Properties

Label 440.2.y.c.361.1
Level $440$
Weight $2$
Character 440.361
Analytic conductor $3.513$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [440,2,Mod(81,440)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("440.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(440, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 440.y (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-1,0,3,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.51341768894\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 5 x^{10} + 4 x^{9} + 28 x^{8} - 81 x^{7} + 335 x^{6} - 235 x^{5} + 782 x^{4} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 361.1
Root \(0.830630 + 2.55642i\) of defining polynomial
Character \(\chi\) \(=\) 440.361
Dual form 440.2.y.c.401.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36560 + 0.992167i) q^{3} +(-0.309017 - 0.951057i) q^{5} +(0.156923 + 0.114011i) q^{7} +(-0.0465816 + 0.143363i) q^{9} +(-3.15191 + 1.03221i) q^{11} +(-0.153004 + 0.470899i) q^{13} +(1.36560 + 0.992167i) q^{15} +(-1.53931 - 4.73750i) q^{17} +(-5.87486 + 4.26833i) q^{19} -0.327411 q^{21} -2.41321 q^{23} +(-0.809017 + 0.587785i) q^{25} +(-1.64347 - 5.05807i) q^{27} +(-1.70416 - 1.23814i) q^{29} +(-2.02898 + 6.24455i) q^{31} +(3.28013 - 4.53680i) q^{33} +(0.0599391 - 0.184474i) q^{35} +(-5.89647 - 4.28404i) q^{37} +(-0.258268 - 0.794866i) q^{39} +(-0.896909 + 0.651642i) q^{41} -5.46058 q^{43} +0.150741 q^{45} +(4.45214 - 3.23467i) q^{47} +(-2.15149 - 6.62161i) q^{49} +(6.80247 + 4.94228i) q^{51} +(-2.08269 + 6.40987i) q^{53} +(1.95568 + 2.67868i) q^{55} +(3.78781 - 11.6577i) q^{57} +(6.25768 + 4.54647i) q^{59} +(4.05549 + 12.4815i) q^{61} +(-0.0236547 + 0.0171861i) q^{63} +0.495133 q^{65} +4.49499 q^{67} +(3.29548 - 2.39430i) q^{69} +(0.117359 + 0.361193i) q^{71} +(11.8289 + 8.59419i) q^{73} +(0.521613 - 1.60536i) q^{75} +(-0.612289 - 0.197376i) q^{77} +(0.511049 - 1.57285i) q^{79} +(6.89691 + 5.01090i) q^{81} +(-2.68236 - 8.25544i) q^{83} +(-4.02996 + 2.92794i) q^{85} +3.55564 q^{87} +1.83811 q^{89} +(-0.0776975 + 0.0564505i) q^{91} +(-3.42486 - 10.5406i) q^{93} +(5.87486 + 4.26833i) q^{95} +(-3.97873 + 12.2453i) q^{97} +(-0.00115966 - 0.499950i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - q^{3} + 3 q^{5} - q^{7} - 10 q^{9} + 4 q^{11} + 18 q^{13} + q^{15} + 3 q^{17} + 4 q^{19} - 28 q^{21} - 18 q^{23} - 3 q^{25} + 23 q^{27} + 15 q^{29} - 8 q^{31} + 4 q^{33} + 6 q^{35} + 6 q^{37}+ \cdots + 79 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/440\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(221\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.36560 + 0.992167i −0.788430 + 0.572828i −0.907497 0.420058i \(-0.862010\pi\)
0.119067 + 0.992886i \(0.462010\pi\)
\(4\) 0 0
\(5\) −0.309017 0.951057i −0.138197 0.425325i
\(6\) 0 0
\(7\) 0.156923 + 0.114011i 0.0593111 + 0.0430921i 0.617046 0.786927i \(-0.288329\pi\)
−0.557735 + 0.830019i \(0.688329\pi\)
\(8\) 0 0
\(9\) −0.0465816 + 0.143363i −0.0155272 + 0.0477878i
\(10\) 0 0
\(11\) −3.15191 + 1.03221i −0.950337 + 0.311222i
\(12\) 0 0
\(13\) −0.153004 + 0.470899i −0.0424358 + 0.130604i −0.970030 0.242986i \(-0.921873\pi\)
0.927594 + 0.373590i \(0.121873\pi\)
\(14\) 0 0
\(15\) 1.36560 + 0.992167i 0.352596 + 0.256176i
\(16\) 0 0
\(17\) −1.53931 4.73750i −0.373337 1.14901i −0.944594 0.328242i \(-0.893544\pi\)
0.571257 0.820771i \(-0.306456\pi\)
\(18\) 0 0
\(19\) −5.87486 + 4.26833i −1.34778 + 0.979223i −0.348666 + 0.937247i \(0.613365\pi\)
−0.999119 + 0.0419758i \(0.986635\pi\)
\(20\) 0 0
\(21\) −0.327411 −0.0714470
\(22\) 0 0
\(23\) −2.41321 −0.503189 −0.251594 0.967833i \(-0.580955\pi\)
−0.251594 + 0.967833i \(0.580955\pi\)
\(24\) 0 0
\(25\) −0.809017 + 0.587785i −0.161803 + 0.117557i
\(26\) 0 0
\(27\) −1.64347 5.05807i −0.316285 0.973426i
\(28\) 0 0
\(29\) −1.70416 1.23814i −0.316454 0.229917i 0.418207 0.908352i \(-0.362659\pi\)
−0.734661 + 0.678434i \(0.762659\pi\)
\(30\) 0 0
\(31\) −2.02898 + 6.24455i −0.364415 + 1.12155i 0.585931 + 0.810361i \(0.300729\pi\)
−0.950346 + 0.311194i \(0.899271\pi\)
\(32\) 0 0
\(33\) 3.28013 4.53680i 0.570997 0.789756i
\(34\) 0 0
\(35\) 0.0599391 0.184474i 0.0101316 0.0311817i
\(36\) 0 0
\(37\) −5.89647 4.28404i −0.969374 0.704291i −0.0140649 0.999901i \(-0.504477\pi\)
−0.955309 + 0.295610i \(0.904477\pi\)
\(38\) 0 0
\(39\) −0.258268 0.794866i −0.0413559 0.127280i
\(40\) 0 0
\(41\) −0.896909 + 0.651642i −0.140074 + 0.101769i −0.655615 0.755095i \(-0.727591\pi\)
0.515542 + 0.856864i \(0.327591\pi\)
\(42\) 0 0
\(43\) −5.46058 −0.832731 −0.416365 0.909197i \(-0.636696\pi\)
−0.416365 + 0.909197i \(0.636696\pi\)
\(44\) 0 0
\(45\) 0.150741 0.0224712
\(46\) 0 0
\(47\) 4.45214 3.23467i 0.649412 0.471825i −0.213659 0.976908i \(-0.568538\pi\)
0.863071 + 0.505083i \(0.168538\pi\)
\(48\) 0 0
\(49\) −2.15149 6.62161i −0.307356 0.945945i
\(50\) 0 0
\(51\) 6.80247 + 4.94228i 0.952536 + 0.692058i
\(52\) 0 0
\(53\) −2.08269 + 6.40987i −0.286080 + 0.880463i 0.699993 + 0.714149i \(0.253186\pi\)
−0.986073 + 0.166313i \(0.946814\pi\)
\(54\) 0 0
\(55\) 1.95568 + 2.67868i 0.263704 + 0.361193i
\(56\) 0 0
\(57\) 3.78781 11.6577i 0.501707 1.54410i
\(58\) 0 0
\(59\) 6.25768 + 4.54647i 0.814681 + 0.591900i 0.915184 0.403037i \(-0.132045\pi\)
−0.100503 + 0.994937i \(0.532045\pi\)
\(60\) 0 0
\(61\) 4.05549 + 12.4815i 0.519252 + 1.59809i 0.775409 + 0.631459i \(0.217544\pi\)
−0.256157 + 0.966635i \(0.582456\pi\)
\(62\) 0 0
\(63\) −0.0236547 + 0.0171861i −0.00298021 + 0.00216525i
