Properties

Label 440.2.y.b.401.1
Level $440$
Weight $2$
Character 440.401
Analytic conductor $3.513$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [440,2,Mod(81,440)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("440.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(440, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 440.y (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-1,0,3,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.51341768894\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} + 15 x^{10} - 22 x^{9} + 89 x^{8} - 118 x^{7} + 205 x^{6} - 68 x^{5} + 1061 x^{4} + \cdots + 400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 401.1
Root \(1.65720 - 1.20403i\) of defining polynomial
Character \(\chi\) \(=\) 440.401
Dual form 440.2.y.b.361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.68141 - 1.94816i) q^{3} +(-0.309017 + 0.951057i) q^{5} +(-0.150443 + 0.109303i) q^{7} +(2.46759 + 7.59446i) q^{9} +(-3.31662 + 0.00161122i) q^{11} +(0.931229 + 2.86603i) q^{13} +(2.68141 - 1.94816i) q^{15} +(1.58167 - 4.86789i) q^{17} +(3.93381 + 2.85808i) q^{19} +0.616340 q^{21} +6.20391 q^{23} +(-0.809017 - 0.587785i) q^{25} +(5.10598 - 15.7146i) q^{27} +(0.154031 - 0.111910i) q^{29} +(2.49095 + 7.66636i) q^{31} +(8.89637 + 6.45699i) q^{33} +(-0.0574641 - 0.176856i) q^{35} +(2.07098 - 1.50466i) q^{37} +(3.08647 - 9.49918i) q^{39} +(7.24600 + 5.26453i) q^{41} -7.83103 q^{43} -7.98529 q^{45} +(4.28839 + 3.11570i) q^{47} +(-2.15243 + 6.62451i) q^{49} +(-13.7245 + 9.97146i) q^{51} +(0.401996 + 1.23722i) q^{53} +(1.02336 - 3.15480i) q^{55} +(-4.98017 - 15.3274i) q^{57} +(0.480227 - 0.348906i) q^{59} +(-0.350728 + 1.07943i) q^{61} +(-1.20133 - 0.872818i) q^{63} -3.01352 q^{65} -1.73474 q^{67} +(-16.6352 - 12.0862i) q^{69} +(4.03917 - 12.4313i) q^{71} +(-0.723322 + 0.525524i) q^{73} +(1.02421 + 3.15219i) q^{75} +(0.498787 - 0.362760i) q^{77} +(4.11137 + 12.6535i) q^{79} +(-24.9250 + 18.1091i) q^{81} +(-5.23780 + 16.1203i) q^{83} +(4.14087 + 3.00852i) q^{85} -0.631040 q^{87} -7.22907 q^{89} +(-0.453363 - 0.329388i) q^{91} +(8.25603 - 25.4094i) q^{93} +(-3.93381 + 2.85808i) q^{95} +(1.04923 + 3.22920i) q^{97} +(-8.19631 - 25.1840i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - q^{3} + 3 q^{5} - 8 q^{7} + 10 q^{9} - 4 q^{11} - 7 q^{13} + q^{15} + 7 q^{17} + 3 q^{19} + 4 q^{21} + 36 q^{23} - 3 q^{25} + 8 q^{27} + 13 q^{29} + 2 q^{31} - 19 q^{33} - 2 q^{35} - 22 q^{37}+ \cdots - 79 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/440\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(221\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.68141 1.94816i −1.54811 1.12477i −0.944979 0.327131i \(-0.893918\pi\)
−0.603135 0.797639i \(-0.706082\pi\)
\(4\) 0 0
\(5\) −0.309017 + 0.951057i −0.138197 + 0.425325i
\(6\) 0 0
\(7\) −0.150443 + 0.109303i −0.0568621 + 0.0413128i −0.615853 0.787861i \(-0.711189\pi\)
0.558991 + 0.829174i \(0.311189\pi\)
\(8\) 0 0
\(9\) 2.46759 + 7.59446i 0.822530 + 2.53149i
\(10\) 0 0
\(11\) −3.31662 + 0.00161122i −1.00000 + 0.000485801i
\(12\) 0 0
\(13\) 0.931229 + 2.86603i 0.258276 + 0.794893i 0.993166 + 0.116707i \(0.0372338\pi\)
−0.734890 + 0.678186i \(0.762766\pi\)
\(14\) 0 0
\(15\) 2.68141 1.94816i 0.692337 0.503013i
\(16\) 0 0
\(17\) 1.58167 4.86789i 0.383612 1.18064i −0.553870 0.832603i \(-0.686850\pi\)
0.937482 0.348033i \(-0.113150\pi\)
\(18\) 0 0
\(19\) 3.93381 + 2.85808i 0.902478 + 0.655689i 0.939101 0.343640i \(-0.111660\pi\)
−0.0366231 + 0.999329i \(0.511660\pi\)
\(20\) 0 0
\(21\) 0.616340 0.134496
\(22\) 0 0
\(23\) 6.20391 1.29361 0.646803 0.762657i \(-0.276106\pi\)
0.646803 + 0.762657i \(0.276106\pi\)
\(24\) 0 0
\(25\) −0.809017 0.587785i −0.161803 0.117557i
\(26\) 0 0
\(27\) 5.10598 15.7146i 0.982646 3.02427i
\(28\) 0 0
\(29\) 0.154031 0.111910i 0.0286029 0.0207812i −0.573392 0.819281i \(-0.694373\pi\)
0.601995 + 0.798500i \(0.294373\pi\)
\(30\) 0 0
\(31\) 2.49095 + 7.66636i 0.447388 + 1.37692i 0.879843 + 0.475264i \(0.157647\pi\)
−0.432455 + 0.901655i \(0.642353\pi\)
\(32\) 0 0
\(33\) 8.89637 + 6.45699i 1.54866 + 1.12402i
\(34\) 0 0
\(35\) −0.0574641 0.176856i −0.00971321 0.0298942i
\(36\) 0 0
\(37\) 2.07098 1.50466i 0.340468 0.247364i −0.404391 0.914586i \(-0.632517\pi\)
0.744859 + 0.667222i \(0.232517\pi\)
\(38\) 0 0
\(39\) 3.08647 9.49918i 0.494231 1.52109i
\(40\) 0 0
\(41\) 7.24600 + 5.26453i 1.13164 + 0.822181i 0.985932 0.167147i \(-0.0534555\pi\)
0.145703 + 0.989328i \(0.453456\pi\)
\(42\) 0 0
\(43\) −7.83103 −1.19422 −0.597111 0.802159i \(-0.703685\pi\)
−0.597111 + 0.802159i \(0.703685\pi\)
\(44\) 0 0
\(45\) −7.98529 −1.19038
\(46\) 0 0
\(47\) 4.28839 + 3.11570i 0.625526 + 0.454472i 0.854848 0.518879i \(-0.173651\pi\)
−0.229321 + 0.973351i \(0.573651\pi\)
\(48\) 0 0
\(49\) −2.15243 + 6.62451i −0.307490 + 0.946358i
\(50\) 0 0
\(51\) −13.7245 + 9.97146i −1.92182 + 1.39628i
\(52\) 0 0
\(53\) 0.401996 + 1.23722i 0.0552184 + 0.169945i 0.974862 0.222809i \(-0.0715226\pi\)
−0.919644 + 0.392754i \(0.871523\pi\)
\(54\) 0 0
\(55\) 1.02336 3.15480i 0.137990 0.425392i
\(56\) 0 0
\(57\) −4.98017 15.3274i −0.659639 2.03016i
\(58\) 0 0
\(59\) 0.480227 0.348906i 0.0625203 0.0454236i −0.556086 0.831125i \(-0.687698\pi\)
0.618606 + 0.785701i \(0.287698\pi\)
\(60\) 0 0
\(61\) −0.350728 + 1.07943i −0.0449061 + 0.138207i −0.970996 0.239097i \(-0.923149\pi\)
0.926090 + 0.377304i \(0.123149\pi\)
\(62\) 0 0
\(63\) −1.20133 0.872818i −0.151354 0.109965i
