Properties

Label 440.2.y.d.201.1
Level $440$
Weight $2$
Character 440.201
Analytic conductor $3.513$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [440,2,Mod(81,440)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("440.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(440, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 440.y (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-3,0,-4,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.51341768894\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 14 x^{14} - 32 x^{13} + 141 x^{12} - 220 x^{11} + 1105 x^{10} - 1935 x^{9} + \cdots + 10000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 201.1
Root \(0.856564 + 2.63623i\) of defining polynomial
Character \(\chi\) \(=\) 440.201
Dual form 440.2.y.d.81.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.856564 - 2.63623i) q^{3} +(-0.809017 - 0.587785i) q^{5} +(-1.40759 + 4.33212i) q^{7} +(-3.78896 + 2.75284i) q^{9} +(-3.01954 + 1.37200i) q^{11} +(-2.34636 + 1.70473i) q^{13} +(-0.856564 + 2.63623i) q^{15} +(5.73433 + 4.16623i) q^{17} +(-2.20745 - 6.79384i) q^{19} +12.6262 q^{21} -1.86699 q^{23} +(0.309017 + 0.951057i) q^{25} +(3.77509 + 2.74276i) q^{27} +(-0.312324 + 0.961233i) q^{29} +(-3.56804 + 2.59234i) q^{31} +(6.20333 + 6.78500i) q^{33} +(3.68512 - 2.67740i) q^{35} +(-1.66589 + 5.12709i) q^{37} +(6.50386 + 4.72533i) q^{39} +(-1.38684 - 4.26825i) q^{41} -6.73002 q^{43} +4.68342 q^{45} +(2.42584 + 7.46596i) q^{47} +(-11.1228 - 8.08120i) q^{49} +(6.07134 - 18.6857i) q^{51} +(-0.578008 + 0.419948i) q^{53} +(3.24930 + 0.664870i) q^{55} +(-16.0193 + 11.6387i) q^{57} +(-1.17528 + 3.61715i) q^{59} +(-1.71184 - 1.24373i) q^{61} +(-6.59234 - 20.2891i) q^{63} +2.90026 q^{65} -12.8384 q^{67} +(1.59920 + 4.92182i) q^{69} +(-3.40673 - 2.47513i) q^{71} +(0.422042 - 1.29891i) q^{73} +(2.24251 - 1.62928i) q^{75} +(-1.69339 - 15.0122i) q^{77} +(9.90032 - 7.19300i) q^{79} +(-0.344817 + 1.06124i) q^{81} +(13.2153 + 9.60151i) q^{83} +(-2.19032 - 6.74110i) q^{85} +2.80156 q^{87} -11.8165 q^{89} +(-4.08237 - 12.5643i) q^{91} +(9.89025 + 7.18569i) q^{93} +(-2.20745 + 6.79384i) q^{95} +(8.78139 - 6.38005i) q^{97} +(7.66403 - 13.5108i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 3 q^{3} - 4 q^{5} + 8 q^{7} - 7 q^{9} - 7 q^{11} - 11 q^{13} - 3 q^{15} + 9 q^{17} - 2 q^{19} + 12 q^{21} + 20 q^{23} - 4 q^{25} - 9 q^{27} + q^{29} - 2 q^{31} - 32 q^{33} - 2 q^{35} - 16 q^{37}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/440\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(221\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.856564 2.63623i −0.494537 1.52203i −0.817677 0.575678i \(-0.804738\pi\)
0.323140 0.946351i \(-0.395262\pi\)
\(4\) 0 0
\(5\) −0.809017 0.587785i −0.361803 0.262866i
\(6\) 0 0
\(7\) −1.40759 + 4.33212i −0.532019 + 1.63739i 0.217984 + 0.975952i \(0.430052\pi\)
−0.750003 + 0.661434i \(0.769948\pi\)
\(8\) 0 0
\(9\) −3.78896 + 2.75284i −1.26299 + 0.917615i
\(10\) 0 0
\(11\) −3.01954 + 1.37200i −0.910425 + 0.413673i
\(12\) 0 0
\(13\) −2.34636 + 1.70473i −0.650762 + 0.472807i −0.863531 0.504296i \(-0.831752\pi\)
0.212768 + 0.977103i \(0.431752\pi\)
\(14\) 0 0
\(15\) −0.856564 + 2.63623i −0.221164 + 0.680672i
\(16\) 0 0
\(17\) 5.73433 + 4.16623i 1.39078 + 1.01046i 0.995779 + 0.0917781i \(0.0292550\pi\)
0.394999 + 0.918682i \(0.370745\pi\)
\(18\) 0 0
\(19\) −2.20745 6.79384i −0.506424 1.55861i −0.798363 0.602177i \(-0.794300\pi\)
0.291938 0.956437i \(-0.405700\pi\)
\(20\) 0 0
\(21\) 12.6262 2.75525
\(22\) 0 0
\(23\) −1.86699 −0.389295 −0.194647 0.980873i \(-0.562356\pi\)
−0.194647 + 0.980873i \(0.562356\pi\)
\(24\) 0 0
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) 0 0
\(27\) 3.77509 + 2.74276i 0.726516 + 0.527844i
\(28\) 0 0
\(29\) −0.312324 + 0.961233i −0.0579970 + 0.178497i −0.975858 0.218405i \(-0.929915\pi\)
0.917861 + 0.396902i \(0.129915\pi\)
\(30\) 0 0
\(31\) −3.56804 + 2.59234i −0.640840 + 0.465597i −0.860139 0.510061i \(-0.829623\pi\)
0.219299 + 0.975658i \(0.429623\pi\)
\(32\) 0 0
\(33\) 6.20333 + 6.78500i 1.07986 + 1.18112i
\(34\) 0 0
\(35\) 3.68512 2.67740i 0.622899 0.452563i
\(36\) 0 0
\(37\) −1.66589 + 5.12709i −0.273871 + 0.842888i 0.715645 + 0.698464i \(0.246133\pi\)
−0.989516 + 0.144424i \(0.953867\pi\)
\(38\) 0 0
\(39\) 6.50386 + 4.72533i 1.04145 + 0.756659i
\(40\) 0 0
\(41\) −1.38684 4.26825i −0.216588 0.666588i −0.999037 0.0438739i \(-0.986030\pi\)
0.782450 0.622714i \(-0.213970\pi\)
\(42\) 0 0
\(43\) −6.73002 −1.02632 −0.513159 0.858293i \(-0.671525\pi\)
−0.513159 + 0.858293i \(0.671525\pi\)
\(44\) 0 0
\(45\) 4.68342 0.698163
\(46\) 0 0
\(47\) 2.42584 + 7.46596i 0.353845 + 1.08902i 0.956676 + 0.291154i \(0.0940390\pi\)
−0.602832 + 0.797868i \(0.705961\pi\)
\(48\) 0 0
\(49\) −11.1228 8.08120i −1.58897 1.15446i
\(50\) 0 0
\(51\) 6.07134 18.6857i 0.850157 2.61651i
\(52\) 0 0
\(53\) −0.578008 + 0.419948i −0.0793956 + 0.0576843i −0.626775 0.779200i \(-0.715625\pi\)
0.547379 + 0.836885i \(0.315625\pi\)
\(54\) 0 0
\(55\) 3.24930 + 0.664870i 0.438135 + 0.0896511i
\(56\) 0 0
\(57\) −16.0193 + 11.6387i −2.12181 + 1.54159i
\(58\) 0 0
\(59\) −1.17528 + 3.61715i −0.153009 + 0.470913i −0.997954 0.0639406i \(-0.979633\pi\)
0.844945 + 0.534853i \(0.179633\pi\)
\(60\) 0 0
\(61\) −1.71184 1.24373i −0.219179 0.159243i 0.472778 0.881181i \(-0.343251\pi\)
−0.691957 + 0.721939i \(0.743251\pi\)
\(62\) 0 0
