Properties

Label 440.2.y.a.201.2
Level $440$
Weight $2$
Character 440.201
Analytic conductor $3.513$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [440,2,Mod(81,440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(440, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("440.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 440.y (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.51341768894\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.13140625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 5x^{6} - 3x^{5} + 4x^{4} + 3x^{3} + 5x^{2} + 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 201.2
Root \(-0.386111 + 0.280526i\) of defining polynomial
Character \(\chi\) \(=\) 440.201
Dual form 440.2.y.a.81.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0911485 + 0.280526i) q^{3} +(-0.809017 - 0.587785i) q^{5} +(-1.35666 + 4.17538i) q^{7} +(2.35666 - 1.71222i) q^{9} +(3.31118 - 0.189896i) q^{11} +(-4.82402 + 3.50485i) q^{13} +(0.0911485 - 0.280526i) q^{15} +(1.34932 + 0.980336i) q^{17} +(2.37743 + 7.31696i) q^{19} -1.29496 q^{21} -0.904706 q^{23} +(0.309017 + 0.951057i) q^{25} +(1.41102 + 1.02516i) q^{27} +(-1.46443 + 4.50705i) q^{29} +(4.14709 - 3.01303i) q^{31} +(0.355081 + 0.911566i) q^{33} +(3.55179 - 2.58053i) q^{35} +(-0.0571606 + 0.175922i) q^{37} +(-1.42291 - 1.03380i) q^{39} +(-0.810356 - 2.49402i) q^{41} +3.59822 q^{43} -2.91300 q^{45} +(-0.239853 - 0.738191i) q^{47} +(-9.93016 - 7.21469i) q^{49} +(-0.152022 + 0.467875i) q^{51} +(7.76295 - 5.64012i) q^{53} +(-2.79042 - 1.79264i) q^{55} +(-1.83590 + 1.33386i) q^{57} +(-3.47762 + 10.7030i) q^{59} +(-10.6708 - 7.75277i) q^{61} +(3.95196 + 12.1629i) q^{63} +5.96281 q^{65} -7.79954 q^{67} +(-0.0824626 - 0.253794i) q^{69} +(5.63943 + 4.09729i) q^{71} +(3.94122 - 12.1298i) q^{73} +(-0.238630 + 0.173375i) q^{75} +(-3.69927 + 14.0831i) q^{77} +(8.11547 - 5.89624i) q^{79} +(2.54152 - 7.82200i) q^{81} +(-3.31316 - 2.40715i) q^{83} +(-0.515393 - 1.58622i) q^{85} -1.39783 q^{87} -0.466291 q^{89} +(-8.08953 - 24.8970i) q^{91} +(1.22324 + 0.888733i) q^{93} +(2.37743 - 7.31696i) q^{95} +(-5.74372 + 4.17306i) q^{97} +(7.47820 - 6.11699i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{3} - 2 q^{5} + q^{7} + 7 q^{9} + 3 q^{11} - 4 q^{13} + q^{15} - 3 q^{17} + 9 q^{19} - 4 q^{21} - 22 q^{23} - 2 q^{25} - 8 q^{27} - 17 q^{29} - 4 q^{31} + 21 q^{33} + 6 q^{35} + 24 q^{37} - 13 q^{39}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/440\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(221\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0911485 + 0.280526i 0.0526246 + 0.161962i 0.973915 0.226914i \(-0.0728635\pi\)
−0.921290 + 0.388876i \(0.872864\pi\)
\(4\) 0 0
\(5\) −0.809017 0.587785i −0.361803 0.262866i
\(6\) 0 0
\(7\) −1.35666 + 4.17538i −0.512771 + 1.57815i 0.274531 + 0.961578i \(0.411477\pi\)
−0.787302 + 0.616568i \(0.788523\pi\)
\(8\) 0 0
\(9\) 2.35666 1.71222i 0.785555 0.570739i
\(10\) 0 0
\(11\) 3.31118 0.189896i 0.998360 0.0572559i
\(12\) 0 0
\(13\) −4.82402 + 3.50485i −1.33794 + 0.972071i −0.338424 + 0.940994i \(0.609894\pi\)
−0.999517 + 0.0310775i \(0.990106\pi\)
\(14\) 0 0
\(15\) 0.0911485 0.280526i 0.0235345 0.0724316i
\(16\) 0 0