\(64\) 0 0
\(65\) −3.01352 −0.373781
\(66\) 0 0
\(67\) −1.73474 −0.211932 −0.105966 0.994370i \(-0.533793\pi\)
−0.105966 + 0.994370i \(0.533793\pi\)
\(68\) 0 0
\(69\) −16.6352 12.0862i −2.00265 1.45501i
\(70\) 0 0
\(71\) 4.03917 12.4313i 0.479361 1.47532i −0.360623 0.932712i \(-0.617436\pi\)
0.839984 0.542611i \(-0.182564\pi\)
\(72\) 0 0
\(73\) −0.723322 + 0.525524i −0.0846584 + 0.0615079i −0.629309 0.777155i \(-0.716662\pi\)
0.544651 + 0.838663i \(0.316662\pi\)
\(74\) 0 0
\(75\) 1.02421 + 3.15219i 0.118265 + 0.363983i
\(76\) 0 0
\(77\) 0.498787 0.362760i 0.0568420 0.0413404i
\(78\) 0 0
\(79\) 4.11137 + 12.6535i 0.462565 + 1.42363i 0.862019 + 0.506876i \(0.169200\pi\)
−0.399454 + 0.916753i \(0.630800\pi\)
\(80\) 0 0
\(81\) −24.9250 + 18.1091i −2.76945 + 2.01212i
\(82\) 0 0
\(83\) −5.23780 + 16.1203i −0.574924 + 1.76943i 0.0615158 + 0.998106i \(0.480407\pi\)
−0.636439 + 0.771327i \(0.719593\pi\)
\(84\) 0 0
\(85\) 4.14087 + 3.00852i 0.449141 + 0.326320i
\(86\) 0 0
\(87\) −0.631040 −0.0676546
\(88\) 0 0
\(89\) −7.22907 −0.766280 −0.383140 0.923690i \(-0.625157\pi\)
−0.383140 + 0.923690i \(0.625157\pi\)
\(90\) 0 0
\(91\) −0.453363 0.329388i −0.0475254 0.0345292i
\(92\) 0 0
\(93\) 8.25603 25.4094i 0.856110 2.63484i
\(94\) 0 0
\(95\) −3.93381 + 2.85808i −0.403601 + 0.293233i
\(96\) 0 0
\(97\) 1.04923 + 3.22920i 0.106533 + 0.327875i 0.990087 0.140454i \(-0.0448562\pi\)
−0.883554 + 0.468329i \(0.844856\pi\)
\(98\) 0 0
\(99\) −8.19631 25.1840i −0.823760 2.53109i
\(100\) 0 0
\(101\) −0.0893792 0.275081i −0.00889356 0.0273716i 0.946511 0.322671i \(-0.104581\pi\)
−0.955405 + 0.295299i \(0.904581\pi\)
\(102\) 0 0
\(103\) −14.0683 + 10.2212i −1.38619 + 1.00712i −0.389916 + 0.920851i \(0.627496\pi\)
−0.996271 + 0.0862735i \(0.972504\pi\)
\(104\) 0 0
\(105\) −0.190459 + 0.586174i −0.0185869 + 0.0572047i
\(106\) 0 0
\(107\) 9.84949 + 7.15607i 0.952186 + 0.691803i 0.951323 0.308196i \(-0.0997253\pi\)
0.000862886 1.00000i \(0.499725\pi\)
\(108\) 0 0
\(109\) 14.0940 1.34996 0.674978 0.737838i \(-0.264153\pi\)
0.674978 + 0.737838i \(0.264153\pi\)
\(110\) 0 0
\(111\) −8.48448 −0.805311
\(112\) 0 0
\(113\) −8.47224 6.15545i −0.797002 0.579056i 0.113031 0.993591i \(-0.463944\pi\)
−0.910033 + 0.414536i \(0.863944\pi\)
\(114\) 0 0
\(115\) −1.91711 + 5.90027i −0.178772 + 0.550203i
\(116\) 0 0
\(117\) −19.4681 + 14.1444i −1.79982 + 1.30765i
\(118\) 0 0
\(119\) 0.294124 + 0.905222i 0.0269623 + 0.0829815i
\(120\) 0 0
\(121\) 11.0000 0.0106876i 1.00000 0.000971603i
\(122\) 0 0
\(123\) −9.17337 28.2327i −0.827135 2.54566i
\(124\) 0 0
\(125\) 0.809017 0.587785i 0.0723607 0.0525731i
\(126\) 0 0
\(127\) 0.339507 1.04489i 0.0301263 0.0927193i −0.934863 0.355009i \(-0.884478\pi\)
0.964989 + 0.262290i \(0.0844777\pi\)
\(128\) 0 0
\(129\) 20.9982 + 15.2561i 1.84879 + 1.34322i
\(130\) 0 0
\(131\) 7.88959 0.689317 0.344659 0.938728i \(-0.387995\pi\)
0.344659 + 0.938728i \(0.387995\pi\)
\(132\) 0 0
\(133\) −0.904212 −0.0784051
\(134\) 0 0
\(135\) 13.3676 + 9.71214i 1.15050 + 0.835888i
\(136\) 0 0
\(137\) 1.56629 4.82053i 0.133817 0.411846i −0.861587 0.507609i \(-0.830529\pi\)
0.995404 + 0.0957637i \(0.0305293\pi\)
\(138\) 0 0
\(139\) 6.75959 4.91113i 0.573341 0.416557i −0.262976 0.964802i \(-0.584704\pi\)
0.836317 + 0.548246i \(0.184704\pi\)
\(140\) 0 0
\(141\) −5.42907 16.7089i −0.457210 1.40715i
\(142\) 0 0
\(143\) −3.09315 9.50404i −0.258663 0.794768i
\(144\) 0 0
\(145\) 0.0588347 + 0.181075i 0.00488596 + 0.0150374i
\(146\) 0 0
\(147\) 18.6772 13.5697i 1.54047 1.11921i
\(148\) 0 0
\(149\) 6.30025 19.3902i 0.516137 1.58850i −0.265068 0.964230i \(-0.585394\pi\)
0.781205 0.624275i \(-0.214606\pi\)
\(150\) 0 0
\(151\) −10.6743 7.75534i −0.868663 0.631121i 0.0615646 0.998103i \(-0.480391\pi\)
−0.930228 + 0.366982i \(0.880391\pi\)
\(152\) 0 0
\(153\) 40.8719 3.30430
\(154\) 0 0
\(155\) −8.06089 −0.647466
\(156\) 0 0
\(157\) 14.7798 + 10.7382i 1.17956 + 0.856999i 0.992122 0.125278i \(-0.0399822\pi\)
0.187436 + 0.982277i \(0.439982\pi\)
\(158\) 0 0
\(159\) 1.33238 4.10064i 0.105664 0.325202i
\(160\) 0 0
\(161\) −0.933336 + 0.678108i −0.0735572 + 0.0534424i
\(162\) 0 0
\(163\) 4.17602 + 12.8525i 0.327091 + 1.00668i 0.970488 + 0.241150i \(0.0775246\pi\)
−0.643397 + 0.765533i \(0.722475\pi\)
\(164\) 0 0
\(165\) −8.89010 + 6.46563i −0.692093 + 0.503349i
\(166\) 0 0
\(167\) −1.15864 3.56593i −0.0896584 0.275940i 0.896166 0.443718i \(-0.146341\pi\)
−0.985825 + 0.167778i \(0.946341\pi\)
\(168\) 0 0
\(169\) 3.17029 2.30335i 0.243868 0.177181i
\(170\) 0 0
\(171\) −11.9986 + 36.9278i −0.917553 + 2.82394i
\(172\) 0 0
\(173\) −7.83272 5.69080i −0.595511 0.432664i 0.248772 0.968562i \(-0.419973\pi\)
−0.844283 + 0.535898i \(0.819973\pi\)
\(174\) 0 0
\(175\) 0.185958 0.0140571
\(176\) 0 0
\(177\) −1.96741 −0.147880
\(178\) 0 0
\(179\) −8.82930 6.41486i −0.659933 0.479469i 0.206707 0.978403i \(-0.433725\pi\)
−0.866640 + 0.498933i \(0.833725\pi\)
\(180\) 0 0
\(181\) −2.49160 + 7.66835i −0.185199 + 0.569984i −0.999952 0.00982450i \(-0.996873\pi\)
0.814753 + 0.579809i \(0.196873\pi\)
\(182\) 0 0
\(183\) 3.04334 2.21112i 0.224970 0.163451i
\(184\) 0 0
\(185\) 0.791046 + 2.43459i 0.0581588 + 0.178995i
\(186\) 0 0
\(187\) −5.23797 + 16.1475i −0.383038 + 1.18082i
\(188\) 0 0
\(189\) 0.949496 + 2.92225i 0.0690657 + 0.212562i
\(190\) 0 0
\(191\) 10.3413 7.51343i 0.748274 0.543653i −0.147018 0.989134i \(-0.546967\pi\)
0.895291 + 0.445481i \(0.146967\pi\)