\(63\) −6.59234 20.2891i −0.830556 2.55619i
\(64\) 0 0
\(65\) 2.90026 0.359733
\(66\) 0 0
\(67\) −12.8384 −1.56847 −0.784233 0.620467i \(-0.786943\pi\)
−0.784233 + 0.620467i \(0.786943\pi\)
\(68\) 0 0
\(69\) 1.59920 + 4.92182i 0.192521 + 0.592518i
\(70\) 0 0
\(71\) −3.40673 2.47513i −0.404304 0.293744i 0.366988 0.930226i \(-0.380389\pi\)
−0.771292 + 0.636482i \(0.780389\pi\)
\(72\) 0 0
\(73\) 0.422042 1.29891i 0.0493963 0.152026i −0.923316 0.384042i \(-0.874532\pi\)
0.972712 + 0.232015i \(0.0745319\pi\)
\(74\) 0 0
\(75\) 2.24251 1.62928i 0.258943 0.188133i
\(76\) 0 0
\(77\) −1.69339 15.0122i −0.192979 1.71080i
\(78\) 0 0
\(79\) 9.90032 7.19300i 1.11387 0.809276i 0.130604 0.991435i \(-0.458308\pi\)
0.983269 + 0.182159i \(0.0583084\pi\)
\(80\) 0 0
\(81\) −0.344817 + 1.06124i −0.0383130 + 0.117915i
\(82\) 0 0
\(83\) 13.2153 + 9.60151i 1.45057 + 1.05390i 0.985697 + 0.168527i \(0.0539011\pi\)
0.464876 + 0.885376i \(0.346099\pi\)
\(84\) 0 0
\(85\) −2.19032 6.74110i −0.237573 0.731175i
\(86\) 0 0
\(87\) 2.80156 0.300359
\(88\) 0 0
\(89\) −11.8165 −1.25255 −0.626273 0.779604i \(-0.715420\pi\)
−0.626273 + 0.779604i \(0.715420\pi\)
\(90\) 0 0
\(91\) −4.08237 12.5643i −0.427949 1.31709i
\(92\) 0 0
\(93\) 9.89025 + 7.18569i 1.02557 + 0.745121i
\(94\) 0 0
\(95\) −2.20745 + 6.79384i −0.226480 + 0.697034i
\(96\) 0 0
\(97\) 8.78139 6.38005i 0.891615 0.647796i −0.0446836 0.999001i \(-0.514228\pi\)
0.936299 + 0.351205i \(0.114228\pi\)
\(98\) 0 0
\(99\) 7.66403 13.5108i 0.770264 1.35788i
\(100\) 0 0
\(101\) −10.2475 + 7.44521i −1.01966 + 0.740826i −0.966213 0.257745i \(-0.917021\pi\)
−0.0534466 + 0.998571i \(0.517021\pi\)
\(102\) 0 0
\(103\) −1.91023 + 5.87907i −0.188220 + 0.579282i −0.999989 0.00469684i \(-0.998505\pi\)
0.811769 + 0.583979i \(0.198505\pi\)
\(104\) 0 0
\(105\) −10.2148 7.42147i −0.996860 0.724261i
\(106\) 0 0
\(107\) 0.311410 + 0.958421i 0.0301051 + 0.0926541i 0.964980 0.262323i \(-0.0844886\pi\)
−0.934875 + 0.354977i \(0.884489\pi\)
\(108\) 0 0
\(109\) 6.60399 0.632548 0.316274 0.948668i \(-0.397568\pi\)
0.316274 + 0.948668i \(0.397568\pi\)
\(110\) 0 0
\(111\) 14.9431 1.41834
\(112\) 0 0
\(113\) −3.17084 9.75885i −0.298288 0.918035i −0.982097 0.188375i \(-0.939678\pi\)
0.683810 0.729661i \(-0.260322\pi\)
\(114\) 0 0
\(115\) 1.51043 + 1.09739i 0.140848 + 0.102332i
\(116\) 0 0
\(117\) 4.19741 12.9183i 0.388051 1.19430i
\(118\) 0 0
\(119\) −26.1202 + 18.9774i −2.39443 + 1.73966i
\(120\) 0 0
\(121\) 7.23524 8.28561i 0.657749 0.753237i
\(122\) 0 0
\(123\) −10.0642 + 7.31205i −0.907456 + 0.659305i
\(124\) 0 0
\(125\) 0.309017 0.951057i 0.0276393 0.0850651i
\(126\) 0 0
\(127\) −14.3366 10.4162i −1.27217 0.924287i −0.272885 0.962047i \(-0.587978\pi\)
−0.999287 + 0.0377597i \(0.987978\pi\)
\(128\) 0 0
\(129\) 5.76469 + 17.7419i 0.507553 + 1.56209i
\(130\) 0 0
\(131\) 14.3999 1.25812 0.629061 0.777356i \(-0.283440\pi\)
0.629061 + 0.777356i \(0.283440\pi\)
\(132\) 0 0
\(133\) 32.5389 2.82148
\(134\) 0 0
\(135\) −1.44195 4.43788i −0.124104 0.381952i
\(136\) 0 0
\(137\) −3.61606 2.62722i −0.308941 0.224459i 0.422501 0.906362i \(-0.361152\pi\)
−0.731442 + 0.681904i \(0.761152\pi\)
\(138\) 0 0
\(139\) 1.49726 4.60808i 0.126996 0.390853i −0.867264 0.497849i \(-0.834123\pi\)
0.994259 + 0.106996i \(0.0341234\pi\)
\(140\) 0 0
\(141\) 17.6041 12.7901i 1.48253 1.07712i
\(142\) 0 0
\(143\) 4.74603 8.36669i 0.396883 0.699658i
\(144\) 0 0
\(145\) 0.817674 0.594075i 0.0679041 0.0493352i
\(146\) 0 0
\(147\) −11.7765 + 36.2444i −0.971311 + 2.98939i
\(148\) 0 0
\(149\) 8.67777 + 6.30477i 0.710911 + 0.516507i 0.883467 0.468493i \(-0.155203\pi\)
−0.172557 + 0.985000i \(0.555203\pi\)
\(150\) 0 0
\(151\) −0.0623641 0.191937i −0.00507512 0.0156196i 0.948487 0.316816i \(-0.102614\pi\)
−0.953562 + 0.301197i \(0.902614\pi\)
\(152\) 0 0
\(153\) −33.1961 −2.68375
\(154\) 0 0
\(155\) 4.41034 0.354247
\(156\) 0 0
\(157\) −0.902942 2.77897i −0.0720626 0.221786i 0.908538 0.417802i \(-0.137199\pi\)
−0.980601 + 0.196016i \(0.937199\pi\)
\(158\) 0 0
\(159\) 1.60218 + 1.16405i 0.127061 + 0.0923153i
\(160\) 0 0
\(161\) 2.62796 8.08803i 0.207112 0.637426i
\(162\) 0 0
\(163\) −6.86174 + 4.98535i −0.537453 + 0.390483i −0.823138 0.567841i \(-0.807779\pi\)
0.285685 + 0.958324i \(0.407779\pi\)
\(164\) 0 0
\(165\) −1.03048 9.13541i −0.0802227 0.711191i
\(166\) 0 0
\(167\) 8.14210 5.91558i 0.630055 0.457761i −0.226365 0.974043i \(-0.572684\pi\)
0.856419 + 0.516281i \(0.172684\pi\)
\(168\) 0 0
\(169\) −1.41793 + 4.36393i −0.109071 + 0.335687i
\(170\) 0 0
\(171\) 27.0663 + 19.6649i 2.06982 + 1.50381i
\(172\) 0 0
\(173\) 1.78384 + 5.49008i 0.135623 + 0.417403i 0.995686 0.0927832i \(-0.0295764\pi\)
−0.860064 + 0.510187i \(0.829576\pi\)
\(174\) 0 0
\(175\) −4.55506 −0.344330
\(176\) 0 0
\(177\) 10.5424 0.792412
\(178\) 0 0
\(179\) 5.21222 + 16.0416i 0.389580 + 1.19900i 0.933103 + 0.359609i \(0.117090\pi\)
−0.543524 + 0.839394i \(0.682910\pi\)
\(180\) 0 0
\(181\) −12.2205 8.87872i −0.908343 0.659950i 0.0322522 0.999480i \(-0.489732\pi\)
−0.940595 + 0.339530i \(0.889732\pi\)
\(182\) 0 0
\(183\) −1.81245 + 5.57814i −0.133980 + 0.412348i
\(184\) 0 0
\(185\) 4.36136 3.16871i 0.320654 0.232968i
\(186\) 0 0
\(187\) −23.0311 4.71261i −1.68420 0.344620i
\(188\) 0 0
\(189\) −17.1957 + 12.4934i −1.25081 + 0.908764i
\(190\) 0 0
\(191\) 3.22423 9.92317i 0.233297 0.718016i −0.764045 0.645163i \(-0.776790\pi\)
0.997343 0.0728530i \(-0.0232104\pi\)
