32651i
\(940\) 0 0
\(941\) 0.367150 + 1.12997i 0.0119688 + 0.0368361i 0.956863 0.290541i \(-0.0938353\pi\)
−0.944894 + 0.327377i \(0.893835\pi\)
\(942\) 0 0
\(943\) −5.78885 + 4.20585i −0.188511 + 0.136961i
\(944\) 0 0
\(945\) 15.4679 0.503172
\(946\) 0 0
\(947\) 4.75475 0.154508 0.0772542 0.997011i \(-0.475385\pi\)
0.0772542 + 0.997011i \(0.475385\pi\)
\(948\) 0 0
\(949\) 24.4019 17.7290i 0.792118 0.575507i
\(950\) 0 0
\(951\) 1.65892 + 5.10562i 0.0537940 + 0.165561i
\(952\) 0 0
\(953\) −1.55624 1.13067i −0.0504115 0.0366261i 0.562294 0.826937i \(-0.309919\pi\)
−0.612706 + 0.790311i \(0.709919\pi\)
\(954\) 0 0
\(955\) −2.27360 + 6.99742i −0.0735720 + 0.226431i
\(956\) 0 0
\(957\) −27.6840 13.4166i −0.894898 0.433697i
\(958\) 0 0
\(959\) 9.81366 30.2033i 0.316900 0.975317i
\(960\) 0 0
\(961\) 9.45795 + 6.87160i 0.305095 + 0.221665i
\(962\) 0 0
\(963\) 4.71441 + 14.5095i 0.151920 + 0.467561i
\(964\) 0 0
\(965\) 14.9465 10.8593i 0.481146 0.349573i
\(966\) 0 0
\(967\) −14.4688 −0.465284 −0.232642 0.972562i \(-0.574737\pi\)
−0.232642 + 0.972562i \(0.574737\pi\)
\(968\) 0 0
\(969\) −131.695 −4.23067
\(970\) 0 0
\(971\) 11.1092 8.07132i 0.356512 0.259021i −0.395084 0.918645i \(-0.629285\pi\)
0.751596 + 0.659624i \(0.229285\pi\)
\(972\) 0 0
\(973\) 0.338583 + 1.04205i 0.0108545 + 0.0334066i
\(974\) 0 0
\(975\) 14.4794 + 10.5199i 0.463711 + 0.336906i
\(976\) 0 0
\(977\) −13.3023 + 40.9404i −0.425579 + 1.30980i 0.476859 + 0.878980i \(0.341775\pi\)
−0.902439 + 0.430818i \(0.858225\pi\)
\(978\) 0 0
\(979\) −50.1522 24.3054i −1.60287 0.776805i
\(980\) 0 0
\(981\) 13.4947 41.5323i 0.430851 1.32602i
\(982\) 0 0
\(983\) −16.8472 12.2402i −0.537341 0.390401i 0.285756 0.958302i \(-0.407755\pi\)
−0.823096 + 0.567902i \(0.807755\pi\)
\(984\) 0 0
\(985\) 2.96103 + 9.11311i 0.0943462 + 0.290368i
\(986\) 0 0
\(987\) 22.0848 16.0455i 0.702966 0.510735i
\(988\) 0 0
\(989\) −14.8904 −0.473486
\(990\) 0 0
\(991\) 42.9441 1.36417 0.682083 0.731275i \(-0.261074\pi\)
0.682083 + 0.731275i \(0.261074\pi\)
\(992\) 0 0
\(993\) 41.2822 29.9933i 1.31005 0.951807i
\(994\) 0 0
\(995\) 4.11879 + 12.6763i 0.130574 + 0.401866i
\(996\) 0 0
\(997\) 24.1408 + 17.5393i 0.764547 + 0.555476i 0.900302 0.435267i \(-0.143346\pi\)
−0.135755 + 0.990742i \(0.543346\pi\)
\(998\) 0 0
\(999\) −11.5923 + 35.6775i −0.366765 + 1.12879i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 440.2.y.d.361.4 16
4.3 odd 2 880.2.bo.k.801.1 16
11.4 even 5 4840.2.a.bg.1.1 8
11.5 even 5 inner 440.2.y.d.401.4 yes 16
11.7 odd 10 4840.2.a.bh.1.1 8
44.7 even 10 9680.2.a.de.1.8 8
44.15 odd 10 9680.2.a.df.1.8 8
44.27 odd 10 880.2.bo.k.401.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.y.d.361.4 16 1.1 even 1 trivial
440.2.y.d.401.4 yes 16 11.5 even 5 inner
880.2.bo.k.401.1 16 44.27 odd 10
880.2.bo.k.801.1 16 4.3 odd 2
4840.2.a.bg.1.1 8 11.4 even 5
4840.2.a.bh.1.1 8 11.7 odd 10
9680.2.a.de.1.8 8 44.7 even 10
9680.2.a.df.1.8 8 44.15 odd 10