\(192\) 0 0
\(193\) 3.22597 9.92852i 0.232211 0.714671i −0.765269 0.643711i \(-0.777394\pi\)
0.997479 0.0709595i \(-0.0226061\pi\)
\(194\) 0 0
\(195\) 8.08049 + 5.87082i 0.578656 + 0.420418i
\(196\) 0 0
\(197\) −19.4651 −1.38683 −0.693417 0.720537i \(-0.743895\pi\)
−0.693417 + 0.720537i \(0.743895\pi\)
\(198\) 0 0
\(199\) −16.0219 −1.13576 −0.567882 0.823110i \(-0.692237\pi\)
−0.567882 + 0.823110i \(0.692237\pi\)
\(200\) 0 0
\(201\) 4.65155 + 3.37955i 0.328095 + 0.238375i
\(202\) 0 0
\(203\) −0.0109408 + 0.0336722i −0.000767892 + 0.00236333i
\(204\) 0 0
\(205\) −7.24600 + 5.26453i −0.506083 + 0.367691i
\(206\) 0 0
\(207\) 15.3087 + 47.1154i 1.06403 + 3.27475i
\(208\) 0 0
\(209\) −13.0516 9.47284i −0.902797 0.655250i
\(210\) 0 0
\(211\) 2.71353 + 8.35137i 0.186807 + 0.574932i 0.999975 0.00709686i \(-0.00225902\pi\)
−0.813168 + 0.582029i \(0.802259\pi\)
\(212\) 0 0
\(213\) −35.0488 + 25.4644i −2.40150 + 1.74479i
\(214\) 0 0
\(215\) 2.41992 7.44776i 0.165037 0.507933i
\(216\) 0 0
\(217\) −1.21270 0.881082i −0.0823238 0.0598117i
\(218\) 0 0
\(219\) 2.96333 0.200243
\(220\) 0 0
\(221\) 15.4244 1.03756
\(222\) 0 0
\(223\) −2.28835 1.66258i −0.153239 0.111335i 0.508524 0.861048i \(-0.330191\pi\)
−0.661763 + 0.749713i \(0.730191\pi\)
\(224\) 0 0
\(225\) 2.46759 7.59446i 0.164506 0.506298i
\(226\) 0 0
\(227\) 13.9436 10.1306i 0.925468 0.672392i −0.0194109 0.999812i \(-0.506179\pi\)
0.944879 + 0.327420i \(0.106179\pi\)
\(228\) 0 0
\(229\) −3.41153 10.4996i −0.225440 0.693834i −0.998247 0.0591918i \(-0.981148\pi\)
0.772806 0.634642i \(-0.218852\pi\)
\(230\) 0 0
\(231\) −2.04417 0.000993060i −0.134496 6.53385e-5i
\(232\) 0 0
\(233\) 7.34583 + 22.6081i 0.481241 + 1.48111i 0.837351 + 0.546665i \(0.184103\pi\)
−0.356110 + 0.934444i \(0.615897\pi\)
\(234\) 0 0
\(235\) −4.28839 + 3.11570i −0.279744 + 0.203246i
\(236\) 0 0
\(237\) 13.6267 41.9388i 0.885152 2.72422i
\(238\) 0 0
\(239\) −17.0979 12.4223i −1.10597 0.803534i −0.123946 0.992289i \(-0.539555\pi\)
−0.982024 + 0.188755i \(0.939555\pi\)
\(240\) 0 0
\(241\) 2.31116 0.148875 0.0744373 0.997226i \(-0.476284\pi\)
0.0744373 + 0.997226i \(0.476284\pi\)
\(242\) 0 0
\(243\) 52.5437 3.37068
\(244\) 0 0
\(245\) −5.63514 4.09417i −0.360016 0.261567i
\(246\) 0 0
\(247\) −4.52806 + 13.9359i −0.288114 + 0.886723i
\(248\) 0 0
\(249\) 45.4496 33.0211i 2.88025 2.09263i
\(250\) 0 0
\(251\) 1.88507 + 5.80166i 0.118985 + 0.366197i 0.992757 0.120137i \(-0.0383335\pi\)
−0.873773 + 0.486335i \(0.838334\pi\)
\(252\) 0 0
\(253\) −20.5761 + 0.00999588i −1.29361 + 0.000628435i
\(254\) 0 0
\(255\) −5.24230 16.1342i −0.328286 1.01036i
\(256\) 0 0
\(257\) −6.79279 + 4.93525i −0.423722 + 0.307852i −0.779134 0.626858i \(-0.784341\pi\)
0.355411 + 0.934710i \(0.384341\pi\)
\(258\) 0 0
\(259\) −0.147101 + 0.452731i −0.00914042 + 0.0281313i
\(260\) 0 0
\(261\) 1.22998 + 0.893636i 0.0761341 + 0.0553147i
\(262\) 0 0
\(263\) 2.04759 0.126260 0.0631299 0.998005i \(-0.479892\pi\)
0.0631299 + 0.998005i \(0.479892\pi\)
\(264\) 0 0
\(265\) −1.30089 −0.0799128
\(266\) 0 0
\(267\) 19.3841 + 14.0834i 1.18629 + 0.861889i
\(268\) 0 0
\(269\) −5.95340 + 18.3227i −0.362985 + 1.11715i 0.588248 + 0.808681i \(0.299818\pi\)
−0.951233 + 0.308473i \(0.900182\pi\)
\(270\) 0 0
\(271\) 15.6371 11.3610i 0.949886 0.690133i −0.000893961 1.00000i \(-0.500285\pi\)
0.950780 + 0.309867i \(0.100285\pi\)
\(272\) 0 0
\(273\) 0.573954 + 1.76645i 0.0347373 + 0.106910i
\(274\) 0 0
\(275\) 2.68415 + 1.94816i 0.161860 + 0.117478i
\(276\) 0 0
\(277\) −8.11032 24.9610i −0.487302 1.49976i −0.828619 0.559813i \(-0.810873\pi\)
0.341317 0.939948i \(-0.389127\pi\)
\(278\) 0 0
\(279\) −52.0753 + 37.8349i −3.11766 + 2.26512i
\(280\) 0 0
\(281\) 1.24168 3.82150i 0.0740724 0.227971i −0.907165 0.420775i \(-0.861758\pi\)
0.981237 + 0.192804i \(0.0617581\pi\)
\(282\) 0 0
\(283\) 5.40843 + 3.92946i 0.321498 + 0.233582i 0.736814 0.676095i \(-0.236329\pi\)
−0.415316 + 0.909677i \(0.636329\pi\)
\(284\) 0 0
\(285\) 16.1162 0.954639
\(286\) 0 0
\(287\) −1.66554 −0.0983137
\(288\) 0 0
\(289\) −7.44134 5.40645i −0.437726 0.318027i
\(290\) 0 0
\(291\) 3.47757 10.7029i 0.203859 0.627413i
\(292\) 0 0
\(293\) 6.78200 4.92741i 0.396209 0.287862i −0.371786 0.928318i \(-0.621255\pi\)
0.767995 + 0.640456i \(0.221255\pi\)
\(294\) 0 0
\(295\) 0.183431 + 0.564541i 0.0106797 + 0.0328689i
\(296\) 0 0
\(297\) −16.9093 + 52.1276i −0.981176 + 3.02475i
\(298\) 0 0
\(299\) 5.77727 + 17.7806i 0.334108 + 1.02828i
\(300\) 0 0
\(301\) 1.17812 0.855957i 0.0679060 0.0493366i
\(302\) 0 0
\(303\) −0.296239 + 0.911730i −0.0170185 + 0.0523775i
\(304\) 0 0
\(305\) −0.918217 0.667124i −0.0525769 0.0381994i
\(306\) 0 0
\(307\) 5.76000 0.328741 0.164370 0.986399i \(-0.447441\pi\)
0.164370 + 0.986399i \(0.447441\pi\)
\(308\) 0 0
\(309\) 57.6353 3.27876
\(310\) 0 0
\(311\) 0.833153 + 0.605321i 0.0472437 + 0.0343246i 0.611157 0.791510i \(-0.290705\pi\)
−0.563913 + 0.825834i \(0.690705\pi\)
\(312\) 0 0
\(313\) −2.45175 + 7.54570i −0.138581 + 0.426508i −0.996130 0.0878943i \(-0.971986\pi\)
0.857549 + 0.514402i \(0.171986\pi\)
\(314\) 0 0
\(315\) 1.20133 0.872818i 0.0676874 0.0491778i
\(316\) 0 0
\(317\) −6.61185 20.3492i −0.371359 1.14292i −0.945903 0.324451i \(-0.894821\pi\)
0.574544 0.818474i \(-0.305179\pi\)
\(318\) 0 0
\(319\) −0.510684 + 0.371413i −0.0285928 + 0.0207951i
\(320\) 0 0
\(321\) −12.4694 38.3767i −0.695972 2.14198i
\(322\) 0 0
\(323\) 20.1348 14.6288i 1.12033 0.813968i