\(17\) 1.34932 + 0.980336i 0.327258 + 0.237767i 0.739266 0.673413i \(-0.235173\pi\)
−0.412009 + 0.911180i \(0.635173\pi\)
\(18\) 0 0
\(19\) 2.37743 + 7.31696i 0.545419 + 1.67863i 0.719992 + 0.693982i \(0.244145\pi\)
−0.174573 + 0.984644i \(0.555855\pi\)
\(20\) 0 0
\(21\) −1.29496 −0.282584
\(22\) 0 0
\(23\) −0.904706 −0.188644 −0.0943221 0.995542i \(-0.530068\pi\)
−0.0943221 + 0.995542i \(0.530068\pi\)
\(24\) 0 0
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) 0 0
\(27\) 1.41102 + 1.02516i 0.271551 + 0.197293i
\(28\) 0 0
\(29\) −1.46443 + 4.50705i −0.271938 + 0.836938i 0.718076 + 0.695965i \(0.245023\pi\)
−0.990013 + 0.140973i \(0.954977\pi\)
\(30\) 0 0
\(31\) 4.14709 3.01303i 0.744839 0.541157i −0.149384 0.988779i \(-0.547729\pi\)
0.894223 + 0.447622i \(0.147729\pi\)
\(32\) 0 0
\(33\) 0.355081 + 0.911566i 0.0618116 + 0.158683i
\(34\) 0 0
\(35\) 3.55179 2.58053i 0.600362 0.436189i
\(36\) 0 0
\(37\) −0.0571606 + 0.175922i −0.00939715 + 0.0289214i −0.955645 0.294521i \(-0.904840\pi\)
0.946248 + 0.323442i \(0.104840\pi\)
\(38\) 0 0
\(39\) −1.42291 1.03380i −0.227847 0.165541i
\(40\) 0 0
\(41\) −0.810356 2.49402i −0.126556 0.389501i 0.867625 0.497219i \(-0.165645\pi\)
−0.994181 + 0.107719i \(0.965645\pi\)
\(42\) 0 0
\(43\) 3.59822 0.548723 0.274361 0.961627i \(-0.411534\pi\)
0.274361 + 0.961627i \(0.411534\pi\)
\(44\) 0 0
\(45\) −2.91300 −0.434244
\(46\) 0 0
\(47\) −0.239853 0.738191i −0.0349861 0.107676i 0.932038 0.362360i \(-0.118029\pi\)
−0.967024 + 0.254683i \(0.918029\pi\)
\(48\) 0 0
\(49\) −9.93016 7.21469i −1.41859 1.03067i
\(50\) 0 0
\(51\) −0.152022 + 0.467875i −0.0212873 + 0.0655157i
\(52\) 0 0
\(53\) 7.76295 5.64012i 1.06632 0.774729i 0.0910758 0.995844i \(-0.470969\pi\)
0.975248 + 0.221114i \(0.0709694\pi\)
\(54\) 0 0
\(55\) −2.79042 1.79264i −0.376260 0.241719i
\(56\) 0 0
\(57\) −1.83590 + 1.33386i −0.243171 + 0.176674i
\(58\) 0 0
\(59\) −3.47762 + 10.7030i −0.452748 + 1.39341i 0.421012 + 0.907055i \(0.361675\pi\)
−0.873759 + 0.486359i \(0.838325\pi\)
\(60\) 0 0
\(61\) −10.6708 7.75277i −1.36625 0.992640i −0.998019 0.0629067i \(-0.979963\pi\)
−0.368233 0.929734i \(-0.620037\pi\)
\(62\) 0 0
\(63\) 3.95196 + 12.1629i 0.497900 + 1.53238i
\(64\) 0 0
\(65\) 5.96281 0.739596
\(66\) 0 0
\(67\) −7.79954 −0.952866 −0.476433 0.879211i \(-0.658070\pi\)
−0.476433 + 0.879211i \(0.658070\pi\)
\(68\) 0 0
\(69\) −0.0824626 0.253794i −0.00992734 0.0305532i
\(70\) 0 0
\(71\) 5.63943 + 4.09729i 0.669278 + 0.486259i 0.869783 0.493434i \(-0.164258\pi\)
−0.200506 + 0.979693i \(0.564258\pi\)
\(72\) 0 0
\(73\) 3.94122 12.1298i 0.461285 1.41969i −0.402310 0.915504i \(-0.631793\pi\)
0.863595 0.504186i \(-0.168207\pi\)
\(74\) 0 0
\(75\) −0.238630 + 0.173375i −0.0275546 + 0.0200196i
\(76\) 0 0
\(77\) −3.69927 + 14.0831i −0.421571 + 1.60492i
\(78\) 0 0
\(79\) 8.11547 5.89624i 0.913062 0.663378i −0.0287255 0.999587i \(-0.509145\pi\)
0.941787 + 0.336209i \(0.109145\pi\)
\(80\) 0 0
\(81\) 2.54152 7.82200i 0.282391 0.869112i
\(82\) 0 0
\(83\) −3.31316 2.40715i −0.363667 0.264219i 0.390913 0.920428i \(-0.372159\pi\)
−0.754580 + 0.656208i \(0.772159\pi\)
\(84\) 0 0
\(85\) −0.515393 1.58622i −0.0559023 0.172049i
\(86\) 0 0
\(87\) −1.39783 −0.149863
\(88\) 0 0