\(192\) 0 0
\(193\) −11.2656 8.18491i −0.810913 0.589163i 0.103182 0.994662i \(-0.467098\pi\)
−0.914095 + 0.405500i \(0.867098\pi\)
\(194\) 0 0
\(195\) −2.48425 7.64575i −0.177901 0.547523i
\(196\) 0 0
\(197\) −2.25234 −0.160473 −0.0802363 0.996776i \(-0.525567\pi\)
−0.0802363 + 0.996776i \(0.525567\pi\)
\(198\) 0 0
\(199\) 22.1246 1.56837 0.784184 0.620528i \(-0.213082\pi\)
0.784184 + 0.620528i \(0.213082\pi\)
\(200\) 0 0
\(201\) 10.9969 + 33.8451i 0.775665 + 2.38725i
\(202\) 0 0
\(203\) −3.72455 2.70605i −0.261412 0.189927i
\(204\) 0 0
\(205\) −1.38684 + 4.26825i −0.0968609 + 0.298107i
\(206\) 0 0
\(207\) 7.07396 5.13953i 0.491674 0.357222i
\(208\) 0 0
\(209\) 15.9866 + 17.4857i 1.10582 + 1.20951i
\(210\) 0 0
\(211\) −6.28703 + 4.56779i −0.432817 + 0.314460i −0.782774 0.622306i \(-0.786196\pi\)
0.349957 + 0.936766i \(0.386196\pi\)
\(212\) 0 0
\(213\) −3.60694 + 11.1010i −0.247144 + 0.760630i
\(214\) 0 0
\(215\) 5.44470 + 3.95581i 0.371326 + 0.269784i
\(216\) 0 0
\(217\) −6.20796 19.1061i −0.421424 1.29701i
\(218\) 0 0
\(219\) −3.78574 −0.255817
\(220\) 0 0
\(221\) −20.5571 −1.38282
\(222\) 0 0
\(223\) −2.44767 7.53316i −0.163908 0.504458i 0.835046 0.550180i \(-0.185441\pi\)
−0.998954 + 0.0457224i \(0.985441\pi\)
\(224\) 0 0
\(225\) −3.78896 2.75284i −0.252598 0.183523i
\(226\) 0 0
\(227\) −6.26291 + 19.2752i −0.415684 + 1.27934i 0.495954 + 0.868349i \(0.334818\pi\)
−0.911638 + 0.410994i \(0.865182\pi\)
\(228\) 0 0
\(229\) −7.99349 + 5.80761i −0.528225 + 0.383778i −0.819693 0.572803i \(-0.805856\pi\)
0.291468 + 0.956580i \(0.405856\pi\)
\(230\) 0 0
\(231\) −38.1252 + 17.3231i −2.50845 + 1.13977i
\(232\) 0 0
\(233\) −7.92728 + 5.75950i −0.519333 + 0.377318i −0.816353 0.577554i \(-0.804007\pi\)
0.297019 + 0.954871i \(0.404007\pi\)
\(234\) 0 0
\(235\) 2.42584 7.46596i 0.158244 0.487025i
\(236\) 0 0
\(237\) −27.4427 19.9383i −1.78259 1.29513i
\(238\) 0 0
\(239\) −3.40378 10.4758i −0.220173 0.677621i −0.998746 0.0500677i \(-0.984056\pi\)
0.778573 0.627554i \(-0.215944\pi\)
\(240\) 0 0
\(241\) −13.3108 −0.857421 −0.428711 0.903442i \(-0.641032\pi\)
−0.428711 + 0.903442i \(0.641032\pi\)
\(242\) 0 0
\(243\) 17.0918 1.09644
\(244\) 0 0
\(245\) 4.24854 + 13.0757i 0.271429 + 0.835373i
\(246\) 0 0
\(247\) 16.7611 + 12.1777i 1.06649 + 0.774847i
\(248\) 0 0
\(249\) 13.9920 43.0630i 0.886709 2.72901i
\(250\) 0 0
\(251\) 11.8048 8.57671i 0.745114 0.541357i −0.149195 0.988808i \(-0.547668\pi\)
0.894308 + 0.447451i \(0.147668\pi\)
\(252\) 0 0
\(253\) 5.63745 2.56151i 0.354424 0.161041i
\(254\) 0 0
\(255\) −15.8950 + 11.5484i −0.995381 + 0.723187i
\(256\) 0 0
\(257\) 0.298365 0.918272i 0.0186115 0.0572802i −0.941319 0.337517i \(-0.890413\pi\)
0.959931 + 0.280237i \(0.0904130\pi\)
\(258\) 0 0
\(259\) −19.8662 14.4337i −1.23443 0.896865i
\(260\) 0 0
\(261\) −1.46274 4.50186i −0.0905414 0.278658i
\(262\) 0 0
\(263\) 20.7753 1.28106 0.640529 0.767934i \(-0.278715\pi\)
0.640529 + 0.767934i \(0.278715\pi\)
\(264\) 0 0
\(265\) 0.714458 0.0438888
\(266\) 0 0
\(267\) 10.1216 + 31.1510i 0.619430 + 1.90641i
\(268\) 0 0
\(269\) 3.16639 + 2.30052i 0.193058 + 0.140265i 0.680115 0.733105i \(-0.261930\pi\)
−0.487057 + 0.873370i \(0.661930\pi\)
\(270\) 0 0
\(271\) −4.41220 + 13.5794i −0.268022 + 0.824888i 0.722959 + 0.690891i \(0.242781\pi\)
−0.990982 + 0.133997i \(0.957219\pi\)
\(272\) 0 0
\(273\) −29.6255 + 21.5242i −1.79302 + 1.30270i
\(274\) 0 0
\(275\) −2.23794 2.44778i −0.134953 0.147607i
\(276\) 0 0
\(277\) −3.04431 + 2.21182i −0.182915 + 0.132895i −0.675475 0.737383i \(-0.736061\pi\)
0.492560 + 0.870279i \(0.336061\pi\)
\(278\) 0 0
\(279\) 6.38290 19.6445i 0.382134 1.17609i
\(280\) 0 0
\(281\) 8.34820 + 6.06532i 0.498012 + 0.361827i 0.808257 0.588830i \(-0.200411\pi\)
−0.310245 + 0.950657i \(0.600411\pi\)
\(282\) 0 0
\(283\) 9.41156 + 28.9658i 0.559459 + 1.72184i 0.683866 + 0.729608i \(0.260297\pi\)
−0.124406 + 0.992231i \(0.539703\pi\)
\(284\) 0 0
\(285\) 19.8010 1.17291
\(286\) 0 0
\(287\) 20.4426 1.20669
\(288\) 0 0
\(289\) 10.2717 + 31.6131i 0.604219 + 1.85959i
\(290\) 0 0
\(291\) −24.3411 17.6849i −1.42690 1.03670i
\(292\) 0 0
\(293\) −2.44293 + 7.51856i −0.142717 + 0.439239i −0.996710 0.0810455i \(-0.974174\pi\)
0.853993 + 0.520284i \(0.174174\pi\)
\(294\) 0 0
\(295\) 3.07693 2.23552i 0.179146 0.130157i
\(296\) 0 0
\(297\) −15.1621 3.10246i −0.879793 0.180023i
\(298\) 0 0
\(299\) 4.38063 3.18271i 0.253338 0.184061i
\(300\) 0 0
\(301\) 9.47311 29.1552i 0.546021 1.68048i
\(302\) 0 0
\(303\) 28.4049 + 20.6374i 1.63182 + 1.18559i
\(304\) 0 0
\(305\) 0.653865 + 2.01239i 0.0374402 + 0.115229i
\(306\) 0 0
\(307\) 14.2585 0.813777 0.406889 0.913478i \(-0.366614\pi\)
0.406889 + 0.913478i \(0.366614\pi\)
\(308\) 0 0
\(309\) 17.1348 0.974766
\(310\) 0 0
\(311\) 5.31873 + 16.3694i 0.301598 + 0.928222i 0.980925 + 0.194387i \(0.0622717\pi\)
−0.679327 + 0.733835i \(0.737728\pi\)
\(312\) 0 0
\(313\) 6.44301 + 4.68112i 0.364181 + 0.264593i 0.754794 0.655962i \(-0.227737\pi\)
−0.390613 + 0.920555i \(0.627737\pi\)
\(314\) 0 0
\(315\) −6.59234 + 20.2891i −0.371436 + 1.14316i
\(316\) 0 0
\(317\) 11.1083 8.07068i 0.623907 0.453295i −0.230377 0.973101i \(-0.573996\pi\)
0.854284 + 0.519807i \(0.173996\pi\)
\(318\) 0 0
\(319\) −0.375738 3.33099i −0.0210373 0.186500i
\(320\) 0 0
\(321\) 2.25988 1.64190i 0.126134 0.0916418i
\(322\) 0 0
\(323\) 15.6465 48.1549i 0.870593 2.67941i
\(324\) 0 0