\(324\) 0 0
\(325\) 0.931229 2.86603i 0.0516553 0.158979i
\(326\) 0 0
\(327\) −37.7917 27.4573i −2.08988 1.51839i
\(328\) 0 0
\(329\) −0.985715 −0.0543442
\(330\) 0 0
\(331\) −18.0669 −0.993047 −0.496523 0.868023i \(-0.665390\pi\)
−0.496523 + 0.868023i \(0.665390\pi\)
\(332\) 0 0
\(333\) 16.5374 + 12.0151i 0.906245 + 0.658425i
\(334\) 0 0
\(335\) 0.536064 1.64983i 0.0292883 0.0901401i
\(336\) 0 0
\(337\) −1.93249 + 1.40404i −0.105269 + 0.0764827i −0.639175 0.769062i \(-0.720724\pi\)
0.533905 + 0.845544i \(0.320724\pi\)
\(338\) 0 0
\(339\) 10.7258 + 33.0106i 0.582544 + 1.79289i
\(340\) 0 0
\(341\) −8.27390 25.4224i −0.448057 1.37670i
\(342\) 0 0
\(343\) −0.802511 2.46987i −0.0433315 0.133361i
\(344\) 0 0
\(345\) 16.6352 12.0862i 0.895611 0.650700i
\(346\) 0 0
\(347\) 5.98128 18.4085i 0.321092 0.988220i −0.652082 0.758149i \(-0.726104\pi\)
0.973174 0.230071i \(-0.0738959\pi\)
\(348\) 0 0
\(349\) 24.2979 + 17.6534i 1.30064 + 0.944967i 0.999962 0.00875972i \(-0.00278834\pi\)
0.300674 + 0.953727i \(0.402788\pi\)
\(350\) 0 0
\(351\) 49.7933 2.65777
\(352\) 0 0
\(353\) −23.8329 −1.26850 −0.634249 0.773129i \(-0.718691\pi\)
−0.634249 + 0.773129i \(0.718691\pi\)
\(354\) 0 0
\(355\) 10.5747 + 7.68296i 0.561246 + 0.407769i
\(356\) 0 0
\(357\) 0.974848 3.00027i 0.0515944 0.158791i
\(358\) 0 0
\(359\) 5.92429 4.30425i 0.312672 0.227170i −0.420370 0.907353i \(-0.638100\pi\)
0.733042 + 0.680183i \(0.238100\pi\)
\(360\) 0 0
\(361\) 1.43492 + 4.41623i 0.0755221 + 0.232433i
\(362\) 0 0
\(363\) −29.5163 21.4011i −1.54921 1.12327i
\(364\) 0 0
\(365\) −0.276284 0.850316i −0.0144614 0.0445076i
\(366\) 0 0
\(367\) 27.2455 19.7950i 1.42220 1.03329i 0.430798 0.902448i \(-0.358232\pi\)
0.991403 0.130842i \(-0.0417679\pi\)
\(368\) 0 0
\(369\) −22.1011 + 68.0202i −1.15054 + 3.54099i
\(370\) 0 0
\(371\) −0.195709 0.142191i −0.0101607 0.00738219i
\(372\) 0 0
\(373\) −28.3365 −1.46721 −0.733605 0.679576i \(-0.762164\pi\)
−0.733605 + 0.679576i \(0.762164\pi\)
\(374\) 0 0
\(375\) −3.31441 −0.171155
\(376\) 0 0
\(377\) 0.464176 + 0.337244i 0.0239063 + 0.0173689i
\(378\) 0 0
\(379\) −4.45127 + 13.6996i −0.228646 + 0.703701i 0.769255 + 0.638942i \(0.220628\pi\)
−0.997901 + 0.0647584i \(0.979372\pi\)
\(380\) 0 0
\(381\) −2.94598 + 2.14038i −0.150927 + 0.109655i
\(382\) 0 0
\(383\) −5.01401 15.4315i −0.256204 0.788515i −0.993590 0.113043i \(-0.963940\pi\)
0.737386 0.675471i \(-0.236060\pi\)
\(384\) 0 0
\(385\) 0.190872 + 0.586474i 0.00972773 + 0.0298895i
\(386\) 0 0
\(387\) −19.3238 59.4725i −0.982283 3.02316i
\(388\) 0 0
\(389\) −26.1370 + 18.9896i −1.32520 + 0.962812i −0.325345 + 0.945595i \(0.605480\pi\)
−0.999852 + 0.0172163i \(0.994520\pi\)
\(390\) 0 0
\(391\) 9.81256 30.1999i 0.496242 1.52728i
\(392\) 0 0
\(393\) −21.1552 15.3702i −1.06714 0.775323i
\(394\) 0 0
\(395\) −13.3047 −0.669430
\(396\) 0 0
\(397\) −7.36161 −0.369469 −0.184734 0.982788i \(-0.559142\pi\)
−0.184734 + 0.982788i \(0.559142\pi\)
\(398\) 0 0
\(399\) 2.42456 + 1.76155i 0.121380 + 0.0881878i
\(400\) 0 0
\(401\) −10.8913 + 33.5201i −0.543888 + 1.67392i 0.179731 + 0.983716i \(0.442477\pi\)
−0.723619 + 0.690199i \(0.757523\pi\)
\(402\) 0 0
\(403\) −19.6524 + 14.2783i −0.978954 + 0.711252i
\(404\) 0 0
\(405\) −9.52051 29.3011i −0.473078 1.45598i
\(406\) 0 0
\(407\) −6.86625 + 4.99372i −0.340348 + 0.247530i
\(408\) 0 0
\(409\) −4.42217 13.6100i −0.218662 0.672972i −0.998873 0.0474564i \(-0.984888\pi\)
0.780211 0.625516i \(-0.215112\pi\)
\(410\) 0 0
\(411\) −13.5910 + 9.87445i −0.670396 + 0.487071i
\(412\) 0 0
\(413\) −0.0341103 + 0.104981i −0.00167846 + 0.00516577i
\(414\) 0 0
\(415\) −13.7127 9.96289i −0.673132 0.489059i
\(416\) 0 0
\(417\) −27.6929 −1.35613
\(418\) 0 0
\(419\) 8.62183 0.421204 0.210602 0.977572i \(-0.432458\pi\)
0.210602 + 0.977572i \(0.432458\pi\)
\(420\) 0 0
\(421\) 29.5863 + 21.4957i 1.44195 + 1.04764i 0.987631 + 0.156799i \(0.0501175\pi\)
0.454319 + 0.890839i \(0.349882\pi\)
\(422\) 0 0
\(423\) −13.0801 + 40.2563i −0.635975 + 1.95733i
\(424\) 0 0
\(425\) −4.14087 + 3.00852i −0.200862 + 0.145935i
\(426\) 0 0
\(427\) −0.0652205 0.200728i −0.00315624 0.00971392i
\(428\) 0 0
\(429\) −10.2214 + 31.5102i −0.493492 + 1.52133i
\(430\) 0 0
\(431\) −3.52368 10.8448i −0.169730 0.522375i 0.829624 0.558323i \(-0.188555\pi\)
−0.999354 + 0.0359481i \(0.988555\pi\)
\(432\) 0 0
\(433\) 2.75983 2.00513i 0.132629 0.0963606i −0.519493 0.854475i \(-0.673879\pi\)
0.652122 + 0.758114i \(0.273879\pi\)
\(434\) 0 0
\(435\) 0.195002 0.600155i 0.00934964 0.0287752i
\(436\) 0 0
\(437\) 24.4050 + 17.7313i 1.16745 + 0.848203i
\(438\) 0 0
\(439\) 2.90901 0.138839 0.0694196 0.997588i \(-0.477885\pi\)
0.0694196 + 0.997588i \(0.477885\pi\)
\(440\) 0 0
\(441\) −55.6209 −2.64861
\(442\) 0 0
\(443\) −12.1777 8.84759i −0.578578 0.420362i 0.259633 0.965707i \(-0.416398\pi\)
−0.838211 + 0.545346i \(0.816398\pi\)
\(444\) 0 0
\(445\) 2.23391 6.87526i 0.105897 0.325918i
\(446\) 0 0
\(447\) −54.6687 + 39.7191i −2.58574 + 1.87865i
\(448\) 0 0
\(449\) 0.804669 + 2.47652i 0.0379747 + 0.116874i 0.968247 0.249996i \(-0.0804293\pi\)
−0.930272 + 0.366870i \(0.880429\pi\)
\(450\) 0 0
\(451\) −24.0407 17.4488i −1.13203 0.821631i
\(452\) 0 0
\(453\) 13.5136 + 41.5905i 0.634924 + 1.95409i
\(454\) 0 0
\(455\) 0.453363 0.329388i 0.0212540 0.0154419i
\(456\) 0 0
\(457\) −1.58801 + 4.88739i −0.0742839 + 0.228622i −0.981304 0.192466i \(-0.938352\pi\)
0.907020 + 0.421088i \(0.138352\pi\)