\(64\) 0 0
\(65\) 0.495133 0.0614136
\(66\) 0 0
\(67\) 4.49499 0.549151 0.274575 0.961566i \(-0.411463\pi\)
0.274575 + 0.961566i \(0.411463\pi\)
\(68\) 0 0
\(69\) 3.29548 2.39430i 0.396729 0.288240i
\(70\) 0 0
\(71\) 0.117359 + 0.361193i 0.0139279 + 0.0428657i 0.957779 0.287506i \(-0.0928260\pi\)
−0.943851 + 0.330371i \(0.892826\pi\)
\(72\) 0 0
\(73\) 11.8289 + 8.59419i 1.38447 + 1.00587i 0.996447 + 0.0842222i \(0.0268406\pi\)
0.388019 + 0.921651i \(0.373159\pi\)
\(74\) 0 0
\(75\) 0.521613 1.60536i 0.0602307 0.185371i
\(76\) 0 0
\(77\) −0.612289 0.197376i −0.0697768 0.0224931i
\(78\) 0 0
\(79\) 0.511049 1.57285i 0.0574975 0.176959i −0.918183 0.396156i \(-0.870344\pi\)
0.975681 + 0.219197i \(0.0703438\pi\)
\(80\) 0 0
\(81\) 6.89691 + 5.01090i 0.766324 + 0.556767i
\(82\) 0 0
\(83\) −2.68236 8.25544i −0.294427 0.906152i −0.983413 0.181378i \(-0.941944\pi\)
0.688987 0.724774i \(-0.258056\pi\)
\(84\) 0 0
\(85\) −4.02996 + 2.92794i −0.437111 + 0.317579i
\(86\) 0 0
\(87\) 3.55564 0.381205
\(88\) 0 0
\(89\) 1.83811 0.194840 0.0974198 0.995243i \(-0.468941\pi\)
0.0974198 + 0.995243i \(0.468941\pi\)
\(90\) 0 0
\(91\) −0.0776975 + 0.0564505i −0.00814491 + 0.00591762i
\(92\) 0 0
\(93\) −3.42486 10.5406i −0.355142 1.09301i
\(94\) 0 0
\(95\) 5.87486 + 4.26833i 0.602748 + 0.437922i
\(96\) 0 0
\(97\) −3.97873 + 12.2453i −0.403979 + 1.24332i 0.517765 + 0.855523i \(0.326764\pi\)
−0.921745 + 0.387798i \(0.873236\pi\)
\(98\) 0 0
\(99\) −0.00115966 0.499950i −0.000116550 0.0502469i
\(100\) 0 0
\(101\) −0.308644 + 0.949908i −0.0307112 + 0.0945194i −0.965237 0.261376i \(-0.915824\pi\)
0.934526 + 0.355895i \(0.115824\pi\)
\(102\) 0 0
\(103\) 7.44256 + 5.40733i 0.733337 + 0.532800i 0.890617 0.454754i \(-0.150273\pi\)
−0.157280 + 0.987554i \(0.550273\pi\)
\(104\) 0 0
\(105\) 0.101176 + 0.311387i 0.00987373 + 0.0303882i
\(106\) 0 0
\(107\) −2.30547 + 1.67502i −0.222879 + 0.161931i −0.693621 0.720340i \(-0.743986\pi\)
0.470743 + 0.882270i \(0.343986\pi\)
\(108\) 0 0
\(109\) 1.23155 0.117962 0.0589808 0.998259i \(-0.481215\pi\)
0.0589808 + 0.998259i \(0.481215\pi\)
\(110\) 0 0
\(111\) 12.3027 1.16772
\(112\) 0 0
\(113\) 7.78030 5.65272i 0.731909 0.531763i −0.158258 0.987398i \(-0.550588\pi\)
0.890167 + 0.455635i \(0.150588\pi\)
\(114\) 0 0
\(115\) 0.745722 + 2.29510i 0.0695389 + 0.214019i
\(116\) 0 0
\(117\) −0.0603825 0.0438704i −0.00558236 0.00405582i
\(118\) 0 0
\(119\) 0.298575 0.918919i 0.0273703 0.0842371i
\(120\) 0 0
\(121\) 8.86910 6.50685i 0.806282 0.591532i
\(122\) 0 0
\(123\) 0.578281 1.77977i 0.0521418 0.160476i
\(124\) 0 0
\(125\) 0.809017 + 0.587785i 0.0723607 + 0.0525731i
\(126\) 0 0
\(127\) −5.27298 16.2286i −0.467902 1.44005i −0.855296 0.518139i \(-0.826625\pi\)
0.387395 0.921914i \(-0.373375\pi\)
\(128\) 0 0
\(129\) 7.45697 5.41781i 0.656550 0.477011i
\(130\) 0 0
\(131\) −10.8561 −0.948506 −0.474253 0.880389i \(-0.657282\pi\)
−0.474253 + 0.880389i \(0.657282\pi\)
\(132\) 0 0
\(133\) −1.40853 −0.122135
\(134\) 0 0
\(135\) −4.30265 + 3.12606i −0.370313 + 0.269048i
\(136\) 0 0
\(137\) −2.96917 9.13817i −0.253673 0.780727i −0.994088 0.108576i \(-0.965371\pi\)
0.740415 0.672150i \(-0.234629\pi\)
\(138\) 0 0
\(139\) −12.5873 9.14522i −1.06764 0.775687i −0.0921548 0.995745i \(-0.529375\pi\)
−0.975487 + 0.220058i \(0.929375\pi\)
\(140\) 0 0
\(141\) −2.87051 + 8.83454i −0.241741 + 0.744002i
\(142\) 0 0
\(143\) −0.00380907 1.64216i −0.000318530 0.137325i
\(144\) 0 0
\(145\) −0.650930 + 2.00336i −0.0540568 + 0.166370i
\(146\) 0 0
\(147\) 9.50782 + 6.90784i 0.784192 + 0.569749i
\(148\) 0 0
\(149\) −1.87338 5.76568i −0.153474 0.472343i 0.844530 0.535509i \(-0.179880\pi\)
−0.998003 + 0.0631661i \(0.979880\pi\)
\(150\) 0 0
\(151\) −14.1108 + 10.2521i −1.14832 + 0.834303i −0.988256 0.152804i \(-0.951170\pi\)
−0.160063 + 0.987107i \(0.551170\pi\)
\(152\) 0 0
\(153\) 0.750887 0.0607057
\(154\) 0 0
\(155\) 6.56591 0.527387
\(156\) 0 0
\(157\) −15.4447 + 11.2213i −1.23262 + 0.895554i −0.997084 0.0763106i \(-0.975686\pi\)
−0.235540 + 0.971865i \(0.575686\pi\)
\(158\) 0 0
\(159\) −3.51553 10.8197i −0.278800 0.858057i
\(160\) 0 0
\(161\) −0.378687 0.275132i −0.0298447 0.0216834i
\(162\) 0 0
\(163\) −0.0312105 + 0.0960562i −0.00244460 + 0.00752370i −0.952271 0.305253i \(-0.901259\pi\)
0.949827 + 0.312776i \(0.101259\pi\)
\(164\) 0 0
\(165\) −5.32837 1.71764i −0.414813 0.133718i
\(166\) 0 0
\(167\) 3.47433 10.6929i 0.268852 0.827441i −0.721929 0.691967i \(-0.756744\pi\)
0.990781 0.135474i \(-0.0432557\pi\)
\(168\) 0 0
\(169\) 10.3189 + 7.49711i 0.793760 + 0.576701i
\(170\) 0 0
\(171\) −0.338262 1.04106i −0.0258676 0.0796122i
\(172\) 0 0
\(173\) −6.56139 + 4.76713i −0.498853 + 0.362438i −0.808579 0.588388i \(-0.799763\pi\)
0.309725 + 0.950826i \(0.399763\pi\)
\(174\) 0 0
\(175\) −0.193967 −0.0146625
\(176\) 0 0
\(177\) −13.0563 −0.981375
\(178\) 0 0
\(179\) 17.2144 12.5070i 1.28667 0.934817i 0.286933 0.957951i \(-0.407364\pi\)
0.999732 + 0.0231333i \(0.00736420\pi\)
\(180\) 0 0
\(181\) 2.66422 + 8.19962i 0.198030 + 0.609473i 0.999928 + 0.0120121i \(0.00382367\pi\)
−0.801898 + 0.597461i \(0.796176\pi\)
\(182\) 0 0
\(183\) −17.9219 13.0210i −1.32483 0.962543i
\(184\) 0 0
\(185\) −2.25225 + 6.93172i −0.165589 + 0.509630i
\(186\) 0 0
\(187\) 9.74185 + 13.3433i 0.712394 + 0.975759i
\(188\) 0 0
\(189\) 0.318778 0.981099i 0.0231877 0.0713644i
\(190\) 0 0
\(191\) 16.2969 + 11.8404i 1.17920 + 0.856742i 0.992082 0.125594i \(-0.0400837\pi\)
0.187123 + 0.982337i \(0.440084\pi\)