\(325\) −2.34636 1.70473i −0.130152 0.0945613i
\(326\) 0 0
\(327\) −5.65674 17.4097i −0.312819 0.962756i
\(328\) 0 0
\(329\) −35.7580 −1.97140
\(330\) 0 0
\(331\) 10.6971 0.587967 0.293983 0.955811i \(-0.405019\pi\)
0.293983 + 0.955811i \(0.405019\pi\)
\(332\) 0 0
\(333\) −7.80206 24.0123i −0.427550 1.31587i
\(334\) 0 0
\(335\) 10.3865 + 7.54625i 0.567476 + 0.412296i
\(336\) 0 0
\(337\) 3.54742 10.9178i 0.193240 0.594732i −0.806753 0.590889i \(-0.798777\pi\)
0.999993 0.00384240i \(-0.00122308\pi\)
\(338\) 0 0
\(339\) −23.0106 + 16.7181i −1.24976 + 0.908005i
\(340\) 0 0
\(341\) 7.21717 12.7230i 0.390832 0.688990i
\(342\) 0 0
\(343\) 24.8693 18.0686i 1.34281 0.975611i
\(344\) 0 0
\(345\) 1.59920 4.92182i 0.0860978 0.264982i
\(346\) 0 0
\(347\) 0.342361 + 0.248740i 0.0183789 + 0.0133530i 0.596937 0.802288i \(-0.296384\pi\)
−0.578558 + 0.815641i \(0.696384\pi\)
\(348\) 0 0
\(349\) 0.261913 + 0.806085i 0.0140199 + 0.0431488i 0.957822 0.287363i \(-0.0927786\pi\)
−0.943802 + 0.330512i \(0.892779\pi\)
\(350\) 0 0
\(351\) −13.5334 −0.722357
\(352\) 0 0
\(353\) 9.79855 0.521524 0.260762 0.965403i \(-0.416026\pi\)
0.260762 + 0.965403i \(0.416026\pi\)
\(354\) 0 0
\(355\) 1.30125 + 4.00485i 0.0690634 + 0.212555i
\(356\) 0 0
\(357\) 72.4025 + 52.6035i 3.83195 + 2.78407i
\(358\) 0 0
\(359\) 2.35059 7.23438i 0.124060 0.381816i −0.869669 0.493635i \(-0.835668\pi\)
0.993729 + 0.111819i \(0.0356677\pi\)
\(360\) 0 0
\(361\) −25.9121 + 18.8263i −1.36380 + 0.990856i
\(362\) 0 0
\(363\) −28.0402 11.9766i −1.47173 0.628609i
\(364\) 0 0
\(365\) −1.10492 + 0.802772i −0.0578342 + 0.0420190i
\(366\) 0 0
\(367\) −0.577181 + 1.77638i −0.0301286 + 0.0927263i −0.964990 0.262286i \(-0.915523\pi\)
0.934861 + 0.355013i \(0.115523\pi\)
\(368\) 0 0
\(369\) 17.0045 + 12.3545i 0.885218 + 0.643149i
\(370\) 0 0
\(371\) −1.00566 3.09512i −0.0522115 0.160690i
\(372\) 0 0
\(373\) 20.0214 1.03667 0.518335 0.855178i \(-0.326552\pi\)
0.518335 + 0.855178i \(0.326552\pi\)
\(374\) 0 0
\(375\) −2.77190 −0.143140
\(376\) 0 0
\(377\) −0.905819 2.78782i −0.0466520 0.143580i
\(378\) 0 0
\(379\) −19.4206 14.1099i −0.997571 0.724778i −0.0360048 0.999352i \(-0.511463\pi\)
−0.961566 + 0.274574i \(0.911463\pi\)
\(380\) 0 0
\(381\) −15.1792 + 46.7168i −0.777655 + 2.39338i
\(382\) 0 0
\(383\) −15.9188 + 11.5657i −0.813411 + 0.590978i −0.914818 0.403867i \(-0.867666\pi\)
0.101407 + 0.994845i \(0.467666\pi\)
\(384\) 0 0
\(385\) −7.45398 + 13.1405i −0.379890 + 0.669701i
\(386\) 0 0
\(387\) 25.4998 18.5267i 1.29623 0.941765i
\(388\) 0 0
\(389\) 7.72700 23.7812i 0.391774 1.20576i −0.539671 0.841876i \(-0.681451\pi\)
0.931445 0.363881i \(-0.118549\pi\)
\(390\) 0 0
\(391\) −10.7059 7.77832i −0.541422 0.393366i
\(392\) 0 0
\(393\) −12.3344 37.9614i −0.622188 1.91490i
\(394\) 0 0
\(395\) −12.2375 −0.615734
\(396\) 0 0
\(397\) −19.3120 −0.969240 −0.484620 0.874725i \(-0.661042\pi\)
−0.484620 + 0.874725i \(0.661042\pi\)
\(398\) 0 0
\(399\) −27.8717 85.7801i −1.39533 4.29438i
\(400\) 0 0
\(401\) −18.8072 13.6642i −0.939185 0.682358i 0.00903949 0.999959i \(-0.497123\pi\)
−0.948224 + 0.317601i \(0.897123\pi\)
\(402\) 0 0
\(403\) 3.95268 12.1651i 0.196897 0.605986i
\(404\) 0 0
\(405\) 0.902742 0.655880i 0.0448576 0.0325910i
\(406\) 0 0
\(407\) −2.00413 17.7670i −0.0993412 0.880679i
\(408\) 0 0
\(409\) 4.79143 3.48118i 0.236921 0.172133i −0.462989 0.886364i \(-0.653223\pi\)
0.699911 + 0.714231i \(0.253223\pi\)
\(410\) 0 0
\(411\) −3.82858 + 11.7832i −0.188850 + 0.581220i
\(412\) 0 0
\(413\) −14.0156 10.1829i −0.689663 0.501069i
\(414\) 0 0
\(415\) −5.04781 15.5356i −0.247787 0.762611i
\(416\) 0 0
\(417\) −13.4305 −0.657693
\(418\) 0 0
\(419\) −1.11739 −0.0545881 −0.0272940 0.999627i \(-0.508689\pi\)
−0.0272940 + 0.999627i \(0.508689\pi\)
\(420\) 0 0
\(421\) 5.32574 + 16.3909i 0.259561 + 0.798845i 0.992897 + 0.118979i \(0.0379621\pi\)
−0.733336 + 0.679866i \(0.762038\pi\)
\(422\) 0 0
\(423\) −29.7440 21.6103i −1.44620 1.05073i
\(424\) 0 0
\(425\) −2.19032 + 6.74110i −0.106246 + 0.326992i
\(426\) 0 0
\(427\) 7.79753 5.66524i 0.377349 0.274160i
\(428\) 0 0
\(429\) −26.1218 5.34504i −1.26117 0.258061i
\(430\) 0 0
\(431\) −6.26903 + 4.55472i −0.301969 + 0.219393i −0.728443 0.685107i \(-0.759756\pi\)
0.426474 + 0.904500i \(0.359756\pi\)
\(432\) 0 0
\(433\) 1.21711 3.74587i 0.0584904 0.180015i −0.917543 0.397637i \(-0.869830\pi\)
0.976033 + 0.217623i \(0.0698302\pi\)
\(434\) 0 0
\(435\) −2.26651 1.64671i −0.108671 0.0789539i
\(436\) 0 0
\(437\) 4.12130 + 12.6840i 0.197148 + 0.606760i
\(438\) 0 0
\(439\) −34.7505 −1.65855 −0.829275 0.558841i \(-0.811246\pi\)
−0.829275 + 0.558841i \(0.811246\pi\)
\(440\) 0 0
\(441\) 64.3903 3.06620
\(442\) 0 0
\(443\) 7.51612 + 23.1322i 0.357102 + 1.09905i 0.954781 + 0.297310i \(0.0960896\pi\)
−0.597679 + 0.801735i \(0.703910\pi\)
\(444\) 0 0
\(445\) 9.55974 + 6.94556i 0.453175 + 0.329251i
\(446\) 0 0
\(447\) 9.18777 28.2770i 0.434567 1.33746i
\(448\) 0 0
\(449\) 15.3095 11.1230i 0.722498 0.524925i −0.164683 0.986346i \(-0.552660\pi\)
0.887181 + 0.461421i \(0.152660\pi\)
\(450\) 0 0
\(451\) 10.0436 + 10.9854i 0.472936 + 0.517282i
\(452\) 0 0
\(453\) −0.452572 + 0.328812i −0.0212637 + 0.0154490i
\(454\) 0 0
\(455\) −4.08237 + 12.5643i −0.191385 + 0.589021i
\(456\) 0 0
\(457\) 13.1231 + 9.53447i 0.613871 + 0.446004i 0.850775 0.525529i \(-0.176133\pi\)
−0.236904 + 0.971533i \(0.576133\pi\)
\(458\) 0 0