\(458\) 0 0
\(459\) −68.4208 49.7106i −3.19361 2.32029i
\(460\) 0 0
\(461\) 37.7325 1.75738 0.878688 0.477396i \(-0.158419\pi\)
0.878688 + 0.477396i \(0.158419\pi\)
\(462\) 0 0
\(463\) −14.7816 −0.686961 −0.343481 0.939160i \(-0.611606\pi\)
−0.343481 + 0.939160i \(0.611606\pi\)
\(464\) 0 0
\(465\) 21.6146 + 15.7039i 1.00235 + 0.728251i
\(466\) 0 0
\(467\) −2.70669 + 8.33034i −0.125251 + 0.385482i −0.993947 0.109864i \(-0.964959\pi\)
0.868696 + 0.495346i \(0.164959\pi\)
\(468\) 0 0
\(469\) 0.260979 0.189613i 0.0120509 0.00875549i
\(470\) 0 0
\(471\) −18.7111 57.5869i −0.862163 2.65346i
\(472\) 0 0
\(473\) 25.9726 0.0126175i 1.19422 0.000580154i
\(474\) 0 0
\(475\) −1.50258 4.62447i −0.0689432 0.212185i
\(476\) 0 0
\(477\) −8.40403 + 6.10589i −0.384794 + 0.279569i
\(478\) 0 0
\(479\) 0.352897 1.08611i 0.0161243 0.0496255i −0.942671 0.333725i \(-0.891694\pi\)
0.958795 + 0.284099i \(0.0916945\pi\)
\(480\) 0 0
\(481\) 6.24096 + 4.53432i 0.284563 + 0.206747i
\(482\) 0 0
\(483\) 3.82372 0.173985
\(484\) 0 0
\(485\) −3.39538 −0.154176
\(486\) 0 0
\(487\) −1.13736 0.826341i −0.0515387 0.0374451i 0.561718 0.827329i \(-0.310141\pi\)
−0.613256 + 0.789884i \(0.710141\pi\)
\(488\) 0 0
\(489\) 13.8410 42.5983i 0.625913 1.92636i
\(490\) 0 0
\(491\) 25.6495 18.6355i 1.15755 0.841006i 0.168080 0.985773i \(-0.446243\pi\)
0.989466 + 0.144767i \(0.0462433\pi\)
\(492\) 0 0
\(493\) −0.301140 0.926812i −0.0135626 0.0417415i
\(494\) 0 0
\(495\) 26.4842 0.0128661i 1.19038 0.000578287i
\(496\) 0 0
\(497\) 0.751115 + 2.31169i 0.0336921 + 0.103694i
\(498\) 0 0
\(499\) 7.75906 5.63729i 0.347343 0.252360i −0.400410 0.916336i \(-0.631132\pi\)
0.747754 + 0.663976i \(0.231132\pi\)
\(500\) 0 0
\(501\) −3.84021 + 11.8190i −0.171568 + 0.528032i
\(502\) 0 0
\(503\) 34.2828 + 24.9079i 1.52860 + 1.11059i 0.957012 + 0.290047i \(0.0936708\pi\)
0.571584 + 0.820544i \(0.306329\pi\)
\(504\) 0 0
\(505\) 0.289237 0.0128709
\(506\) 0 0
\(507\) −12.9881 −0.576824
\(508\) 0 0
\(509\) −26.0414 18.9202i −1.15426 0.838621i −0.165221 0.986257i \(-0.552834\pi\)
−0.989042 + 0.147635i \(0.952834\pi\)
\(510\) 0 0
\(511\) 0.0513772 0.158123i 0.00227280 0.00699495i
\(512\) 0 0
\(513\) 64.9995 47.2249i 2.86980 2.08503i
\(514\) 0 0
\(515\) −5.37360 16.5382i −0.236789 0.728762i
\(516\) 0 0
\(517\) −14.2280 10.3267i −0.625747 0.454168i
\(518\) 0 0
\(519\) 9.91615 + 30.5188i 0.435271 + 1.33963i
\(520\) 0 0
\(521\) −13.7331 + 9.97771i −0.601660 + 0.437131i −0.846468 0.532440i \(-0.821275\pi\)
0.244808 + 0.969572i \(0.421275\pi\)
\(522\) 0 0
\(523\) −0.968181 + 2.97975i −0.0423356 + 0.130296i −0.969990 0.243143i \(-0.921821\pi\)
0.927655 + 0.373439i \(0.121821\pi\)
\(524\) 0 0
\(525\) −0.498629 0.362275i −0.0217620 0.0158110i
\(526\) 0 0
\(527\) 41.2588 1.79726
\(528\) 0 0
\(529\) 15.4885 0.673415
\(530\) 0 0
\(531\) 3.83476 + 2.78611i 0.166414 + 0.120907i
\(532\) 0 0
\(533\) −8.34060 + 25.6697i −0.361271 + 1.11188i
\(534\) 0 0
\(535\) −9.84949 + 7.15607i −0.425830 + 0.309384i
\(536\) 0 0
\(537\) 11.1778 + 34.4018i 0.482358 + 1.48455i
\(538\) 0 0
\(539\) 7.12814 21.9745i 0.307031 0.946508i
\(540\) 0 0
\(541\) 6.47570 + 19.9302i 0.278412 + 0.856865i 0.988296 + 0.152546i \(0.0487473\pi\)
−0.709884 + 0.704318i \(0.751253\pi\)
\(542\) 0 0
\(543\) 21.6202 15.7080i 0.927811 0.674094i
\(544\) 0 0
\(545\) −4.35527 + 13.4041i −0.186559 + 0.574170i
\(546\) 0 0
\(547\) 13.6974 + 9.95174i 0.585659 + 0.425506i 0.840760 0.541409i \(-0.182109\pi\)
−0.255101 + 0.966914i \(0.582109\pi\)
\(548\) 0 0
\(549\) −9.06313 −0.386805
\(550\) 0 0
\(551\) 0.925779 0.0394395
\(552\) 0 0
\(553\) −2.00159 1.45424i −0.0851165 0.0618407i
\(554\) 0 0
\(555\) 2.62185 8.06922i 0.111291 0.342519i
\(556\) 0 0
\(557\) −0.123153 + 0.0894757i −0.00521815 + 0.00379121i −0.590391 0.807117i \(-0.701027\pi\)
0.585173 + 0.810908i \(0.301027\pi\)
\(558\) 0 0
\(559\) −7.29249 22.4440i −0.308439 0.949279i
\(560\) 0 0
\(561\) 45.5031 33.0937i 1.92114 1.39722i
\(562\) 0 0
\(563\) 10.9296 + 33.6378i 0.460628 + 1.41767i 0.864399 + 0.502806i \(0.167699\pi\)
−0.403771 + 0.914860i \(0.632301\pi\)
\(564\) 0 0
\(565\) 8.47224 6.15545i 0.356430 0.258962i
\(566\) 0 0
\(567\) 1.77041 5.44877i 0.0743504 0.228827i
\(568\) 0 0
\(569\) −22.0378 16.0114i −0.923874 0.671234i 0.0206111 0.999788i \(-0.493439\pi\)
−0.944485 + 0.328554i \(0.893439\pi\)
\(570\) 0 0
\(571\) 17.9295 0.750325 0.375162 0.926959i \(-0.377587\pi\)
0.375162 + 0.926959i \(0.377587\pi\)
\(572\) 0 0
\(573\) −42.3668 −1.76990
\(574\) 0 0
\(575\) −5.01907 3.64657i −0.209310 0.152072i
\(576\) 0 0
\(577\) −2.66943 + 8.21568i −0.111130 + 0.342023i −0.991120 0.132969i \(-0.957549\pi\)
0.879990 + 0.474992i \(0.157549\pi\)
\(578\) 0 0
\(579\) −27.9925 + 20.3377i −1.16333 + 0.845208i
\(580\) 0 0
\(581\) −0.974010 2.99770i −0.0404088 0.124365i
\(582\) 0 0
\(583\) −1.33526 4.10273i −0.0553009 0.169918i
\(584\) 0 0
\(585\) −7.43614 22.8861i −0.307446 0.946223i
\(586\) 0 0
\(587\) −13.2919 + 9.65716i −0.548617 + 0.398594i −0.827275 0.561797i \(-0.810110\pi\)
0.278658 + 0.960390i \(0.410110\pi\)
\(588\) 0 0
\(589\) −12.1121 + 37.2774i −0.499072 + 1.53599i
\(590\) 0 0
\(591\) 52.1940 + 37.9212i 2.14698 + 1.55987i
\(592\) 0 0
\(593\) −9.98760 −0.410141 −0.205071 0.978747i \(-0.565742\pi\)
−0.205071 + 0.978747i \(0.565742\pi\)
\(594\) 0 0
\(595\) −0.951806 −0.0390203
\(596\) 0 0
\(597\) 42.9614 + 31.2133i 1.75829 + 1.27747i
\(598\) 0 0