\(192\) 0 0
\(193\) 3.00173 + 9.23838i 0.216069 + 0.664993i 0.999076 + 0.0429799i \(0.0136851\pi\)
−0.783006 + 0.622014i \(0.786315\pi\)
\(194\) 0 0
\(195\) −0.676153 + 0.491254i −0.0484203 + 0.0351794i
\(196\) 0 0
\(197\) −14.4934 −1.03261 −0.516304 0.856405i \(-0.672693\pi\)
−0.516304 + 0.856405i \(0.672693\pi\)
\(198\) 0 0
\(199\) −20.8055 −1.47486 −0.737431 0.675423i \(-0.763961\pi\)
−0.737431 + 0.675423i \(0.763961\pi\)
\(200\) 0 0
\(201\) −6.13836 + 4.45978i −0.432967 + 0.314569i
\(202\) 0 0
\(203\) −0.126259 0.388585i −0.00886164 0.0272733i
\(204\) 0 0
\(205\) 0.896909 + 0.651642i 0.0626428 + 0.0455127i
\(206\) 0 0
\(207\) 0.112411 0.345965i 0.00781310 0.0240463i
\(208\) 0 0
\(209\) 14.1112 19.5175i 0.976094 1.35005i
\(210\) 0 0
\(211\) 2.64897 8.15269i 0.182363 0.561254i −0.817530 0.575885i \(-0.804657\pi\)
0.999893 + 0.0146312i \(0.00465742\pi\)
\(212\) 0 0
\(213\) −0.518629 0.376806i −0.0355359 0.0258183i
\(214\) 0 0
\(215\) 1.68741 + 5.19332i 0.115081 + 0.354182i
\(216\) 0 0
\(217\) −1.03034 + 0.748585i −0.0699440 + 0.0508173i
\(218\) 0 0
\(219\) −24.6804 −1.66775
\(220\) 0 0
\(221\) 2.46641 0.165908
\(222\) 0 0
\(223\) −0.281479 + 0.204506i −0.0188492 + 0.0136948i −0.597170 0.802115i \(-0.703708\pi\)
0.578321 + 0.815809i \(0.303708\pi\)
\(224\) 0 0
\(225\) −0.0465816 0.143363i −0.00310544 0.00955756i
\(226\) 0 0
\(227\) 12.2437 + 8.89555i 0.812642 + 0.590419i 0.914595 0.404370i \(-0.132509\pi\)
−0.101954 + 0.994789i \(0.532509\pi\)
\(228\) 0 0
\(229\) −8.28103 + 25.4864i −0.547226 + 1.68419i 0.168413 + 0.985717i \(0.446136\pi\)
−0.715639 + 0.698471i \(0.753864\pi\)
\(230\) 0 0
\(231\) 1.03197 0.337956i 0.0678987 0.0222359i
\(232\) 0 0
\(233\) 0.260273 0.801038i 0.0170510 0.0524777i −0.942169 0.335138i \(-0.891217\pi\)
0.959220 + 0.282661i \(0.0912170\pi\)
\(234\) 0 0
\(235\) −4.45214 3.23467i −0.290426 0.211007i
\(236\) 0 0
\(237\) 0.862638 + 2.65493i 0.0560343 + 0.172456i
\(238\) 0 0
\(239\) −4.71378 + 3.42476i −0.304909 + 0.221529i −0.729709 0.683758i \(-0.760344\pi\)
0.424800 + 0.905287i \(0.360344\pi\)
\(240\) 0 0
\(241\) −26.5420 −1.70972 −0.854860 0.518860i \(-0.826357\pi\)
−0.854860 + 0.518860i \(0.826357\pi\)
\(242\) 0 0
\(243\) 1.56504 0.100397
\(244\) 0 0
\(245\) −5.63268 + 4.09238i −0.359859 + 0.261453i
\(246\) 0 0
\(247\) −1.11108 3.41954i −0.0706960 0.217580i
\(248\) 0 0
\(249\) 11.8538 + 8.61229i 0.751204 + 0.545782i
\(250\) 0 0
\(251\) 6.60804 20.3374i 0.417096 1.28369i −0.493268 0.869878i \(-0.664198\pi\)
0.910363 0.413810i \(-0.135802\pi\)
\(252\) 0 0
\(253\) 7.60622 2.49093i 0.478199 0.156603i
\(254\) 0 0
\(255\) 2.59831 7.99678i 0.162713 0.500778i
\(256\) 0 0
\(257\) −17.0089 12.3577i −1.06099 0.770853i −0.0867176 0.996233i \(-0.527638\pi\)
−0.974271 + 0.225380i \(0.927638\pi\)
\(258\) 0 0
\(259\) −0.436862 1.34452i −0.0271453 0.0835446i
\(260\) 0 0
\(261\) 0.256887 0.186639i 0.0159009 0.0115527i
\(262\) 0 0
\(263\) −1.64662 −0.101535 −0.0507675 0.998710i \(-0.516167\pi\)
−0.0507675 + 0.998710i \(0.516167\pi\)
\(264\) 0 0
\(265\) 6.73973 0.414018
\(266\) 0 0
\(267\) −2.51013 + 1.82371i −0.153617 + 0.111610i
\(268\) 0 0
\(269\) 4.99210 + 15.3641i 0.304374 + 0.936766i 0.979910 + 0.199439i \(0.0639121\pi\)
−0.675537 + 0.737326i \(0.736088\pi\)
\(270\) 0 0
\(271\) −3.96493 2.88069i −0.240853 0.174990i 0.460810 0.887499i \(-0.347559\pi\)
−0.701663 + 0.712509i \(0.747559\pi\)
\(272\) 0 0
\(273\) 0.0500954 0.154178i 0.00303191 0.00933126i
\(274\) 0 0
\(275\) 1.94323 2.68772i 0.117181 0.162076i
\(276\) 0 0
\(277\) 4.49420 13.8317i 0.270030 0.831067i −0.720462 0.693495i \(-0.756070\pi\)
0.990492 0.137572i \(-0.0439300\pi\)
\(278\) 0 0
\(279\) −0.800727 0.581762i −0.0479383 0.0348292i
\(280\) 0 0
\(281\) −1.07048 3.29459i −0.0638593 0.196539i 0.914036 0.405632i \(-0.132949\pi\)
−0.977896 + 0.209094i \(0.932949\pi\)
\(282\) 0 0
\(283\) −1.17736 + 0.855401i −0.0699867 + 0.0508483i −0.622228 0.782836i \(-0.713773\pi\)
0.552242 + 0.833684i \(0.313773\pi\)
\(284\) 0 0
\(285\) −12.2576 −0.726078
\(286\) 0 0
\(287\) −0.215039 −0.0126934
\(288\) 0 0
\(289\) −6.32117 + 4.59260i −0.371833 + 0.270153i
\(290\) 0 0
\(291\) −6.71600 20.6697i −0.393699 1.21168i
\(292\) 0 0
\(293\) −25.7750 18.7266i −1.50579 1.09402i −0.968001 0.250945i \(-0.919259\pi\)
−0.537791 0.843078i \(-0.680741\pi\)
\(294\) 0 0
\(295\) 2.39022 7.35635i 0.139164 0.428303i
\(296\) 0 0
\(297\) 10.4010 + 14.2462i 0.603530 + 0.826648i
\(298\) 0 0
\(299\) 0.369231 1.13638i 0.0213532 0.0657184i
\(300\) 0 0
\(301\) −0.856888 0.622566i −0.0493902 0.0358841i
\(302\) 0 0
\(303\) −0.520983 1.60342i −0.0299297 0.0921141i
\(304\) 0 0
\(305\) 10.6174 7.71400i 0.607951 0.441702i
\(306\) 0 0
\(307\) 16.1632 0.922480 0.461240 0.887275i \(-0.347405\pi\)
0.461240 + 0.887275i \(0.347405\pi\)
\(308\) 0 0
\(309\) −15.5285 −0.883387
\(310\) 0 0
\(311\) −18.2265 + 13.2423i −1.03353 + 0.750904i −0.969012 0.247012i \(-0.920551\pi\)
−0.0645188 + 0.997916i \(0.520551\pi\)
\(312\) 0 0
\(313\) 5.42223 + 16.6879i 0.306483 + 0.943256i 0.979120 + 0.203284i \(0.0651614\pi\)
−0.672637 + 0.739972i \(0.734839\pi\)
\(314\) 0 0
\(315\) 0.0236547 + 0.0171861i 0.00133279 + 0.000968329i
\(316\) 0 0
\(317\) −8.70276 + 26.7843i −0.488796 + 1.50436i 0.337611 + 0.941286i \(0.390381\pi\)
−0.826407 + 0.563073i \(0.809619\pi\)
\(318\) 0 0
\(319\) 6.64938 + 2.14347i 0.372294 + 0.120012i
\(320\) 0 0
\(321\) 1.48645 4.57483i 0.0829657 0.255342i
\(322\) 0 0
\(323\) 29.2644 + 21.2619i 1.62832 + 1.18304i