\(459\) 10.2206 + 31.4558i 0.477057 + 1.46823i
\(460\) 0 0
\(461\) −11.3851 −0.530258 −0.265129 0.964213i \(-0.585415\pi\)
−0.265129 + 0.964213i \(0.585415\pi\)
\(462\) 0 0
\(463\) −36.4523 −1.69408 −0.847040 0.531529i \(-0.821618\pi\)
−0.847040 + 0.531529i \(0.821618\pi\)
\(464\) 0 0
\(465\) −3.77774 11.6267i −0.175189 0.539175i
\(466\) 0 0
\(467\) −22.6893 16.4847i −1.04993 0.762822i −0.0777339 0.996974i \(-0.524768\pi\)
−0.972200 + 0.234153i \(0.924768\pi\)
\(468\) 0 0
\(469\) 18.0713 55.6177i 0.834454 2.56819i
\(470\) 0 0
\(471\) −6.55258 + 4.76073i −0.301927 + 0.219363i
\(472\) 0 0
\(473\) 20.3216 9.23358i 0.934386 0.424561i
\(474\) 0 0
\(475\) 5.77919 4.19883i 0.265167 0.192655i
\(476\) 0 0
\(477\) 1.03400 3.18233i 0.0473437 0.145709i
\(478\) 0 0
\(479\) 29.4024 + 21.3621i 1.34343 + 0.976058i 0.999310 + 0.0371313i \(0.0118220\pi\)
0.344118 + 0.938926i \(0.388178\pi\)
\(480\) 0 0
\(481\) −4.83151 14.8699i −0.220298 0.678008i
\(482\) 0 0
\(483\) −23.5729 −1.07261
\(484\) 0 0
\(485\) −10.8544 −0.492873
\(486\) 0 0
\(487\) 12.9210 + 39.7667i 0.585506 + 1.80200i 0.597230 + 0.802070i \(0.296268\pi\)
−0.0117243 + 0.999931i \(0.503732\pi\)
\(488\) 0 0
\(489\) 19.0201 + 13.8189i 0.860116 + 0.624911i
\(490\) 0 0
\(491\) 5.98118 18.4082i 0.269927 0.830749i −0.720590 0.693361i \(-0.756129\pi\)
0.990517 0.137388i \(-0.0438708\pi\)
\(492\) 0 0
\(493\) −5.79569 + 4.21081i −0.261025 + 0.189645i
\(494\) 0 0
\(495\) −14.1418 + 6.42565i −0.635625 + 0.288811i
\(496\) 0 0
\(497\) 15.5178 11.2744i 0.696070 0.505725i
\(498\) 0 0
\(499\) 4.12581 12.6979i 0.184697 0.568438i −0.815246 0.579114i \(-0.803398\pi\)
0.999943 + 0.0106764i \(0.00339846\pi\)
\(500\) 0 0
\(501\) −22.5691 16.3974i −1.00831 0.732581i
\(502\) 0 0
\(503\) 11.0902 + 34.1322i 0.494489 + 1.52188i 0.817751 + 0.575572i \(0.195220\pi\)
−0.323262 + 0.946309i \(0.604780\pi\)
\(504\) 0 0
\(505\) 12.6665 0.563654
\(506\) 0 0
\(507\) 12.7189 0.564865
\(508\) 0 0
\(509\) 5.53612 + 17.0384i 0.245384 + 0.755215i 0.995573 + 0.0939914i \(0.0299626\pi\)
−0.750189 + 0.661224i \(0.770037\pi\)
\(510\) 0 0
\(511\) 5.03298 + 3.65667i 0.222646 + 0.161762i
\(512\) 0 0
\(513\) 10.3006 31.7019i 0.454781 1.39967i
\(514\) 0 0
\(515\) 5.00104 3.63347i 0.220372 0.160110i
\(516\) 0 0
\(517\) −17.5682 19.2155i −0.772648 0.845097i
\(518\) 0 0
\(519\) 12.9452 9.40521i 0.568230 0.412843i
\(520\) 0 0
\(521\) 2.24328 6.90411i 0.0982799 0.302474i −0.889815 0.456322i \(-0.849167\pi\)
0.988095 + 0.153848i \(0.0491665\pi\)
\(522\) 0 0
\(523\) −27.5208 19.9950i −1.20340 0.874321i −0.208785 0.977962i \(-0.566951\pi\)
−0.994615 + 0.103641i \(0.966951\pi\)
\(524\) 0 0
\(525\) 3.90170 + 12.0082i 0.170284 + 0.524080i
\(526\) 0 0
\(527\) −31.2606 −1.36173
\(528\) 0 0
\(529\) −19.5143 −0.848450
\(530\) 0 0
\(531\) −5.50434 16.9406i −0.238868 0.735161i
\(532\) 0 0
\(533\) 10.5302 + 7.65065i 0.456114 + 0.331386i
\(534\) 0 0
\(535\) 0.311410 0.958421i 0.0134634 0.0414362i
\(536\) 0 0
\(537\) 37.8247 27.4812i 1.63226 1.18590i
\(538\) 0 0
\(539\) 44.6732 + 9.14101i 1.92421 + 0.393731i
\(540\) 0 0
\(541\) −15.4421 + 11.2194i −0.663910 + 0.482359i −0.867981 0.496597i \(-0.834583\pi\)
0.204071 + 0.978956i \(0.434583\pi\)
\(542\) 0 0
\(543\) −12.9387 + 39.8213i −0.555253 + 1.70889i
\(544\) 0 0
\(545\) −5.34274 3.88173i −0.228858 0.166275i
\(546\) 0 0
\(547\) −7.20288 22.1682i −0.307973 0.947843i −0.978551 0.206004i \(-0.933954\pi\)
0.670578 0.741839i \(-0.266046\pi\)
\(548\) 0 0
\(549\) 9.90988 0.422944
\(550\) 0 0
\(551\) 7.21991 0.307578
\(552\) 0 0
\(553\) 17.2253 + 53.0142i 0.732496 + 2.25439i
\(554\) 0 0
\(555\) −12.0892 8.78335i −0.513160 0.372832i
\(556\) 0 0
\(557\) −8.77107 + 26.9946i −0.371642 + 1.14380i 0.574074 + 0.818803i \(0.305362\pi\)
−0.945716 + 0.324993i \(0.894638\pi\)
\(558\) 0 0
\(559\) 15.7910 11.4729i 0.667889 0.485250i
\(560\) 0 0
\(561\) 7.30406 + 64.7519i 0.308378 + 2.73383i
\(562\) 0 0
\(563\) 6.57905 4.77996i 0.277274 0.201451i −0.440454 0.897775i \(-0.645182\pi\)
0.717727 + 0.696324i \(0.245182\pi\)
\(564\) 0 0
\(565\) −3.17084 + 9.75885i −0.133398 + 0.410558i
\(566\) 0 0
\(567\) −4.11204 2.98757i −0.172690 0.125466i
\(568\) 0 0
\(569\) 5.04977 + 15.5416i 0.211697 + 0.651538i 0.999372 + 0.0354457i \(0.0112851\pi\)
−0.787674 + 0.616092i \(0.788715\pi\)
\(570\) 0 0
\(571\) 33.1999 1.38937 0.694687 0.719312i \(-0.255543\pi\)
0.694687 + 0.719312i \(0.255543\pi\)
\(572\) 0 0
\(573\) −28.9215 −1.20822
\(574\) 0 0
\(575\) −0.576932 1.77561i −0.0240597 0.0740482i
\(576\) 0 0
\(577\) 36.4288 + 26.4671i 1.51655 + 1.10184i 0.963164 + 0.268916i \(0.0866654\pi\)
0.553388 + 0.832923i \(0.313335\pi\)
\(578\) 0 0
\(579\) −11.9276 + 36.7095i −0.495696 + 1.52560i
\(580\) 0 0
\(581\) −60.1967 + 43.7355i −2.49738 + 1.81445i
\(582\) 0 0
\(583\) 1.16915 2.06108i 0.0484213 0.0853610i
\(584\) 0 0
\(585\) −10.9890 + 7.98395i −0.454338 + 0.330096i
\(586\) 0 0
\(587\) −13.8125 + 42.5104i −0.570102 + 1.75459i 0.0821818 + 0.996617i \(0.473811\pi\)
−0.652283 + 0.757975i \(0.726189\pi\)
\(588\) 0 0
\(589\) 25.4882 + 18.5183i 1.05022 + 0.763032i
\(590\) 0 0
\(591\) 1.92927 + 5.93769i 0.0793597 + 0.244244i
\(592\) 0 0
\(593\) −18.7395 −0.769538 −0.384769 0.923013i \(-0.625719\pi\)
−0.384769 + 0.923013i \(0.625719\pi\)
\(594\) 0 0
\(595\) 32.2863 1.32361
\(596\) 0 0
\(597\) −18.9511 58.3255i −0.775617 2.38710i
\(598\) 0 0
\(599\) 15.7954 + 11.4760i 0.645381 + 0.468897i 0.861695 0.507427i \(-0.169403\pi\)