\(599\) 6.32352 19.4618i 0.258372 0.795188i −0.734774 0.678312i \(-0.762712\pi\)
0.993146 0.116876i \(-0.0372881\pi\)
\(600\) 0 0
\(601\) 18.6829 13.5739i 0.762092 0.553692i −0.137459 0.990507i \(-0.543894\pi\)
0.899551 + 0.436815i \(0.143894\pi\)
\(602\) 0 0
\(603\) −4.28062 13.1744i −0.174321 0.536503i
\(604\) 0 0
\(605\) −3.38902 + 10.4649i −0.137783 + 0.425459i
\(606\) 0 0
\(607\) 0.581319 + 1.78912i 0.0235950 + 0.0726180i 0.962161 0.272483i \(-0.0878448\pi\)
−0.938566 + 0.345101i \(0.887845\pi\)
\(608\) 0 0
\(609\) 0.0949356 0.0689748i 0.00384699 0.00279500i
\(610\) 0 0
\(611\) −4.93621 + 15.1921i −0.199698 + 0.614606i
\(612\) 0 0
\(613\) 13.9185 + 10.1124i 0.562162 + 0.408435i 0.832250 0.554401i \(-0.187053\pi\)
−0.270087 + 0.962836i \(0.587053\pi\)
\(614\) 0 0
\(615\) 29.6856 1.19704
\(616\) 0 0
\(617\) −17.5502 −0.706546 −0.353273 0.935520i \(-0.614931\pi\)
−0.353273 + 0.935520i \(0.614931\pi\)
\(618\) 0 0
\(619\) 27.3496 + 19.8707i 1.09928 + 0.798670i 0.980941 0.194304i \(-0.0622447\pi\)
0.118334 + 0.992974i \(0.462245\pi\)
\(620\) 0 0
\(621\) 31.6770 97.4919i 1.27116 3.91221i
\(622\) 0 0
\(623\) 1.08756 0.790161i 0.0435723 0.0316571i
\(624\) 0 0
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) 0 0
\(627\) 16.5420 + 50.8271i 0.660626 + 2.02984i
\(628\) 0 0
\(629\) −4.04889 12.4612i −0.161440 0.496860i
\(630\) 0 0
\(631\) 24.5241 17.8178i 0.976289 0.709315i 0.0194127 0.999812i \(-0.493820\pi\)
0.956876 + 0.290496i \(0.0938204\pi\)
\(632\) 0 0
\(633\) 8.99373 27.6798i 0.357468 1.10017i
\(634\) 0 0
\(635\) 0.888840 + 0.645780i 0.0352725 + 0.0256270i
\(636\) 0 0
\(637\) −20.9904 −0.831671
\(638\) 0 0
\(639\) 104.376 4.12905
\(640\) 0 0
\(641\) 2.98426 + 2.16819i 0.117871 + 0.0856385i 0.645159 0.764048i \(-0.276791\pi\)
−0.527288 + 0.849687i \(0.676791\pi\)
\(642\) 0 0
\(643\) −1.47236 + 4.53147i −0.0580644 + 0.178704i −0.975882 0.218298i \(-0.929949\pi\)
0.917818 + 0.397002i \(0.129949\pi\)
\(644\) 0 0
\(645\) −20.9982 + 15.2561i −0.826804 + 0.600708i
\(646\) 0 0
\(647\) 10.7186 + 32.9885i 0.421392 + 1.29691i 0.906407 + 0.422405i \(0.138814\pi\)
−0.485016 + 0.874506i \(0.661186\pi\)
\(648\) 0 0
\(649\) −1.59217 + 1.15796i −0.0624982 + 0.0454540i
\(650\) 0 0
\(651\) 1.53527 + 4.72508i 0.0601721 + 0.185191i
\(652\) 0 0
\(653\) 5.14301 3.73661i 0.201261 0.146225i −0.482590 0.875847i \(-0.660304\pi\)
0.683851 + 0.729622i \(0.260304\pi\)
\(654\) 0 0
\(655\) −2.43802 + 7.50345i −0.0952613 + 0.293184i
\(656\) 0 0
\(657\) −5.77594 4.19646i −0.225341 0.163720i
\(658\) 0 0
\(659\) 8.61834 0.335723 0.167861 0.985811i \(-0.446314\pi\)
0.167861 + 0.985811i \(0.446314\pi\)
\(660\) 0 0
\(661\) −17.5983 −0.684494 −0.342247 0.939610i \(-0.611188\pi\)
−0.342247 + 0.939610i \(0.611188\pi\)
\(662\) 0 0
\(663\) −41.3592 30.0492i −1.60626 1.16701i
\(664\) 0 0
\(665\) 0.279417 0.859957i 0.0108353 0.0333477i
\(666\) 0 0
\(667\) 0.955597 0.694282i 0.0370009 0.0268827i
\(668\) 0 0
\(669\) 2.89702 + 8.91612i 0.112005 + 0.344717i
\(670\) 0 0
\(671\) 1.16149 3.58062i 0.0448389 0.138228i
\(672\) 0 0
\(673\) −15.7610 48.5073i −0.607541 1.86982i −0.478276 0.878209i \(-0.658738\pi\)
−0.129265 0.991610i \(-0.541262\pi\)
\(674\) 0 0
\(675\) −13.3676 + 9.71214i −0.514520 + 0.373821i
\(676\) 0 0
\(677\) 1.50360 4.62762i 0.0577882 0.177854i −0.917996 0.396590i \(-0.870193\pi\)
0.975784 + 0.218736i \(0.0701934\pi\)
\(678\) 0 0
\(679\) −0.510811 0.371126i −0.0196031 0.0142425i
\(680\) 0 0
\(681\) −57.1245 −2.18902
\(682\) 0 0
\(683\) −9.50423 −0.363669 −0.181835 0.983329i \(-0.558204\pi\)
−0.181835 + 0.983329i \(0.558204\pi\)
\(684\) 0 0
\(685\) 4.10059 + 2.97925i 0.156675 + 0.113831i
\(686\) 0 0
\(687\) −11.3072 + 34.8000i −0.431396 + 1.32770i
\(688\) 0 0
\(689\) −3.17155 + 2.30426i −0.120826 + 0.0877854i
\(690\) 0 0
\(691\) −8.28388 25.4952i −0.315134 0.969882i −0.975699 0.219113i \(-0.929684\pi\)
0.660566 0.750768i \(-0.270316\pi\)
\(692\) 0 0
\(693\) 3.98577 + 2.89288i 0.151407 + 0.109891i
\(694\) 0 0
\(695\) 2.58193 + 7.94638i 0.0979383 + 0.301423i
\(696\) 0 0
\(697\) 37.0879 26.9459i 1.40481 1.02065i
\(698\) 0 0
\(699\) 24.3471 74.9326i 0.920891 2.83421i
\(700\) 0 0
\(701\) 21.0714 + 15.3093i 0.795856 + 0.578223i 0.909695 0.415276i \(-0.136315\pi\)
−0.113840 + 0.993499i \(0.536315\pi\)
\(702\) 0 0
\(703\) 12.4473 0.469459
\(704\) 0 0
\(705\) 17.5688 0.661680
\(706\) 0 0
\(707\) 0.0435137 + 0.0316146i 0.00163650 + 0.00118899i
\(708\) 0 0
\(709\) 5.79825 17.8452i 0.217758 0.670190i −0.781188 0.624295i \(-0.785386\pi\)
0.998946 0.0458945i \(-0.0146138\pi\)
\(710\) 0 0
\(711\) −85.9513 + 62.4473i −3.22343 + 2.34196i
\(712\) 0 0
\(713\) 15.4537 + 47.5614i 0.578744 + 1.78119i
\(714\) 0 0
\(715\) 9.99472 0.00485545i 0.373781 0.000181583i
\(716\) 0 0
\(717\) 21.6458 + 66.6188i 0.808376 + 2.48792i
\(718\) 0 0
\(719\) −24.8713 + 18.0701i −0.927543 + 0.673899i −0.945390 0.325941i \(-0.894319\pi\)
0.0178472 + 0.999841i \(0.494319\pi\)
\(720\) 0 0
\(721\) 0.999263 3.07541i 0.0372145 0.114534i
\(722\) 0 0
\(723\) −6.19716 4.50250i −0.230475 0.167450i
\(724\) 0 0
\(725\) −0.190393 −0.00707102
\(726\) 0 0
\(727\) −15.2620 −0.566037 −0.283019 0.959114i \(-0.591336\pi\)
−0.283019 + 0.959114i \(0.591336\pi\)
\(728\) 0 0
\(729\) −66.1163 48.0363i −2.44875 1.77912i
\(730\) 0 0
\(731\) −12.3861 + 38.1206i −0.458117 + 1.40994i
\(732\) 0 0
\(733\) 6.31106 4.58525i 0.233104 0.169360i −0.465101 0.885257i \(-0.653982\pi\)
0.698206 + 0.715897i \(0.253982\pi\)
\(734\) 0 0