\(324\) 0 0
\(325\) −0.153004 0.470899i −0.00848716 0.0261208i
\(326\) 0 0
\(327\) −1.68181 + 1.22191i −0.0930044 + 0.0675716i
\(328\) 0 0
\(329\) 1.06743 0.0588493
\(330\) 0 0
\(331\) 0.970270 0.0533309 0.0266654 0.999644i \(-0.491511\pi\)
0.0266654 + 0.999644i \(0.491511\pi\)
\(332\) 0 0
\(333\) 0.888841 0.645780i 0.0487082 0.0353886i
\(334\) 0 0
\(335\) −1.38903 4.27499i −0.0758908 0.233568i
\(336\) 0 0
\(337\) −4.49317 3.26448i −0.244759 0.177827i 0.458642 0.888621i \(-0.348336\pi\)
−0.703401 + 0.710794i \(0.748336\pi\)
\(338\) 0 0
\(339\) −5.01634 + 15.4387i −0.272450 + 0.838515i
\(340\) 0 0
\(341\) −0.0505117 21.7766i −0.00273536 1.17927i
\(342\) 0 0
\(343\) 0.836892 2.57569i 0.0451879 0.139074i
\(344\) 0 0
\(345\) −3.29548 2.39430i −0.177423 0.128905i
\(346\) 0 0
\(347\) −5.14885 15.8465i −0.276405 0.850687i −0.988844 0.148953i \(-0.952410\pi\)
0.712439 0.701734i \(-0.247590\pi\)
\(348\) 0 0
\(349\) 26.7848 19.4603i 1.43376 1.04169i 0.444455 0.895801i \(-0.353397\pi\)
0.989302 0.145884i \(-0.0466025\pi\)
\(350\) 0 0
\(351\) 2.63330 0.140555
\(352\) 0 0
\(353\) −6.70224 −0.356724 −0.178362 0.983965i \(-0.557080\pi\)
−0.178362 + 0.983965i \(0.557080\pi\)
\(354\) 0 0
\(355\) 0.307249 0.223230i 0.0163071 0.0118478i
\(356\) 0 0
\(357\) 0.503987 + 1.55111i 0.0266738 + 0.0820935i
\(358\) 0 0
\(359\) −19.4646 14.1419i −1.02730 0.746379i −0.0595355 0.998226i \(-0.518962\pi\)
−0.967767 + 0.251847i \(0.918962\pi\)
\(360\) 0 0
\(361\) 10.4240 32.0816i 0.548629 1.68851i
\(362\) 0 0
\(363\) −5.65576 + 17.6854i −0.296850 + 0.928242i
\(364\) 0 0
\(365\) 4.51823 13.9057i 0.236495 0.727857i
\(366\) 0 0
\(367\) 6.71791 + 4.88085i 0.350672 + 0.254778i 0.749151 0.662399i \(-0.230462\pi\)
−0.398479 + 0.917177i \(0.630462\pi\)
\(368\) 0 0
\(369\) −0.0516422 0.158938i −0.00268839 0.00827400i
\(370\) 0 0
\(371\) −1.05762 + 0.768403i −0.0549087 + 0.0398935i
\(372\) 0 0
\(373\) −16.0339 −0.830202 −0.415101 0.909775i \(-0.636254\pi\)
−0.415101 + 0.909775i \(0.636254\pi\)
\(374\) 0 0
\(375\) −1.68797 −0.0871666
\(376\) 0 0
\(377\) 0.843784 0.613045i 0.0434571 0.0315734i
\(378\) 0 0
\(379\) 8.11474 + 24.9746i 0.416826 + 1.28286i 0.910607 + 0.413273i \(0.135614\pi\)
−0.493781 + 0.869586i \(0.664386\pi\)
\(380\) 0 0
\(381\) 23.3022 + 16.9301i 1.19381 + 0.867354i
\(382\) 0 0
\(383\) −4.21474 + 12.9716i −0.215363 + 0.662819i 0.783765 + 0.621058i \(0.213297\pi\)
−0.999128 + 0.0417612i \(0.986703\pi\)
\(384\) 0 0
\(385\) 0.00149219 + 0.643314i 7.60492e−5 + 0.0327863i
\(386\) 0 0
\(387\) 0.254362 0.782847i 0.0129300 0.0397944i
\(388\) 0 0
\(389\) 25.6125 + 18.6086i 1.29861 + 0.943493i 0.999941 0.0108655i \(-0.00345865\pi\)
0.298665 + 0.954358i \(0.403459\pi\)
\(390\) 0 0
\(391\) 3.71467 + 11.4326i 0.187859 + 0.578170i
\(392\) 0 0
\(393\) 14.8252 10.7711i 0.747830 0.543331i
\(394\) 0 0
\(395\) −1.65379 −0.0832111
\(396\) 0 0
\(397\) 33.2898 1.67077 0.835383 0.549668i \(-0.185246\pi\)
0.835383 + 0.549668i \(0.185246\pi\)
\(398\) 0 0
\(399\) 1.92349 1.39750i 0.0962952 0.0699625i
\(400\) 0 0
\(401\) −7.13851 21.9701i −0.356480 1.09713i −0.955146 0.296135i \(-0.904302\pi\)
0.598666 0.800999i \(-0.295698\pi\)
\(402\) 0 0
\(403\) −2.63011 1.91089i −0.131015 0.0951881i
\(404\) 0 0
\(405\) 2.63439 8.10781i 0.130904 0.402880i
\(406\) 0 0
\(407\) 23.0072 + 7.41653i 1.14042 + 0.367624i
\(408\) 0 0
\(409\) −9.54290 + 29.3700i −0.471866 + 1.45225i 0.378272 + 0.925695i \(0.376519\pi\)
−0.850138 + 0.526560i \(0.823481\pi\)
\(410\) 0 0
\(411\) 13.1213 + 9.53318i 0.647226 + 0.470237i
\(412\) 0 0
\(413\) 0.463624 + 1.42689i 0.0228134 + 0.0702125i
\(414\) 0 0
\(415\) −7.02250 + 5.10214i −0.344721 + 0.250454i
\(416\) 0 0
\(417\) 26.2628 1.28610
\(418\) 0 0
\(419\) 11.9155 0.582109 0.291054 0.956707i \(-0.405994\pi\)
0.291054 + 0.956707i \(0.405994\pi\)
\(420\) 0 0
\(421\) 3.69312 2.68321i 0.179992 0.130772i −0.494141 0.869382i \(-0.664517\pi\)
0.674133 + 0.738610i \(0.264517\pi\)
\(422\) 0 0
\(423\) 0.256345 + 0.788950i 0.0124639 + 0.0383601i
\(424\) 0 0
\(425\) 4.02996 + 2.92794i 0.195482 + 0.142026i
\(426\) 0 0
\(427\) −0.786631 + 2.42100i −0.0380677 + 0.117160i
\(428\) 0 0
\(429\) 1.63450 + 2.23876i 0.0789145 + 0.108088i
\(430\) 0 0
\(431\) −2.34293 + 7.21080i −0.112855 + 0.347332i −0.991494 0.130155i \(-0.958452\pi\)
0.878639 + 0.477487i \(0.158452\pi\)
\(432\) 0 0
\(433\) 8.56060 + 6.21964i 0.411396 + 0.298897i 0.774167 0.632982i \(-0.218169\pi\)
−0.362771 + 0.931878i \(0.618169\pi\)
\(434\) 0 0
\(435\) −1.09875 3.38162i −0.0526812 0.162136i
\(436\) 0 0
\(437\) 14.1772 10.3004i 0.678190 0.492734i
\(438\) 0 0
\(439\) 7.04399 0.336191 0.168096 0.985771i \(-0.446238\pi\)
0.168096 + 0.985771i \(0.446238\pi\)
\(440\) 0 0
\(441\) 1.04952 0.0499770
\(442\) 0 0
\(443\) −0.942081 + 0.684462i −0.0447596 + 0.0325198i −0.609940 0.792448i \(-0.708807\pi\)
0.565181 + 0.824967i \(0.308807\pi\)
\(444\) 0 0
\(445\) −0.568008 1.74815i −0.0269262 0.0828702i
\(446\) 0 0
\(447\) 8.27881 + 6.01491i 0.391574 + 0.284495i
\(448\) 0 0
\(449\) 3.82127 11.7607i 0.180337 0.555020i −0.819500 0.573079i \(-0.805749\pi\)
0.999837 + 0.0180590i \(0.00574867\pi\)
\(450\) 0 0
\(451\) 2.15435 2.97971i 0.101444 0.140309i
\(452\) 0 0
\(453\) 9.09791 28.0005i 0.427457 1.31558i
\(454\) 0 0
\(455\) 0.0776975 + 0.0564505i 0.00364251 + 0.00264644i
\(456\) 0 0
\(457\) −11.1379 34.2789i −0.521008 1.60350i −0.772077 0.635529i \(-0.780782\pi\)
0.251069 0.967969i \(-0.419218\pi\)
\(458\) 0 0
\(459\) −21.4328 + 15.5719i −1.00040 + 0.726832i