−0.216314 + 0.976324i \(0.569403\pi\)
\(600\) 0 0
\(601\) −9.67674 + 29.7819i −0.394722 + 1.21483i 0.534455 + 0.845197i \(0.320517\pi\)
−0.929177 + 0.369634i \(0.879483\pi\)
\(602\) 0 0
\(603\) 48.6444 35.3422i 1.98095 1.43925i
\(604\) 0 0
\(605\) −10.7236 + 2.45043i −0.435976 + 0.0996243i
\(606\) 0 0
\(607\) 17.8254 12.9509i 0.723511 0.525662i −0.163993 0.986461i \(-0.552437\pi\)
0.887504 + 0.460800i \(0.152437\pi\)
\(608\) 0 0
\(609\) −3.94345 + 12.1367i −0.159797 + 0.491803i
\(610\) 0 0
\(611\) −18.4193 13.3824i −0.745166 0.541394i
\(612\) 0 0
\(613\) 11.7098 + 36.0390i 0.472954 + 1.45560i 0.848697 + 0.528879i \(0.177388\pi\)
−0.375743 + 0.926724i \(0.622612\pi\)
\(614\) 0 0
\(615\) 12.4400 0.501629
\(616\) 0 0
\(617\) −34.0287 −1.36995 −0.684973 0.728569i \(-0.740186\pi\)
−0.684973 + 0.728569i \(0.740186\pi\)
\(618\) 0 0
\(619\) −8.16306 25.1233i −0.328101 1.00979i −0.970021 0.243020i \(-0.921862\pi\)
0.641921 0.766771i \(-0.278138\pi\)
\(620\) 0 0
\(621\) −7.04805 5.12071i −0.282829 0.205487i
\(622\) 0 0
\(623\) 16.6328 51.1904i 0.666378 2.05090i
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 0 0
\(627\) 32.4027 57.1220i 1.29404 2.28123i
\(628\) 0 0
\(629\) −30.9134 + 22.4599i −1.23260 + 0.895535i
\(630\) 0 0
\(631\) −11.9266 + 36.7063i −0.474790 + 1.46125i 0.371451 + 0.928453i \(0.378861\pi\)
−0.846241 + 0.532801i \(0.821139\pi\)
\(632\) 0 0
\(633\) 17.4270 + 12.6615i 0.692661 + 0.503248i
\(634\) 0 0
\(635\) 5.47611 + 16.8537i 0.217313 + 0.668820i
\(636\) 0 0
\(637\) 39.8744 1.57988
\(638\) 0 0
\(639\) 19.7216 0.780175
\(640\) 0 0
\(641\) −5.63182 17.3330i −0.222444 0.684611i −0.998541 0.0539980i \(-0.982804\pi\)
0.776097 0.630613i \(-0.217196\pi\)
\(642\) 0 0
\(643\) −8.53160 6.19857i −0.336453 0.244448i 0.406711 0.913557i \(-0.366676\pi\)
−0.743164 + 0.669109i \(0.766676\pi\)
\(644\) 0 0
\(645\) 5.76469 17.7419i 0.226984 0.698586i
\(646\) 0 0
\(647\) −13.6858 + 9.94328i −0.538042 + 0.390911i −0.823358 0.567523i \(-0.807902\pi\)
0.285315 + 0.958434i \(0.407902\pi\)
\(648\) 0 0
\(649\) −1.41391 12.5346i −0.0555009 0.492027i
\(650\) 0 0
\(651\) −45.0507 + 32.7312i −1.76568 + 1.28284i
\(652\) 0 0
\(653\) 14.8138 45.5921i 0.579707 1.78416i −0.0398519 0.999206i \(-0.512689\pi\)
0.619559 0.784950i \(-0.287311\pi\)
\(654\) 0 0
\(655\) −11.6497 8.46403i −0.455193 0.330717i
\(656\) 0 0
\(657\) 1.97660 + 6.08335i 0.0771145 + 0.237334i
\(658\) 0 0
\(659\) −5.96793 −0.232477 −0.116239 0.993221i \(-0.537084\pi\)
−0.116239 + 0.993221i \(0.537084\pi\)
\(660\) 0 0
\(661\) −22.5701 −0.877875 −0.438937 0.898518i \(-0.644645\pi\)
−0.438937 + 0.898518i \(0.644645\pi\)
\(662\) 0 0
\(663\) 17.6084 + 54.1932i 0.683855 + 2.10469i
\(664\) 0 0
\(665\) −26.3245 19.1259i −1.02082 0.741670i
\(666\) 0 0
\(667\) 0.583105 1.79461i 0.0225779 0.0694877i
\(668\) 0 0
\(669\) −17.7626 + 12.9053i −0.686741 + 0.498946i
\(670\) 0 0
\(671\) 6.87536 + 1.40683i 0.265420 + 0.0543102i
\(672\) 0 0
\(673\) −5.41980 + 3.93772i −0.208918 + 0.151788i −0.687324 0.726351i \(-0.741215\pi\)
0.478406 + 0.878139i \(0.341215\pi\)
\(674\) 0 0
\(675\) −1.44195 + 4.43788i −0.0555009 + 0.170814i
\(676\) 0 0
\(677\) −33.5903 24.4048i −1.29098 0.937952i −0.291156 0.956676i \(-0.594040\pi\)
−0.999825 + 0.0187237i \(0.994040\pi\)
\(678\) 0 0
\(679\) 15.2785 + 47.0225i 0.586337 + 1.80456i
\(680\) 0 0
\(681\) 56.1786 2.15277
\(682\) 0 0
\(683\) −13.4576 −0.514940 −0.257470 0.966286i \(-0.582889\pi\)
−0.257470 + 0.966286i \(0.582889\pi\)
\(684\) 0 0
\(685\) 1.38121 + 4.25093i 0.0527734 + 0.162420i
\(686\) 0 0
\(687\) 22.1571 + 16.0981i 0.845348 + 0.614181i
\(688\) 0 0
\(689\) 0.640317 1.97069i 0.0243942 0.0750775i
\(690\) 0 0
\(691\) 23.8510 17.3288i 0.907337 0.659219i −0.0330033 0.999455i \(-0.510507\pi\)
0.940340 + 0.340237i \(0.110507\pi\)
\(692\) 0 0
\(693\) 47.7425 + 52.2191i 1.81359 + 1.98364i
\(694\) 0 0
\(695\) −3.91987 + 2.84795i −0.148689 + 0.108029i
\(696\) 0 0
\(697\) 9.82992 30.2534i 0.372335 1.14593i
\(698\) 0 0
\(699\) 21.9736 + 15.9648i 0.831118 + 0.603843i
\(700\) 0 0
\(701\) −2.79053 8.58837i −0.105397 0.324378i 0.884427 0.466679i \(-0.154550\pi\)
−0.989823 + 0.142301i \(0.954550\pi\)
\(702\) 0 0
\(703\) 38.5100 1.45243
\(704\) 0 0
\(705\) −21.7599 −0.819524
\(706\) 0 0
\(707\) −17.8293 54.8730i −0.670540 2.06371i
\(708\) 0 0
\(709\) −39.7093 28.8505i −1.49131 1.08350i −0.973685 0.227897i \(-0.926815\pi\)
−0.517628 0.855606i \(-0.673185\pi\)
\(710\) 0 0
\(711\) −17.7107 + 54.5081i −0.664205 + 2.04421i
\(712\) 0 0
\(713\) 6.66151 4.83987i 0.249475 0.181254i
\(714\) 0 0
\(715\) −8.75744 + 3.97915i −0.327510 + 0.148812i
\(716\) 0 0
\(717\) −24.7010 + 17.9463i −0.922476 + 0.670218i
\(718\) 0 0
\(719\) −15.0519 + 46.3250i −0.561341 + 1.72763i 0.117239 + 0.993104i \(0.462596\pi\)
−0.678580 + 0.734526i \(0.737404\pi\)
\(720\) 0 0
\(721\) −22.7800 16.5507i −0.848372 0.616378i
\(722\) 0 0
\(723\) 11.4015 + 35.0902i 0.424027 + 1.30502i
\(724\) 0 0
\(725\) −1.01070 −0.0375365
\(726\) 0 0
\(727\) −50.6964 −1.88023 −0.940113 0.340864i \(-0.889281\pi\)
−0.940113 + 0.340864i \(0.889281\pi\)
\(728\) 0 0
\(729\) −13.6058 41.8743i −0.503917 1.55090i
\(730\) 0 0
\(731\) −38.5921 28.0388i −1.42738 1.03705i
\(732\) 0 0
\(733\) −14.5728 + 44.8504i −0.538258 + 1.65659i 0.198244 + 0.980153i \(0.436476\pi\)
−0.736502 + 0.676435i \(0.763524\pi\)
\(734\) 0 0