\(735\) 7.13404 + 21.9563i 0.263143 + 0.809871i
\(736\) 0 0
\(737\) 5.75348 0.00279505i 0.211932 0.000102957i
\(738\) 0 0
\(739\) 6.20972 + 19.1115i 0.228428 + 0.703030i 0.997925 + 0.0643795i \(0.0205068\pi\)
−0.769497 + 0.638650i \(0.779493\pi\)
\(740\) 0 0
\(741\) 39.2910 28.5466i 1.44339 1.04869i
\(742\) 0 0
\(743\) 8.64656 26.6114i 0.317212 0.976277i −0.657623 0.753347i \(-0.728438\pi\)
0.974835 0.222930i \(-0.0715621\pi\)
\(744\) 0 0
\(745\) 16.4943 + 11.9838i 0.604303 + 0.439052i
\(746\) 0 0
\(747\) −135.350 −4.95219
\(748\) 0 0
\(749\) −2.26397 −0.0827236
\(750\) 0 0
\(751\) −24.1759 17.5648i −0.882189 0.640948i 0.0516405 0.998666i \(-0.483555\pi\)
−0.933830 + 0.357718i \(0.883555\pi\)
\(752\) 0 0
\(753\) 6.24790 19.2291i 0.227686 0.700746i
\(754\) 0 0
\(755\) 10.6743 7.75534i 0.388478 0.282246i
\(756\) 0 0
\(757\) 2.13180 + 6.56101i 0.0774816 + 0.238464i 0.982294 0.187347i \(-0.0599889\pi\)
−0.904812 + 0.425811i \(0.859989\pi\)
\(758\) 0 0
\(759\) 55.1923 + 40.0586i 2.00335 + 1.45404i
\(760\) 0 0
\(761\) 5.75913 + 17.7248i 0.208768 + 0.642522i 0.999538 + 0.0304082i \(0.00968072\pi\)
−0.790769 + 0.612114i \(0.790319\pi\)
\(762\) 0 0
\(763\) −2.12034 + 1.54051i −0.0767613 + 0.0557704i
\(764\) 0 0
\(765\) −12.6301 + 38.8715i −0.456643 + 1.40540i
\(766\) 0 0
\(767\) 1.44717 + 1.05143i 0.0522545 + 0.0379651i
\(768\) 0 0
\(769\) −23.0644 −0.831723 −0.415861 0.909428i \(-0.636520\pi\)
−0.415861 + 0.909428i \(0.636520\pi\)
\(770\) 0 0
\(771\) 27.8289 1.00223
\(772\) 0 0
\(773\) 1.28280 + 0.932007i 0.0461390 + 0.0335219i 0.610616 0.791927i \(-0.290922\pi\)
−0.564477 + 0.825449i \(0.690922\pi\)
\(774\) 0 0
\(775\) 2.49095 7.66636i 0.0894776 0.275384i
\(776\) 0 0
\(777\) 1.27643 0.927381i 0.0457917 0.0332696i
\(778\) 0 0
\(779\) 13.4580 + 41.4193i 0.482181 + 1.48400i
\(780\) 0 0
\(781\) −13.3764 + 41.2364i −0.478644 + 1.47555i
\(782\) 0 0
\(783\) −0.972143 2.99195i −0.0347415 0.106923i
\(784\) 0 0
\(785\) −14.7798 + 10.7382i −0.527514 + 0.383262i
\(786\) 0 0
\(787\) 6.44376 19.8318i 0.229695 0.706929i −0.768086 0.640347i \(-0.778791\pi\)
0.997781 0.0665820i \(-0.0212094\pi\)
\(788\) 0 0
\(789\) −5.49043 3.98903i −0.195465 0.142013i
\(790\) 0 0
\(791\) 1.94740 0.0692416
\(792\) 0 0
\(793\) −3.42028 −0.121458
\(794\) 0 0
\(795\) 3.48821 + 2.53433i 0.123714 + 0.0898835i
\(796\) 0 0
\(797\) 3.72551 11.4659i 0.131964 0.406144i −0.863141 0.504962i \(-0.831506\pi\)
0.995105 + 0.0988185i \(0.0315063\pi\)
\(798\) 0 0
\(799\) 21.9497 15.9474i 0.776525 0.564178i
\(800\) 0 0
\(801\) −17.8384 54.9009i −0.630289 1.93983i
\(802\) 0 0
\(803\) 2.39814 1.74413i 0.0846285 0.0615491i
\(804\) 0 0
\(805\) −0.356502 1.09720i −0.0125651 0.0386713i
\(806\) 0 0
\(807\) 51.6590 37.5325i 1.81848 1.32121i
\(808\) 0 0
\(809\) −16.2614 + 50.0475i −0.571721 + 1.75958i 0.0753606 + 0.997156i \(0.475989\pi\)
−0.647082 + 0.762421i \(0.724011\pi\)
\(810\) 0 0
\(811\) −38.9517 28.3001i −1.36778 0.993750i −0.997907 0.0646674i \(-0.979401\pi\)
−0.369873 0.929083i \(-0.620599\pi\)
\(812\) 0 0
\(813\) −64.0626 −2.24677
\(814\) 0 0
\(815\) −13.5139 −0.473371
\(816\) 0 0
\(817\) −30.8058 22.3817i −1.07776 0.783038i
\(818\) 0 0
\(819\) 1.38281 4.25584i 0.0483192 0.148711i
\(820\) 0 0
\(821\) 13.1488 9.55315i 0.458896 0.333407i −0.334202 0.942501i \(-0.608467\pi\)
0.793098 + 0.609094i \(0.208467\pi\)
\(822\) 0 0
\(823\) 7.13954 + 21.9732i 0.248869 + 0.765939i 0.994976 + 0.100113i \(0.0319205\pi\)
−0.746107 + 0.665826i \(0.768079\pi\)
\(824\) 0 0
\(825\) −3.40199 10.4530i −0.118442 0.363926i
\(826\) 0 0
\(827\) 14.5902 + 44.9040i 0.507351 + 1.56146i 0.796783 + 0.604266i \(0.206534\pi\)
−0.289432 + 0.957199i \(0.593466\pi\)
\(828\) 0 0
\(829\) 33.0065 23.9806i 1.14636 0.832881i 0.158370 0.987380i \(-0.449376\pi\)
0.987993 + 0.154499i \(0.0493762\pi\)
\(830\) 0 0
\(831\) −26.8809 + 82.7309i −0.932488 + 2.86990i
\(832\) 0 0
\(833\) 28.8429 + 20.9556i 0.999348 + 0.726068i
\(834\) 0 0
\(835\) 3.74944 0.129755
\(836\) 0 0
\(837\) 133.192 4.60380
\(838\) 0 0
\(839\) −35.4167 25.7317i −1.22272 0.888358i −0.226397 0.974035i \(-0.572695\pi\)
−0.996323 + 0.0856767i \(0.972695\pi\)
\(840\) 0 0
\(841\) −8.95029 + 27.5462i −0.308631 + 0.949868i
\(842\) 0 0
\(843\) −10.7743 + 7.82802i −0.371088 + 0.269611i
\(844\) 0 0
\(845\) 1.21094 + 3.72690i 0.0416577 + 0.128209i
\(846\) 0 0
\(847\) −1.65370 + 1.20394i −0.0568220 + 0.0413680i
\(848\) 0 0
\(849\) −6.84702 21.0730i −0.234989 0.723223i
\(850\) 0 0
\(851\) 12.8482 9.33477i 0.440431 0.319992i
\(852\) 0 0
\(853\) 16.5071 50.8038i 0.565194 1.73949i −0.102181 0.994766i \(-0.532582\pi\)
0.667375 0.744722i \(-0.267418\pi\)
\(854\) 0 0
\(855\) −31.4126 22.8226i −1.07429 0.780517i
\(856\) 0 0
\(857\) −21.6966 −0.741143 −0.370572 0.928804i \(-0.620838\pi\)
−0.370572 + 0.928804i \(0.620838\pi\)
\(858\) 0 0
\(859\) 18.9254 0.645725 0.322863 0.946446i \(-0.395355\pi\)
0.322863 + 0.946446i \(0.395355\pi\)
\(860\) 0 0
\(861\) 4.46600 + 3.24474i 0.152201 + 0.110580i
\(862\) 0 0
\(863\) 7.74851 23.8475i 0.263762 0.811777i −0.728214 0.685350i \(-0.759649\pi\)
0.991976 0.126427i \(-0.0403508\pi\)
\(864\) 0 0
\(865\) 7.83272 5.69080i 0.266320 0.193493i
\(866\) 0 0
\(867\) 9.42067 + 28.9938i 0.319943 + 0.984682i
\(868\) 0 0
\(869\) −13.6563 41.9602i −0.463257 1.42340i
\(870\) 0 0
\(871\) −1.61544 4.97181i −0.0547371 0.168463i
\(872\) 0 0
\(873\) −21.9349 + 15.9367i −0.742385 + 0.539374i
\(874\) 0 0
\(875\) −0.0574641 + 0.176856i −0.00194264 + 0.00597884i