\(460\) 0 0
\(461\) −13.6603 −0.636222 −0.318111 0.948053i \(-0.603049\pi\)
−0.318111 + 0.948053i \(0.603049\pi\)
\(462\) 0 0
\(463\) 29.3515 1.36408 0.682041 0.731314i \(-0.261093\pi\)
0.682041 + 0.731314i \(0.261093\pi\)
\(464\) 0 0
\(465\) −8.96641 + 6.51448i −0.415807 + 0.302102i
\(466\) 0 0
\(467\) 7.46213 + 22.9661i 0.345306 + 1.06274i 0.961420 + 0.275085i \(0.0887062\pi\)
−0.616114 + 0.787657i \(0.711294\pi\)
\(468\) 0 0
\(469\) 0.705366 + 0.512478i 0.0325708 + 0.0236640i
\(470\) 0 0
\(471\) 9.95798 30.6475i 0.458839 1.41216i
\(472\) 0 0
\(473\) 17.2113 5.63645i 0.791375 0.259164i
\(474\) 0 0
\(475\) 2.24400 6.90631i 0.102962 0.316883i
\(476\) 0 0
\(477\) −0.821925 0.597163i −0.0376333 0.0273422i
\(478\) 0 0
\(479\) 12.4419 + 38.2923i 0.568486 + 1.74962i 0.657361 + 0.753576i \(0.271673\pi\)
−0.0888751 + 0.996043i \(0.528327\pi\)
\(480\) 0 0
\(481\) 2.91953 2.12117i 0.133119 0.0967168i
\(482\) 0 0
\(483\) 0.790111 0.0359513
\(484\) 0 0
\(485\) 12.8755 0.584644
\(486\) 0 0
\(487\) −34.1376 + 24.8024i −1.54692 + 1.12390i −0.601122 + 0.799157i \(0.705279\pi\)
−0.945801 + 0.324748i \(0.894721\pi\)
\(488\) 0 0
\(489\) −0.0526826 0.162140i −0.00238239 0.00733224i
\(490\) 0 0
\(491\) −29.3536 21.3267i −1.32471 0.962459i −0.999861 0.0166935i \(-0.994686\pi\)
−0.324850 0.945765i \(-0.605314\pi\)
\(492\) 0 0
\(493\) −3.24248 + 9.97933i −0.146034 + 0.449447i
\(494\) 0 0
\(495\) −0.475123 + 0.155596i −0.0213552 + 0.00699352i
\(496\) 0 0
\(497\) −0.0227637 + 0.0700595i −0.00102109 + 0.00314260i
\(498\) 0 0
\(499\) −12.6811 9.21339i −0.567686 0.412448i 0.266578 0.963813i \(-0.414107\pi\)
−0.834264 + 0.551366i \(0.814107\pi\)
\(500\) 0 0
\(501\) 5.86458 + 18.0493i 0.262010 + 0.806385i
\(502\) 0 0
\(503\) −20.7825 + 15.0994i −0.926645 + 0.673247i −0.945169 0.326582i \(-0.894103\pi\)
0.0185243 + 0.999828i \(0.494103\pi\)
\(504\) 0 0
\(505\) 0.998793 0.0444457
\(506\) 0 0
\(507\) −21.5299 −0.956174
\(508\) 0 0
\(509\) 17.6391 12.8156i 0.781840 0.568040i −0.123690 0.992321i \(-0.539473\pi\)
0.905531 + 0.424281i \(0.139473\pi\)
\(510\) 0 0
\(511\) 0.876387 + 2.69724i 0.0387691 + 0.119319i
\(512\) 0 0
\(513\) 31.2447 + 22.7006i 1.37949 + 1.00226i
\(514\) 0 0
\(515\) 2.84280 8.74925i 0.125269 0.385538i
\(516\) 0 0
\(517\) −10.6939 + 14.7909i −0.470318 + 0.650505i
\(518\) 0 0
\(519\) 4.23045 13.0200i 0.185696 0.571514i
\(520\) 0 0
\(521\) −32.2357 23.4206i −1.41227 1.02608i −0.992987 0.118221i \(-0.962281\pi\)
−0.419285 0.907855i \(-0.637719\pi\)
\(522\) 0 0
\(523\) −3.54130 10.8990i −0.154850 0.476580i 0.843295 0.537450i \(-0.180612\pi\)
−0.998146 + 0.0608703i \(0.980612\pi\)
\(524\) 0 0
\(525\) 0.264881 0.192448i 0.0115604 0.00839910i
\(526\) 0 0
\(527\) 32.7068 1.42473
\(528\) 0 0
\(529\) −17.1764 −0.746801
\(530\) 0 0
\(531\) −0.943290 + 0.685340i −0.0409353 + 0.0297412i
\(532\) 0 0
\(533\) −0.169627 0.522058i −0.00734735 0.0226128i
\(534\) 0 0
\(535\) 2.30547 + 1.67502i 0.0996743 + 0.0724176i
\(536\) 0 0
\(537\) −11.0990 + 34.1591i −0.478956 + 1.47408i
\(538\) 0 0
\(539\) 13.6162 + 18.6500i 0.586491 + 0.803311i
\(540\) 0 0
\(541\) 13.4647 41.4402i 0.578894 1.78165i −0.0436242 0.999048i \(-0.513890\pi\)
0.622518 0.782605i \(-0.286110\pi\)
\(542\) 0 0
\(543\) −11.7736 8.55406i −0.505256 0.367090i
\(544\) 0 0
\(545\) −0.380571 1.17128i −0.0163019 0.0501720i
\(546\) 0 0
\(547\) −4.12614 + 2.99782i −0.176421 + 0.128177i −0.672491 0.740105i \(-0.734776\pi\)
0.496070 + 0.868282i \(0.334776\pi\)
\(548\) 0 0
\(549\) −1.97830 −0.0844319
\(550\) 0 0
\(551\) 15.2965 0.651652
\(552\) 0 0
\(553\) 0.259517 0.188550i 0.0110358 0.00801796i
\(554\) 0 0
\(555\) −3.80174 11.7006i −0.161375 0.496661i
\(556\) 0 0
\(557\) 3.67172 + 2.66766i 0.155576 + 0.113032i 0.662850 0.748752i \(-0.269347\pi\)
−0.507274 + 0.861785i \(0.669347\pi\)
\(558\) 0 0
\(559\) 0.835493 2.57138i 0.0353376 0.108758i
\(560\) 0 0
\(561\) −26.5422 8.55608i −1.12061 0.361238i
\(562\) 0 0
\(563\) −9.10085 + 28.0095i −0.383555 + 1.18046i 0.553968 + 0.832538i \(0.313113\pi\)
−0.937523 + 0.347923i \(0.886887\pi\)
\(564\) 0 0
\(565\) −7.78030 5.65272i −0.327319 0.237812i
\(566\) 0 0
\(567\) 0.510984 + 1.57265i 0.0214593 + 0.0660449i
\(568\) 0 0
\(569\) −8.62331 + 6.26520i −0.361508 + 0.262651i −0.753681 0.657241i \(-0.771724\pi\)
0.392173 + 0.919892i \(0.371724\pi\)
\(570\) 0 0
\(571\) −35.1373 −1.47045 −0.735224 0.677824i \(-0.762923\pi\)
−0.735224 + 0.677824i \(0.762923\pi\)
\(572\) 0 0
\(573\) −34.0028 −1.42049
\(574\) 0 0
\(575\) 1.95233 1.41845i 0.0814176 0.0591534i
\(576\) 0 0
\(577\) 10.7247 + 33.0072i 0.446474 + 1.37411i 0.880859 + 0.473379i \(0.156966\pi\)
−0.434385 + 0.900727i \(0.643034\pi\)
\(578\) 0 0
\(579\) −13.2652 9.63772i −0.551282 0.400530i
\(580\) 0 0
\(581\) 0.520288 1.60128i 0.0215852 0.0664324i
\(582\) 0 0
\(583\) −0.0518489 22.3531i −0.00214736 0.925771i
\(584\) 0 0
\(585\) −0.0230641 + 0.0709839i −0.000953581 + 0.00293482i
\(586\) 0 0
\(587\) −22.9900 16.7032i −0.948897 0.689414i 0.00164868 0.999999i \(-0.499475\pi\)
−0.950546 + 0.310585i \(0.899475\pi\)
\(588\) 0 0
\(589\) −14.7339 45.3462i −0.607099 1.86846i
\(590\) 0 0
\(591\) 19.7921 14.3798i 0.814139 0.591507i
\(592\) 0 0
\(593\) −19.6141 −0.805456 −0.402728 0.915320i \(-0.631938\pi\)
−0.402728 + 0.915320i \(0.631938\pi\)
\(594\) 0 0
\(595\) −0.966208 −0.0396107
\(596\) 0 0
\(597\) 28.4120 20.6425i 1.16282 0.844842i
\(598\) 0 0
\(599\) −5.12839 15.7836i −0.209540 0.644899i −0.999496 0.0317355i \(-0.989897\pi\)