\(735\) 30.8313 22.4003i 1.13723 0.826246i
\(736\) 0 0
\(737\) 38.7662 17.6143i 1.42797 0.648832i
\(738\) 0 0
\(739\) −14.6892 + 10.6724i −0.540352 + 0.392589i −0.824216 0.566276i \(-0.808384\pi\)
0.283864 + 0.958865i \(0.408384\pi\)
\(740\) 0 0
\(741\) 17.7462 54.6172i 0.651923 2.00641i
\(742\) 0 0
\(743\) 3.02269 + 2.19611i 0.110892 + 0.0805676i 0.641849 0.766831i \(-0.278168\pi\)
−0.530957 + 0.847399i \(0.678168\pi\)
\(744\) 0 0
\(745\) −3.31461 10.2013i −0.121438 0.373748i
\(746\) 0 0
\(747\) −76.5040 −2.79913
\(748\) 0 0
\(749\) −4.59033 −0.167727
\(750\) 0 0
\(751\) −8.60395 26.4802i −0.313963 0.966277i −0.976179 0.216965i \(-0.930384\pi\)
0.662217 0.749312i \(-0.269616\pi\)
\(752\) 0 0
\(753\) −32.7218 23.7738i −1.19245 0.866364i
\(754\) 0 0
\(755\) −0.0623641 + 0.191937i −0.00226966 + 0.00698530i
\(756\) 0 0
\(757\) −36.4311 + 26.4688i −1.32411 + 0.962023i −0.324240 + 0.945975i \(0.605109\pi\)
−0.999871 + 0.0160486i \(0.994891\pi\)
\(758\) 0 0
\(759\) −11.5816 12.6675i −0.420384 0.459802i
\(760\) 0 0
\(761\) 15.1341 10.9956i 0.548610 0.398589i −0.278663 0.960389i \(-0.589891\pi\)
0.827273 + 0.561800i \(0.189891\pi\)
\(762\) 0 0
\(763\) −9.29572 + 28.6093i −0.336528 + 1.03573i
\(764\) 0 0
\(765\) 26.8562 + 19.5122i 0.970990 + 0.705465i
\(766\) 0 0
\(767\) −3.40862 10.4907i −0.123078 0.378796i
\(768\) 0 0
\(769\) −13.5701 −0.489351 −0.244675 0.969605i \(-0.578681\pi\)
−0.244675 + 0.969605i \(0.578681\pi\)
\(770\) 0 0
\(771\) −2.67635 −0.0963862
\(772\) 0 0
\(773\) −1.01293 3.11746i −0.0364324 0.112127i 0.931186 0.364543i \(-0.118775\pi\)
−0.967619 + 0.252416i \(0.918775\pi\)
\(774\) 0 0
\(775\) −3.56804 2.59234i −0.128168 0.0931194i
\(776\) 0 0
\(777\) −21.0338 + 64.7354i −0.754584 + 2.32237i
\(778\) 0 0
\(779\) −25.9364 + 18.8439i −0.929268 + 0.675153i
\(780\) 0 0
\(781\) 13.6826 + 2.79973i 0.489603 + 0.100182i
\(782\) 0 0
\(783\) −3.81548 + 2.77211i −0.136354 + 0.0990671i
\(784\) 0 0
\(785\) −0.902942 + 2.77897i −0.0322274 + 0.0991857i
\(786\) 0 0
\(787\) −2.05619 1.49391i −0.0732954 0.0532523i 0.550534 0.834813i \(-0.314424\pi\)
−0.623830 + 0.781560i \(0.714424\pi\)
\(788\) 0 0
\(789\) −17.7954 54.7685i −0.633531 1.94981i
\(790\) 0 0
\(791\) 46.7397 1.66187
\(792\) 0 0
\(793\) 6.13680 0.217924
\(794\) 0 0
\(795\) −0.611978 1.88348i −0.0217046 0.0668000i
\(796\) 0 0
\(797\) −21.2702 15.4537i −0.753429 0.547398i 0.143459 0.989656i \(-0.454178\pi\)
−0.896888 + 0.442258i \(0.854178\pi\)
\(798\) 0 0
\(799\) −17.1944 + 52.9188i −0.608293 + 1.87213i
\(800\) 0 0
\(801\) 44.7723 32.5290i 1.58195 1.14935i
\(802\) 0 0
\(803\) 0.507734 + 4.50116i 0.0179175 + 0.158842i
\(804\) 0 0
\(805\) −6.88009 + 4.99868i −0.242491 + 0.176180i
\(806\) 0 0
\(807\) 3.35248 10.3179i 0.118013 0.363206i
\(808\) 0 0
\(809\) 6.42589 + 4.66868i 0.225922 + 0.164142i 0.694989 0.719021i \(-0.255409\pi\)
−0.469066 + 0.883163i \(0.655409\pi\)
\(810\) 0 0
\(811\) 6.00008 + 18.4663i 0.210691 + 0.648441i 0.999432 + 0.0337144i \(0.0107337\pi\)
−0.788740 + 0.614727i \(0.789266\pi\)
\(812\) 0 0
\(813\) 39.5777 1.38805
\(814\) 0 0
\(815\) 8.48158 0.297097
\(816\) 0 0
\(817\) 14.8562 + 45.7227i 0.519753 + 1.59963i
\(818\) 0 0
\(819\) 50.0554 + 36.3674i 1.74908 + 1.27078i
\(820\) 0 0
\(821\) −4.04253 + 12.4416i −0.141085 + 0.434216i −0.996487 0.0837498i \(-0.973310\pi\)
0.855402 + 0.517965i \(0.173310\pi\)
\(822\) 0 0
\(823\) −25.4573 + 18.4958i −0.887387 + 0.644724i −0.935195 0.354132i \(-0.884776\pi\)
0.0478087 + 0.998857i \(0.484776\pi\)
\(824\) 0 0
\(825\) −4.53598 + 7.99640i −0.157923 + 0.278399i
\(826\) 0 0
\(827\) 5.23796 3.80560i 0.182142 0.132334i −0.492978 0.870042i \(-0.664092\pi\)
0.675120 + 0.737708i \(0.264092\pi\)
\(828\) 0 0
\(829\) −15.4639 + 47.5929i −0.537082 + 1.65297i 0.202023 + 0.979381i \(0.435248\pi\)
−0.739106 + 0.673589i \(0.764752\pi\)
\(830\) 0 0
\(831\) 8.43852 + 6.13094i 0.292729 + 0.212680i
\(832\) 0 0
\(833\) −30.1137 92.6805i −1.04338 3.21119i
\(834\) 0 0
\(835\) −10.0642 −0.348286
\(836\) 0 0
\(837\) −20.5798 −0.711343
\(838\) 0 0
\(839\) 3.11229 + 9.57863i 0.107448 + 0.330691i 0.990297 0.138965i \(-0.0443777\pi\)
−0.882849 + 0.469657i \(0.844378\pi\)
\(840\) 0 0
\(841\) 22.6351 + 16.4453i 0.780520 + 0.567081i
\(842\) 0 0
\(843\) 8.83883 27.2031i 0.304425 0.936925i
\(844\) 0 0
\(845\) 3.71218 2.69706i 0.127703 0.0927816i
\(846\) 0 0
\(847\) 25.7100 + 43.0067i 0.883406 + 1.47773i
\(848\) 0 0
\(849\) 68.2990 49.6221i 2.34402 1.70303i
\(850\) 0 0
\(851\) 3.11020 9.57222i 0.106616 0.328132i
\(852\) 0 0
\(853\) 19.6433 + 14.2717i 0.672575 + 0.488654i 0.870886 0.491485i \(-0.163546\pi\)
−0.198311 + 0.980139i \(0.563546\pi\)
\(854\) 0 0
\(855\) −10.3384 31.8184i −0.353567 1.08817i
\(856\) 0 0
\(857\) 23.8353 0.814200 0.407100 0.913384i \(-0.366540\pi\)
0.407100 + 0.913384i \(0.366540\pi\)
\(858\) 0 0
\(859\) 27.1693 0.927004 0.463502 0.886096i \(-0.346593\pi\)
0.463502 + 0.886096i \(0.346593\pi\)
\(860\) 0 0
\(861\) −17.5104 53.8915i −0.596754 1.83662i
\(862\) 0 0
\(863\) −27.1023 19.6910i −0.922574 0.670289i 0.0215894 0.999767i \(-0.493127\pi\)
−0.944163 + 0.329478i \(0.893127\pi\)
\(864\) 0 0
\(865\) 1.78384 5.49008i 0.0606523 0.186668i
\(866\) 0 0
\(867\) 74.5411 54.1573i 2.53155 1.83928i
\(868\) 0 0
\(869\) −20.0256 + 35.3028i −0.679322 + 1.19757i
\(870\) 0 0
\(871\) 30.1236 21.8861i 1.02070 0.741581i
\(872\) 0 0
\(873\) −15.7091 + 48.3476i −0.531672 + 1.63632i
\(874\) 0 0