\(876\) 0 0
\(877\) 2.76596 + 2.00959i 0.0933997 + 0.0678589i 0.633505 0.773739i \(-0.281616\pi\)
−0.540105 + 0.841597i \(0.681616\pi\)
\(878\) 0 0
\(879\) −27.7847 −0.937155
\(880\) 0 0
\(881\) 1.37318 0.0462636 0.0231318 0.999732i \(-0.492636\pi\)
0.0231318 + 0.999732i \(0.492636\pi\)
\(882\) 0 0
\(883\) −37.3931 27.1677i −1.25838 0.914265i −0.259701 0.965689i \(-0.583624\pi\)
−0.998677 + 0.0514240i \(0.983624\pi\)
\(884\) 0 0
\(885\) 0.607963 1.87112i 0.0204365 0.0628970i
\(886\) 0 0
\(887\) 26.2701 19.0863i 0.882063 0.640857i −0.0517331 0.998661i \(-0.516475\pi\)
0.933797 + 0.357804i \(0.116475\pi\)
\(888\) 0 0
\(889\) 0.0631339 + 0.194306i 0.00211744 + 0.00651682i
\(890\) 0 0
\(891\) 82.6377 60.1012i 2.76847 2.01347i
\(892\) 0 0
\(893\) 7.96481 + 24.5132i 0.266532 + 0.820301i
\(894\) 0 0
\(895\) 8.82930 6.41486i 0.295131 0.214425i
\(896\) 0 0
\(897\) 19.1482 58.9321i 0.639340 1.96769i
\(898\) 0 0
\(899\) 1.24163 + 0.902096i 0.0414107 + 0.0300866i
\(900\) 0 0
\(901\) 6.65845 0.221825
\(902\) 0 0
\(903\) −4.82658 −0.160618
\(904\) 0 0
\(905\) −6.52309 4.73930i −0.216835 0.157540i
\(906\) 0 0
\(907\) 11.0047 33.8690i 0.365405 1.12460i −0.584322 0.811522i \(-0.698639\pi\)
0.949727 0.313079i \(-0.101361\pi\)
\(908\) 0 0
\(909\) 1.86854 1.35757i 0.0619756 0.0450279i
\(910\) 0 0
\(911\) −1.67043 5.14105i −0.0553438 0.170331i 0.919564 0.392941i \(-0.128542\pi\)
−0.974908 + 0.222610i \(0.928542\pi\)
\(912\) 0 0
\(913\) 17.3459 53.4734i 0.574064 1.76971i
\(914\) 0 0
\(915\) 1.16245 + 3.57767i 0.0384295 + 0.118274i
\(916\) 0 0
\(917\) −1.18693 + 0.862358i −0.0391960 + 0.0284776i
\(918\) 0 0
\(919\) 14.3775 44.2495i 0.474271 1.45966i −0.372668 0.927965i \(-0.621557\pi\)
0.846939 0.531691i \(-0.178443\pi\)
\(920\) 0 0
\(921\) −15.4449 11.2214i −0.508928 0.369758i
\(922\) 0 0
\(923\) 39.3898 1.29653
\(924\) 0 0
\(925\) −2.55988 −0.0841683
\(926\) 0 0
\(927\) −112.339 81.6192i −3.68970 2.68073i
\(928\) 0 0
\(929\) −9.73567 + 29.9633i −0.319417 + 0.983064i 0.654481 + 0.756078i \(0.272887\pi\)
−0.973898 + 0.226986i \(0.927113\pi\)
\(930\) 0 0
\(931\) −27.4006 + 19.9077i −0.898020 + 0.652450i
\(932\) 0 0
\(933\) −1.05476 3.24623i −0.0345314 0.106277i
\(934\) 0 0
\(935\) −13.7386 9.97146i −0.449299 0.326101i
\(936\) 0 0
\(937\) 13.4436 + 41.3751i 0.439182 + 1.35166i 0.888739 + 0.458413i \(0.151582\pi\)
−0.449557 + 0.893252i \(0.648418\pi\)
\(938\) 0 0
\(939\) 21.2744 15.4567i 0.694263 0.504411i
\(940\) 0 0
\(941\) 7.50754 23.1058i 0.244739 0.753229i −0.750941 0.660370i \(-0.770400\pi\)
0.995679 0.0928587i \(-0.0296005\pi\)
\(942\) 0 0
\(943\) 44.9536 + 32.6607i 1.46389 + 1.06358i
\(944\) 0 0
\(945\) −3.07263 −0.0999528
\(946\) 0 0
\(947\) −37.0312 −1.20335 −0.601676 0.798740i \(-0.705500\pi\)
−0.601676 + 0.798740i \(0.705500\pi\)
\(948\) 0 0
\(949\) −2.17975 1.58368i −0.0707575 0.0514084i
\(950\) 0 0
\(951\) −21.9144 + 67.4455i −0.710622 + 2.18707i
\(952\) 0 0
\(953\) −10.1932 + 7.40583i −0.330192 + 0.239898i −0.740512 0.672043i \(-0.765417\pi\)
0.410320 + 0.911941i \(0.365417\pi\)
\(954\) 0 0
\(955\) 3.95004 + 12.1570i 0.127820 + 0.393391i
\(956\) 0 0
\(957\) 2.09292 0.00101675i 0.0676546 3.28667e-5i
\(958\) 0 0
\(959\) 0.291263 + 0.896415i 0.00940537 + 0.0289468i
\(960\) 0 0
\(961\) −27.4887 + 19.9717i −0.886733 + 0.644249i
\(962\) 0 0
\(963\) −30.0420 + 92.4598i −0.968090 + 2.97948i
\(964\) 0 0
\(965\) 8.44570 + 6.13616i 0.271877 + 0.197530i
\(966\) 0 0
\(967\) 18.4170 0.592251 0.296126 0.955149i \(-0.404305\pi\)
0.296126 + 0.955149i \(0.404305\pi\)
\(968\) 0 0
\(969\) −82.4890 −2.64993
\(970\) 0 0
\(971\) 1.58519 + 1.15170i 0.0508710 + 0.0369600i 0.612930 0.790137i \(-0.289991\pi\)
−0.562059 + 0.827097i \(0.689991\pi\)
\(972\) 0 0
\(973\) −0.480131 + 1.47769i −0.0153923 + 0.0473726i
\(974\) 0 0
\(975\) −8.08049 + 5.87082i −0.258783 + 0.188017i
\(976\) 0 0
\(977\) −2.50113 7.69768i −0.0800181 0.246271i 0.903042 0.429551i \(-0.141328\pi\)
−0.983061 + 0.183281i \(0.941328\pi\)
\(978\) 0 0
\(979\) 23.9761 0.0116476i 0.766280 0.000372260i
\(980\) 0 0
\(981\) 34.7781 + 107.036i 1.11038 + 3.41740i
\(982\) 0 0
\(983\) 7.63600 5.54788i 0.243550 0.176950i −0.459313 0.888274i \(-0.651904\pi\)
0.702864 + 0.711325i \(0.251904\pi\)
\(984\) 0 0
\(985\) 6.01506 18.5124i 0.191656 0.589855i
\(986\) 0 0
\(987\) 2.64311 + 1.92033i 0.0841310 + 0.0611248i
\(988\) 0 0
\(989\) −48.5831 −1.54485
\(990\) 0 0
\(991\) −44.9960 −1.42934 −0.714672 0.699459i \(-0.753424\pi\)
−0.714672 + 0.699459i \(0.753424\pi\)
\(992\) 0 0
\(993\) 48.4448 + 35.1972i 1.53735 + 1.11695i
\(994\) 0 0
\(995\) 4.95105 15.2378i 0.156959 0.483070i
\(996\) 0 0
\(997\) −19.0915 + 13.8708i −0.604634 + 0.439292i −0.847521 0.530762i \(-0.821906\pi\)
0.242887 + 0.970055i \(0.421906\pi\)
\(998\) 0 0
\(999\) −13.0707 40.2274i −0.413538 1.27274i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 440.2.y.b.401.1 yes 12
4.3 odd 2 880.2.bo.j.401.3 12
11.3 even 5 4840.2.a.bf.1.6 6
11.8 odd 10 4840.2.a.be.1.6 6
11.9 even 5 inner 440.2.y.b.361.1 12
44.3 odd 10 9680.2.a.cx.1.1 6
44.19 even 10 9680.2.a.cy.1.1 6
44.31 odd 10 880.2.bo.j.801.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.y.b.361.1 12 11.9 even 5 inner
440.2.y.b.401.1 yes 12 1.1 even 1 trivial
880.2.bo.j.401.3 12 4.3 odd 2
880.2.bo.j.801.3 12 44.31 odd 10
4840.2.a.be.1.6 6 11.8 odd 10
4840.2.a.bf.1.6 6 11.3 even 5
9680.2.a.cx.1.1 6 44.3 odd 10
9680.2.a.cy.1.1 6 44.19 even 10