0.789956 0.613164i \(-0.210103\pi\)
\(600\) 0 0
\(601\) 8.74776 + 6.35562i 0.356829 + 0.259251i 0.751728 0.659473i \(-0.229221\pi\)
−0.394899 + 0.918724i \(0.629221\pi\)
\(602\) 0 0
\(603\) −0.209384 + 0.644417i −0.00852677 + 0.0262427i
\(604\) 0 0
\(605\) −8.92909 6.42428i −0.363019 0.261184i
\(606\) 0 0
\(607\) −4.19437 + 12.9089i −0.170244 + 0.523958i −0.999384 0.0350828i \(-0.988831\pi\)
0.829140 + 0.559041i \(0.188831\pi\)
\(608\) 0 0
\(609\) 0.557961 + 0.405382i 0.0226097 + 0.0164269i
\(610\) 0 0
\(611\) 0.842006 + 2.59143i 0.0340639 + 0.104838i
\(612\) 0 0
\(613\) 10.1395 7.36678i 0.409531 0.297541i −0.363881 0.931445i \(-0.618549\pi\)
0.773412 + 0.633904i \(0.218549\pi\)
\(614\) 0 0
\(615\) −1.87136 −0.0754604
\(616\) 0 0
\(617\) −46.5587 −1.87438 −0.937191 0.348816i \(-0.886584\pi\)
−0.937191 + 0.348816i \(0.886584\pi\)
\(618\) 0 0
\(619\) 17.0977 12.4222i 0.687214 0.499290i −0.188529 0.982068i \(-0.560372\pi\)
0.875743 + 0.482777i \(0.160372\pi\)
\(620\) 0 0
\(621\) 3.96603 + 12.2062i 0.159151 + 0.489817i
\(622\) 0 0
\(623\) 0.288441 + 0.209565i 0.0115562 + 0.00839604i
\(624\) 0 0
\(625\) 0.309017 0.951057i 0.0123607 0.0380423i
\(626\) 0 0
\(627\) 0.0942981 + 40.6538i 0.00376590 + 1.62356i
\(628\) 0 0
\(629\) −11.2191 + 34.5290i −0.447337 + 1.37676i
\(630\) 0 0
\(631\) −9.44545 6.86252i −0.376017 0.273193i 0.383684 0.923464i \(-0.374655\pi\)
−0.759702 + 0.650272i \(0.774655\pi\)
\(632\) 0 0
\(633\) 4.47139 + 13.7615i 0.177722 + 0.546972i
\(634\) 0 0
\(635\) −13.8049 + 10.0298i −0.547829 + 0.398021i
\(636\) 0 0
\(637\) 3.44730 0.136587
\(638\) 0 0
\(639\) −0.0572486 −0.00226472
\(640\) 0 0
\(641\) −6.92457 + 5.03099i −0.273504 + 0.198712i −0.716079 0.698019i \(-0.754065\pi\)
0.442575 + 0.896731i \(0.354065\pi\)
\(642\) 0 0
\(643\) −10.8370 33.3527i −0.427368 1.31530i −0.900709 0.434424i \(-0.856952\pi\)
0.473341 0.880879i \(-0.343048\pi\)
\(644\) 0 0
\(645\) −7.45697 5.41781i −0.293618 0.213326i
\(646\) 0 0
\(647\) −7.75719 + 23.8742i −0.304967 + 0.938590i 0.674723 + 0.738071i \(0.264263\pi\)
−0.979690 + 0.200520i \(0.935737\pi\)
\(648\) 0 0
\(649\) −24.4166 7.87085i −0.958434 0.308958i
\(650\) 0 0
\(651\) 0.664310 2.04454i 0.0260364 0.0801317i
\(652\) 0 0
\(653\) −38.4217 27.9150i −1.50356 1.09240i −0.968938 0.247303i \(-0.920456\pi\)
−0.534618 0.845094i \(-0.679544\pi\)
\(654\) 0 0
\(655\) 3.35473 + 10.3248i 0.131080 + 0.403424i
\(656\) 0 0
\(657\) −1.78310 + 1.29550i −0.0695653 + 0.0505422i
\(658\) 0 0
\(659\) 41.5603 1.61896 0.809479 0.587148i \(-0.199749\pi\)
0.809479 + 0.587148i \(0.199749\pi\)
\(660\) 0 0
\(661\) 38.3584 1.49197 0.745985 0.665963i \(-0.231979\pi\)
0.745985 + 0.665963i \(0.231979\pi\)
\(662\) 0 0
\(663\) −3.36812 + 2.44709i −0.130807 + 0.0950369i
\(664\) 0 0
\(665\) 0.435261 + 1.33960i 0.0168787 + 0.0519473i
\(666\) 0 0
\(667\) 4.11249 + 2.98790i 0.159236 + 0.115692i
\(668\) 0 0
\(669\) 0.181483 0.558548i 0.00701655 0.0215947i
\(670\) 0 0
\(671\) −25.6661 35.1545i −0.990827 1.35713i
\(672\) 0 0
\(673\) −8.97885 + 27.6341i −0.346109 + 1.06521i 0.614878 + 0.788622i \(0.289205\pi\)
−0.960987 + 0.276593i \(0.910795\pi\)
\(674\) 0 0
\(675\) 4.30265 + 3.12606i 0.165609 + 0.120322i
\(676\) 0 0
\(677\) 12.0547 + 37.1006i 0.463300 + 1.42589i 0.861108 + 0.508422i \(0.169771\pi\)
−0.397808 + 0.917469i \(0.630229\pi\)
\(678\) 0 0
\(679\) −2.02045 + 1.46794i −0.0775377 + 0.0563345i
\(680\) 0 0
\(681\) −25.5458 −0.978919
\(682\) 0 0
\(683\) −27.9569 −1.06974 −0.534871 0.844934i \(-0.679640\pi\)
−0.534871 + 0.844934i \(0.679640\pi\)
\(684\) 0 0
\(685\) −7.77339 + 5.64770i −0.297006 + 0.215788i
\(686\) 0 0
\(687\) −13.9782 43.0204i −0.533300 1.64133i
\(688\) 0 0
\(689\) −2.69974 1.96148i −0.102852 0.0747263i
\(690\) 0 0
\(691\) 9.14055 28.1317i 0.347723 1.07018i −0.612387 0.790558i \(-0.709790\pi\)
0.960110 0.279623i \(-0.0902095\pi\)
\(692\) 0 0
\(693\) 0.0568178 0.0785857i 0.00215833 0.00298522i
\(694\) 0 0
\(695\) −4.80792 + 14.7973i −0.182375 + 0.561292i
\(696\) 0 0
\(697\) 4.46777 + 3.24603i 0.169229 + 0.122952i
\(698\) 0 0
\(699\) 0.439334 + 1.35213i 0.0166171 + 0.0511423i
\(700\) 0 0
\(701\) −10.2512 + 7.44794i −0.387183 + 0.281305i −0.764300 0.644861i \(-0.776915\pi\)
0.377117 + 0.926166i \(0.376915\pi\)
\(702\) 0 0
\(703\) 52.9266 1.99617
\(704\) 0 0
\(705\) 9.28918 0.349851
\(706\) 0 0
\(707\) −0.156733 + 0.113873i −0.00589455 + 0.00428264i
\(708\) 0 0
\(709\) −4.83073 14.8675i −0.181422 0.558359i 0.818447 0.574583i \(-0.194836\pi\)
−0.999868 + 0.0162237i \(0.994836\pi\)
\(710\) 0 0
\(711\) 0.201683 + 0.146531i 0.00756371 + 0.00549535i
\(712\) 0 0
\(713\) 4.89635 15.0694i 0.183370 0.564354i
\(714\) 0 0
\(715\) −1.56061 + 0.511079i −0.0583637 + 0.0191133i
\(716\) 0 0
\(717\) 3.03920 9.35370i 0.113501 0.349321i
\(718\) 0 0
\(719\) 34.2785 + 24.9048i 1.27837 + 0.928791i 0.999503 0.0315382i \(-0.0100406\pi\)
0.278869 + 0.960329i \(0.410041\pi\)
\(720\) 0 0
\(721\) 0.551410 + 1.69706i 0.0205356 + 0.0632020i
\(722\) 0 0
\(723\) 36.2457 26.3341i 1.34799 0.979374i
\(724\) 0 0
\(725\) 2.10646 0.0782318
\(726\) 0 0
\(727\) −22.6871 −0.841417 −0.420709 0.907196i \(-0.638219\pi\)
−0.420709 + 0.907196i \(0.638219\pi\)
\(728\) 0 0
\(729\) −22.8280 + 16.5855i −0.845480 + 0.614277i
\(730\) 0 0
\(731\) 8.40551 + 25.8695i 0.310889 + 0.956819i
\(732\) 0 0
\(733\) 10.1434 + 7.36960i 0.374655 + 0.272202i 0.759138 0.650929i \(-0.225621\pi\)
−0.384484 + 0.923132i \(0.625621\pi\)
\(734\) 0 0
\(735\) 3.63167 11.1771i 0.133956 0.412274i