\(875\) 3.68512 + 2.67740i 0.124580 + 0.0905125i
\(876\) 0 0
\(877\) −1.26705 3.89958i −0.0427853 0.131680i 0.927382 0.374115i \(-0.122054\pi\)
−0.970167 + 0.242436i \(0.922054\pi\)
\(878\) 0 0
\(879\) 21.9132 0.739113
\(880\) 0 0
\(881\) 34.8285 1.17340 0.586701 0.809804i \(-0.300426\pi\)
0.586701 + 0.809804i \(0.300426\pi\)
\(882\) 0 0
\(883\) −8.24871 25.3869i −0.277591 0.854337i −0.988522 0.151076i \(-0.951726\pi\)
0.710931 0.703262i \(-0.248274\pi\)
\(884\) 0 0
\(885\) −8.52894 6.19664i −0.286697 0.208298i
\(886\) 0 0
\(887\) 15.8860 48.8922i 0.533401 1.64164i −0.213679 0.976904i \(-0.568545\pi\)
0.747080 0.664734i \(-0.231455\pi\)
\(888\) 0 0
\(889\) 65.3043 47.4463i 2.19024 1.59130i
\(890\) 0 0
\(891\) −0.414828 3.67753i −0.0138973 0.123202i
\(892\) 0 0
\(893\) 45.3676 32.9615i 1.51817 1.10301i
\(894\) 0 0
\(895\) 5.21222 16.0416i 0.174225 0.536210i
\(896\) 0 0
\(897\) −12.1427 8.82215i −0.405431 0.294563i
\(898\) 0 0
\(899\) −1.37745 4.23937i −0.0459407 0.141391i
\(900\) 0 0
\(901\) −5.06409 −0.168709
\(902\) 0 0
\(903\) −84.9743 −2.82777
\(904\) 0 0
\(905\) 4.66782 + 14.3661i 0.155164 + 0.477544i
\(906\) 0 0
\(907\) 5.46347 + 3.96944i 0.181412 + 0.131803i 0.674785 0.738014i \(-0.264236\pi\)
−0.493373 + 0.869818i \(0.664236\pi\)
\(908\) 0 0
\(909\) 18.3317 56.4193i 0.608025 1.87131i
\(910\) 0 0
\(911\) 10.5901 7.69413i 0.350864 0.254918i −0.398367 0.917226i \(-0.630423\pi\)
0.749231 + 0.662308i \(0.230423\pi\)
\(912\) 0 0
\(913\) −53.0775 10.8607i −1.75661 0.359437i
\(914\) 0 0
\(915\) 4.74505 3.44748i 0.156866 0.113970i
\(916\) 0 0
\(917\) −20.2691 + 62.3819i −0.669345 + 2.06003i
\(918\) 0 0
\(919\) −0.431662 0.313621i −0.0142392 0.0103454i 0.580643 0.814158i \(-0.302801\pi\)
−0.594882 + 0.803813i \(0.702801\pi\)
\(920\) 0 0
\(921\) −12.2133 37.5888i −0.402443 1.23859i
\(922\) 0 0
\(923\) 12.2128 0.401990
\(924\) 0 0
\(925\) −5.39094 −0.177253
\(926\) 0 0
\(927\) −8.94639 27.5341i −0.293838 0.904340i
\(928\) 0 0
\(929\) 8.02666 + 5.83171i 0.263346 + 0.191332i 0.711621 0.702564i \(-0.247961\pi\)
−0.448275 + 0.893896i \(0.647961\pi\)
\(930\) 0 0
\(931\) −30.3493 + 93.4056i −0.994658 + 3.06124i
\(932\) 0 0
\(933\) 38.5976 28.0428i 1.26363 0.918081i
\(934\) 0 0
\(935\) 15.8625 + 17.3499i 0.518761 + 0.567403i
\(936\) 0 0
\(937\) 2.88820 2.09840i 0.0943535 0.0685518i −0.539608 0.841916i \(-0.681428\pi\)
0.633962 + 0.773364i \(0.281428\pi\)
\(938\) 0 0
\(939\) 6.82167 20.9950i 0.222617 0.685144i
\(940\) 0 0
\(941\) 39.4995 + 28.6980i 1.28765 + 0.935529i 0.999755 0.0221343i \(-0.00704613\pi\)
0.287890 + 0.957663i \(0.407046\pi\)
\(942\) 0 0
\(943\) 2.58921 + 7.96878i 0.0843164 + 0.259499i
\(944\) 0 0
\(945\) 21.2551 0.691428
\(946\) 0 0
\(947\) 15.1463 0.492190 0.246095 0.969246i \(-0.420852\pi\)
0.246095 + 0.969246i \(0.420852\pi\)
\(948\) 0 0
\(949\) 1.22403 + 3.76718i 0.0397337 + 0.122288i
\(950\) 0 0
\(951\) −30.7912 22.3711i −0.998473 0.725433i
\(952\) 0 0
\(953\) 7.91352 24.3553i 0.256344 0.788946i −0.737218 0.675655i \(-0.763861\pi\)
0.993562 0.113291i \(-0.0361391\pi\)
\(954\) 0 0
\(955\) −8.44116 + 6.13286i −0.273149 + 0.198455i
\(956\) 0 0
\(957\) −8.45942 + 3.84374i −0.273454 + 0.124250i
\(958\) 0 0
\(959\) 16.4714 11.9671i 0.531888 0.386439i
\(960\) 0 0
\(961\) −3.56879 + 10.9836i −0.115122 + 0.354310i
\(962\) 0 0
\(963\) −3.81831 2.77416i −0.123043 0.0893961i
\(964\) 0 0
\(965\) 4.30306 + 13.2435i 0.138520 + 0.426322i
\(966\) 0 0
\(967\) 19.9187 0.640544 0.320272 0.947326i \(-0.396226\pi\)
0.320272 + 0.947326i \(0.396226\pi\)
\(968\) 0 0
\(969\) −140.350 −4.50868
\(970\) 0 0
\(971\) −4.43889 13.6615i −0.142451 0.438418i 0.854224 0.519906i \(-0.174033\pi\)
−0.996674 + 0.0814874i \(0.974033\pi\)
\(972\) 0 0
\(973\) 17.8552 + 12.9726i 0.572413 + 0.415882i
\(974\) 0 0
\(975\) −2.48425 + 7.64575i −0.0795598 + 0.244860i
\(976\) 0 0
\(977\) −39.1921 + 28.4748i −1.25387 + 0.910988i −0.998440 0.0558400i \(-0.982216\pi\)
−0.255428 + 0.966828i \(0.582216\pi\)
\(978\) 0 0
\(979\) 35.6804 16.2122i 1.14035 0.518145i
\(980\) 0 0
\(981\) −25.0223 + 18.1798i −0.798901 + 0.580435i
\(982\) 0 0
\(983\) 3.10044 9.54216i 0.0988886 0.304348i −0.889359 0.457210i \(-0.848849\pi\)
0.988248 + 0.152862i \(0.0488489\pi\)
\(984\) 0 0
\(985\) 1.82218 + 1.32389i 0.0580595 + 0.0421827i
\(986\) 0 0
\(987\) 30.6290 + 94.2664i 0.974932 + 3.00053i
\(988\) 0 0
\(989\) 12.5649 0.399540
\(990\) 0 0
\(991\) −4.44920 −0.141333 −0.0706667 0.997500i \(-0.522513\pi\)
−0.0706667 + 0.997500i \(0.522513\pi\)
\(992\) 0 0
\(993\) −9.16276 28.2001i −0.290771 0.894903i
\(994\) 0 0
\(995\) −17.8991 13.0045i −0.567441 0.412270i
\(996\) 0 0
\(997\) 13.1142 40.3612i 0.415330 1.27825i −0.496626 0.867965i \(-0.665428\pi\)
0.911956 0.410289i \(-0.134572\pi\)
\(998\) 0 0
\(999\) −20.3512 + 14.7860i −0.643885 + 0.467810i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 440.2.y.d.201.1 yes 16
4.3 odd 2 880.2.bo.k.641.4 16
11.2 odd 10 4840.2.a.bh.1.2 8
11.4 even 5 inner 440.2.y.d.81.1 16
11.9 even 5 4840.2.a.bg.1.2 8
44.15 odd 10 880.2.bo.k.81.4 16
44.31 odd 10 9680.2.a.df.1.7 8
44.35 even 10 9680.2.a.de.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.y.d.81.1 16 11.4 even 5 inner
440.2.y.d.201.1 yes 16 1.1 even 1 trivial
880.2.bo.k.81.4 16 44.15 odd 10
880.2.bo.k.641.4 16 4.3 odd 2
4840.2.a.bg.1.2 8 11.9 even 5
4840.2.a.bh.1.2 8 11.2 odd 10
9680.2.a.de.1.7 8 44.35 even 10
9680.2.a.df.1.7 8 44.31 odd 10