\(736\) 0 0
\(737\) −14.1678 + 4.63976i −0.521878 + 0.170908i
\(738\) 0 0
\(739\) 4.49672 13.8395i 0.165415 0.509094i −0.833652 0.552290i \(-0.813754\pi\)
0.999067 + 0.0431962i \(0.0137541\pi\)
\(740\) 0 0
\(741\) 4.91004 + 3.56735i 0.180375 + 0.131050i
\(742\) 0 0
\(743\) 1.02694 + 3.16061i 0.0376749 + 0.115951i 0.968125 0.250467i \(-0.0805840\pi\)
−0.930450 + 0.366418i \(0.880584\pi\)
\(744\) 0 0
\(745\) −4.90458 + 3.56339i −0.179690 + 0.130552i
\(746\) 0 0
\(747\) 1.30848 0.0478746
\(748\) 0 0
\(749\) −0.552752 −0.0201971
\(750\) 0 0
\(751\) −18.0760 + 13.1330i −0.659604 + 0.479230i −0.866529 0.499126i \(-0.833654\pi\)
0.206925 + 0.978357i \(0.433654\pi\)
\(752\) 0 0
\(753\) 11.1542 + 34.3291i 0.406482 + 1.25102i
\(754\) 0 0
\(755\) 14.1108 + 10.2521i 0.513544 + 0.373112i
\(756\) 0 0
\(757\) −7.59258 + 23.3676i −0.275957 + 0.849309i 0.713007 + 0.701156i \(0.247333\pi\)
−0.988965 + 0.148152i \(0.952667\pi\)
\(758\) 0 0
\(759\) −7.91563 + 10.9483i −0.287319 + 0.397396i
\(760\) 0 0
\(761\) −13.7261 + 42.2446i −0.497571 + 1.53136i 0.315341 + 0.948978i \(0.397881\pi\)
−0.812912 + 0.582387i \(0.802119\pi\)
\(762\) 0 0
\(763\) 0.193259 + 0.140411i 0.00699643 + 0.00508321i
\(764\) 0 0
\(765\) −0.232037 0.714136i −0.00838931 0.0258197i
\(766\) 0 0
\(767\) −3.09838 + 2.25111i −0.111876 + 0.0812827i
\(768\) 0 0
\(769\) −7.95061 −0.286706 −0.143353 0.989672i \(-0.545788\pi\)
−0.143353 + 0.989672i \(0.545788\pi\)
\(770\) 0 0
\(771\) 35.4883 1.27808
\(772\) 0 0
\(773\) 30.0107 21.8040i 1.07941 0.784237i 0.101830 0.994802i \(-0.467530\pi\)
0.977580 + 0.210565i \(0.0675303\pi\)
\(774\) 0 0
\(775\) −2.02898 6.24455i −0.0728831 0.224311i
\(776\) 0 0
\(777\) 1.93057 + 1.40264i 0.0692588 + 0.0503195i
\(778\) 0 0
\(779\) 2.48778 7.65661i 0.0891341 0.274327i
\(780\) 0 0
\(781\) −0.742731 1.01731i −0.0265770 0.0364022i
\(782\) 0 0
\(783\) −3.46189 + 10.6546i −0.123718 + 0.380764i
\(784\) 0 0
\(785\) 15.4447 + 11.2213i 0.551246 + 0.400504i
\(786\) 0 0
\(787\) −12.2724 37.7705i −0.437464 1.34637i −0.890541 0.454903i \(-0.849674\pi\)
0.453077 0.891471i \(-0.350326\pi\)
\(788\) 0 0
\(789\) 2.24863 1.63372i 0.0800532 0.0581621i
\(790\) 0 0
\(791\) 1.86537 0.0663251
\(792\) 0 0
\(793\) −6.49804 −0.230752
\(794\) 0 0
\(795\) −9.20378 + 6.68694i −0.326424 + 0.237161i
\(796\) 0 0
\(797\) 5.88136 + 18.1010i 0.208329 + 0.641169i 0.999560 + 0.0296529i \(0.00944019\pi\)
−0.791232 + 0.611516i \(0.790560\pi\)
\(798\) 0 0
\(799\) −22.1775 16.1129i −0.784583 0.570033i
\(800\) 0 0
\(801\) −0.0856222 + 0.263518i −0.00302531 + 0.00931095i
\(802\) 0 0
\(803\) −46.1546 14.8783i −1.62876 0.525042i
\(804\) 0 0
\(805\) −0.144645 + 0.445173i −0.00509808 + 0.0156903i
\(806\) 0 0
\(807\) −22.0610 16.0282i −0.776583 0.564220i
\(808\) 0 0
\(809\) −8.89608 27.3793i −0.312770 0.962606i −0.976663 0.214778i \(-0.931097\pi\)
0.663893 0.747827i \(-0.268903\pi\)
\(810\) 0 0
\(811\) −24.2405 + 17.6118i −0.851200 + 0.618433i −0.925477 0.378805i \(-0.876335\pi\)
0.0742765 + 0.997238i \(0.476335\pi\)
\(812\) 0 0
\(813\) 8.27264 0.290134
\(814\) 0 0
\(815\) 0.100999 0.00353786
\(816\) 0 0
\(817\) 32.0801 23.3076i 1.12234 0.815429i
\(818\) 0 0
\(819\) −0.00447366 0.0137685i −0.000156322 0.000481111i
\(820\) 0 0
\(821\) 11.7372 + 8.52757i 0.409631 + 0.297614i 0.773452 0.633854i \(-0.218528\pi\)
−0.363821 + 0.931469i \(0.618528\pi\)
\(822\) 0 0
\(823\) 1.81513 5.58640i 0.0632715 0.194730i −0.914424 0.404758i \(-0.867356\pi\)
0.977695 + 0.210029i \(0.0673557\pi\)
\(824\) 0 0
\(825\) 0.0129856 + 5.59836i 0.000452102 + 0.194910i
\(826\) 0 0
\(827\) −8.03378 + 24.7254i −0.279362 + 0.859787i 0.708670 + 0.705540i \(0.249295\pi\)
−0.988032 + 0.154248i \(0.950705\pi\)
\(828\) 0 0
\(829\) −30.8232 22.3943i −1.07053 0.777788i −0.0945250 0.995522i \(-0.530133\pi\)
−0.976008 + 0.217735i \(0.930133\pi\)
\(830\) 0 0
\(831\) 7.58609 + 23.3476i 0.263159 + 0.809919i
\(832\) 0 0
\(833\) −28.0581 + 20.3854i −0.972155 + 0.706312i
\(834\) 0 0
\(835\) −11.2432 −0.389086
\(836\) 0 0
\(837\) 34.9200 1.20701
\(838\) 0 0
\(839\) 41.3771 30.0622i 1.42849 1.03786i 0.438200 0.898877i \(-0.355616\pi\)
0.990295 0.138985i \(-0.0443839\pi\)
\(840\) 0 0
\(841\) −7.59034 23.3607i −0.261736 0.805540i
\(842\) 0 0
\(843\) 4.73062 + 3.43700i 0.162931 + 0.118377i
\(844\) 0 0
\(845\) 3.94146 12.1306i 0.135590 0.417305i
\(846\) 0 0
\(847\) 2.13361 0.00989806i 0.0733118 0.000340101i
\(848\) 0 0
\(849\) 0.759101 2.33627i 0.0260523 0.0801806i
\(850\) 0 0
\(851\) 14.2294 + 10.3383i 0.487778 + 0.354391i
\(852\) 0 0
\(853\) −5.02832 15.4756i −0.172166 0.529873i 0.827326 0.561721i \(-0.189861\pi\)
−0.999493 + 0.0318481i \(0.989861\pi\)
\(854\) 0 0
\(855\) −0.885583 + 0.643413i −0.0302863 + 0.0220043i
\(856\) 0 0
\(857\) 14.0851 0.481139 0.240569 0.970632i \(-0.422666\pi\)
0.240569 + 0.970632i \(0.422666\pi\)
\(858\) 0 0
\(859\) 15.4255 0.526312 0.263156 0.964753i \(-0.415237\pi\)
0.263156 + 0.964753i \(0.415237\pi\)
\(860\) 0 0
\(861\) 0.293658 0.213355i 0.0100078 0.00727112i
\(862\) 0 0
\(863\) −0.0212865 0.0655130i −0.000724600 0.00223009i 0.950694 0.310132i \(-0.100373\pi\)
−0.951418 + 0.307902i \(0.900373\pi\)
\(864\) 0 0
\(865\) 6.56139 + 4.76713i 0.223094 + 0.162087i
\(866\) 0 0
\(867\) 4.07557 12.5433i 0.138413 0.425993i
\(868\) 0 0
\(869\) 0.0127226 + 5.48498i 0.000431586 + 0.186065i
\(870\) 0 0
\(871\) −0.687754 + 2.11669i −0.0233036 + 0.0717212i
\(872\) 0 0
\(873\) −1.57019 1.14081i −0.0531429 0.0386105i
\(874\) 0 0
\(875\) 0.0599391 + 0.184474i 0.00202631 + 0.00623634i
\(876\) 0 0
\(877\) 29.8224 21.6672i 1.00703 0.731650i 0.0434461 0.999056i \(-0.486166\pi\)
0.963584 + 0.267405i \(0.0861663\pi\)
\(878\) 0 0
\(879\) 53.7783 1.81390
\(880\) 0 0
\(881\) 10.5610 0.355810 0.177905 0.984048i \(-0.443068\pi\)
0.177905 + 0.984048i \(0.443068\pi\)
\(882\) 0 0
\(883\) 18.8202 13.6736i 0.633349 0.460155i −0.224210 0.974541i \(-0.571980\pi\)
0.857559 + 0.514386i \(0.171980\pi\)
\(884\) 0 0
\(885\) 4.03463 + 12.4173i 0.135623 + 0.417404i
\(886\) 0 0
\(887\) −31.9236 23.1938i −1.07189 0.778773i −0.0956377 0.995416i \(-0.530489\pi\)
−0.976251 + 0.216644i \(0.930489\pi\)
\(888\) 0 0
\(889\) 1.02278 3.14781i 0.0343031 0.105574i
\(890\) 0 0
\(891\) −26.9108 8.67487i −0.901544 0.290619i
\(892\) 0 0
\(893\) −12.3490 + 38.0065i −0.413245 + 1.27184i
\(894\) 0 0
\(895\) −17.2144 12.5070i −0.575414 0.418063i
\(896\) 0 0
\(897\) 0.623253 + 1.91818i 0.0208098 + 0.0640460i
\(898\) 0 0
\(899\) 11.1894 8.12954i 0.373186 0.271135i
\(900\) 0 0
\(901\) 33.5727 1.11847
\(902\) 0 0
\(903\) 1.78786 0.0594961
\(904\) 0 0
\(905\) 6.97501 5.06764i 0.231857 0.168454i
\(906\) 0 0
\(907\) −7.84754 24.1522i −0.260573 0.801962i −0.992680 0.120772i \(-0.961463\pi\)
0.732107 0.681190i \(-0.238537\pi\)
\(908\) 0 0
\(909\) −0.121805 0.0884964i −0.00404001 0.00293524i
\(910\) 0 0
\(911\) 0.149208 0.459214i 0.00494348 0.0152145i −0.948554 0.316614i \(-0.897454\pi\)
0.953498 + 0.301400i \(0.0974539\pi\)
\(912\) 0 0
\(913\) 16.9759 + 23.2517i 0.561819 + 0.769518i
\(914\) 0 0
\(915\) −6.84557 + 21.0685i −0.226307 + 0.696503i
\(916\) 0 0
\(917\) −1.70357 1.23772i −0.0562570 0.0408731i
\(918\) 0 0
\(919\) 9.35566 + 28.7938i 0.308615 + 0.949819i 0.978303 + 0.207177i \(0.0664276\pi\)
−0.669689 + 0.742642i \(0.733572\pi\)
\(920\) 0 0
\(921\) −22.0724 + 16.0366i −0.727311 + 0.528422i
\(922\) 0 0
\(923\) −0.188042 −0.00618948
\(924\) 0 0
\(925\) 7.28844 0.239642
\(926\) 0 0
\(927\) −1.12190 + 0.815108i −0.0368480 + 0.0267716i
\(928\) 0 0
\(929\) 2.96132 + 9.11400i 0.0971576 + 0.299020i 0.987810 0.155664i \(-0.0497519\pi\)
−0.890652 + 0.454685i \(0.849752\pi\)
\(930\) 0 0
\(931\) 40.9030 + 29.7177i 1.34054 + 0.973960i
\(932\) 0 0
\(933\) 11.7515 36.1675i 0.384728 1.18407i
\(934\) 0 0
\(935\) 9.67984 13.3884i 0.316565 0.437846i
\(936\) 0 0
\(937\) 7.02631 21.6247i 0.229539 0.706450i −0.768260 0.640138i \(-0.778877\pi\)
0.997799 0.0663112i \(-0.0211230\pi\)
\(938\) 0 0
\(939\) −23.9618 17.4093i −0.781963 0.568130i
\(940\) 0 0
\(941\) 18.3704 + 56.5384i 0.598859 + 1.84310i 0.534493 + 0.845173i \(0.320503\pi\)
0.0643664 + 0.997926i \(0.479497\pi\)
\(942\) 0 0
\(943\) 2.16443 1.57255i 0.0704834 0.0512092i
\(944\) 0 0
\(945\) −1.03159 −0.0335576
\(946\) 0 0
\(947\) −21.0694 −0.684662 −0.342331 0.939579i \(-0.611216\pi\)
−0.342331 + 0.939579i \(0.611216\pi\)
\(948\) 0 0
\(949\) −5.85687 + 4.25526i −0.190122 + 0.138132i
\(950\) 0 0
\(951\) −14.6900 45.2113i −0.476357 1.46608i
\(952\) 0 0
\(953\) 5.17248 + 3.75803i 0.167553 + 0.121735i 0.668402 0.743800i \(-0.266979\pi\)
−0.500849 + 0.865535i \(0.666979\pi\)
\(954\) 0 0
\(955\) 6.22487 19.1582i 0.201432 0.619945i
\(956\) 0 0
\(957\) −11.2071 + 3.67016i −0.362273 + 0.118639i
\(958\) 0 0
\(959\) 0.575921 1.77250i 0.0185975 0.0572371i
\(960\) 0 0
\(961\) −9.79816 7.11878i −0.316070 0.229638i
\(962\) 0 0
\(963\) −0.132745 0.408546i −0.00427763 0.0131652i
\(964\) 0 0
\(965\) 7.85864 5.70964i 0.252979 0.183800i
\(966\) 0 0
\(967\) 48.1138 1.54724 0.773618 0.633652i \(-0.218445\pi\)
0.773618 + 0.633652i \(0.218445\pi\)
\(968\) 0 0
\(969\) −61.0589 −1.96149
\(970\) 0 0
\(971\) 23.1580 16.8253i 0.743176 0.539949i −0.150528 0.988606i \(-0.548097\pi\)
0.893704 + 0.448657i \(0.148097\pi\)
\(972\) 0 0
\(973\) −0.932578 2.87018i −0.0298971 0.0920138i
\(974\) 0 0
\(975\) 0.676153 + 0.491254i 0.0216542 + 0.0157327i
\(976\) 0 0
\(977\) −1.02272 + 3.14760i −0.0327196 + 0.100701i −0.966083 0.258233i \(-0.916860\pi\)
0.933363 + 0.358934i \(0.116860\pi\)
\(978\) 0 0
\(979\) −5.79357 + 1.89731i −0.185163 + 0.0606384i
\(980\) 0 0
\(981\) −0.0573678 + 0.176560i −0.00183161 + 0.00563712i
\(982\) 0 0
\(983\) −9.29131 6.75053i −0.296347 0.215309i 0.429669 0.902986i \(-0.358630\pi\)
−0.726016 + 0.687678i \(0.758630\pi\)
\(984\) 0 0
\(985\) 4.47869 + 13.7840i 0.142703 + 0.439195i
\(986\) 0 0
\(987\) −1.45768 + 1.05907i −0.0463985 + 0.0337105i
\(988\) 0 0
\(989\) 13.1775 0.419021
\(990\) 0 0
\(991\) 28.8261 0.915693 0.457846 0.889031i \(-0.348621\pi\)
0.457846 + 0.889031i \(0.348621\pi\)
\(992\) 0 0
\(993\) −1.32500 + 0.962670i −0.0420476 + 0.0305494i
\(994\) 0 0
\(995\) 6.42925 + 19.7872i 0.203821 + 0.627296i
\(996\) 0 0
\(997\) −20.4417 14.8518i −0.647397 0.470361i 0.214987 0.976617i \(-0.431029\pi\)
−0.862383 + 0.506256i \(0.831029\pi\)
\(998\) 0 0
\(999\) −11.9783 + 36.8654i −0.378977 + 1.16637i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 440.2.y.c.361.1 12
4.3 odd 2 880.2.bo.i.801.3 12
11.4 even 5 4840.2.a.bb.1.5 6
11.5 even 5 inner 440.2.y.c.401.1 yes 12
11.7 odd 10 4840.2.a.ba.1.5 6
44.7 even 10 9680.2.a.dd.1.2 6
44.15 odd 10 9680.2.a.dc.1.2 6
44.27 odd 10 880.2.bo.i.401.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.y.c.361.1 12 1.1 even 1 trivial
440.2.y.c.401.1 yes 12 11.5 even 5 inner
880.2.bo.i.401.3 12 44.27 odd 10
880.2.bo.i.801.3 12 4.3 odd 2
4840.2.a.ba.1.5 6 11.7 odd 10
4840.2.a.bb.1.5 6 11.4 even 5
9680.2.a.dc.1.2 6 44.15 odd 10
9680.2.a.dd.1.2 6 44.7 even 10