\(89\) −0.466291 −0.0494267 −0.0247134 0.999695i \(-0.507867\pi\)
−0.0247134 + 0.999695i \(0.507867\pi\)
\(90\) 0 0
\(91\) −8.08953 24.8970i −0.848013 2.60992i
\(92\) 0 0
\(93\) 1.22324 + 0.888733i 0.126844 + 0.0921574i
\(94\) 0 0
\(95\) 2.37743 7.31696i 0.243919 0.750705i
\(96\) 0 0
\(97\) −5.74372 + 4.17306i −0.583186 + 0.423710i −0.839871 0.542785i \(-0.817370\pi\)
0.256685 + 0.966495i \(0.417370\pi\)
\(98\) 0 0
\(99\) 7.47820 6.11699i 0.751588 0.614780i
\(100\) 0 0
\(101\) 13.1749 9.57214i 1.31095 0.952463i 0.310955 0.950425i \(-0.399351\pi\)
0.999998 0.00203865i \(-0.000648924\pi\)
\(102\) 0 0
\(103\) 0.985946 3.03443i 0.0971481 0.298991i −0.890659 0.454671i \(-0.849757\pi\)
0.987808 + 0.155680i \(0.0497568\pi\)
\(104\) 0 0
\(105\) 1.04765 + 0.761160i 0.102240 + 0.0742816i
\(106\) 0 0
\(107\) −4.06801 12.5201i −0.393270 1.21036i −0.930301 0.366797i \(-0.880454\pi\)
0.537031 0.843562i \(-0.319546\pi\)
\(108\) 0 0
\(109\) 1.33532 0.127900 0.0639502 0.997953i \(-0.479630\pi\)
0.0639502 + 0.997953i \(0.479630\pi\)
\(110\) 0 0
\(111\) −0.0545610 −0.00517870
\(112\) 0 0
\(113\) −0.517444 1.59253i −0.0486770 0.149812i 0.923764 0.382963i \(-0.125096\pi\)
−0.972441 + 0.233151i \(0.925096\pi\)
\(114\) 0 0
\(115\) 0.731923 + 0.531773i 0.0682521 + 0.0495881i
\(116\) 0 0
\(117\) −5.36752 + 16.5195i −0.496227 + 1.52723i
\(118\) 0 0
\(119\) −5.92385 + 4.30393i −0.543038 + 0.394541i
\(120\) 0 0
\(121\) 10.9279 1.25756i 0.993444 0.114324i
\(122\) 0 0
\(123\) 0.625776 0.454653i 0.0564243 0.0409946i
\(124\) 0 0
\(125\) 0.309017 0.951057i 0.0276393 0.0850651i
\(126\) 0 0
\(127\) −0.729305 0.529871i −0.0647153 0.0470185i 0.554957 0.831879i \(-0.312735\pi\)
−0.619673 + 0.784860i \(0.712735\pi\)
\(128\) 0 0
\(129\) 0.327972 + 1.00939i 0.0288763 + 0.0888722i
\(130\) 0 0
\(131\) −14.5527 −1.27148 −0.635739 0.771904i \(-0.719305\pi\)
−0.635739 + 0.771904i \(0.719305\pi\)
\(132\) 0 0
\(133\) −33.7765 −2.92879
\(134\) 0 0
\(135\) −0.538961 1.65875i −0.0463864 0.142763i
\(136\) 0 0
\(137\) 16.6573 + 12.1022i 1.42313 + 1.03396i 0.991246 + 0.132031i \(0.0421498\pi\)
0.431881 + 0.901931i \(0.357850\pi\)
\(138\) 0 0
\(139\) −4.63035 + 14.2508i −0.392741 + 1.20873i 0.537965 + 0.842967i \(0.319193\pi\)
−0.930707 + 0.365767i \(0.880807\pi\)
\(140\) 0 0
\(141\) 0.185220 0.134570i 0.0155983 0.0113328i
\(142\) 0 0
\(143\) −15.3076 + 12.5213i −1.28009 + 1.04708i
\(144\) 0 0
\(145\) 3.83392 2.78551i 0.318390 0.231324i
\(146\) 0 0
\(147\) 1.11879 3.44328i 0.0922762 0.283997i
\(148\) 0 0
\(149\) −8.86891 6.44364i −0.726570 0.527884i 0.161907 0.986806i \(-0.448236\pi\)
−0.888476 + 0.458922i \(0.848236\pi\)
\(150\) 0 0
\(151\) −1.82682 5.62238i −0.148665 0.457543i 0.848799 0.528715i \(-0.177326\pi\)
−0.997464 + 0.0711723i \(0.977326\pi\)
\(152\) 0 0
\(153\) 4.85844 0.392781
\(154\) 0 0
\(155\) −5.12608 −0.411737
\(156\) 0 0
\(157\) −1.36780 4.20964i −0.109162 0.335966i 0.881523 0.472142i \(-0.156519\pi\)
−0.990685 + 0.136176i \(0.956519\pi\)
\(158\) 0 0
\(159\) 2.28978 + 1.66362i 0.181592 + 0.131934i
\(160\) 0 0
\(161\) 1.22738 3.77749i 0.0967313 0.297708i
\(162\) 0 0
\(163\) 5.97430 4.34059i 0.467944 0.339981i −0.328696 0.944436i \(-0.606609\pi\)
0.796639 + 0.604455i \(0.206609\pi\)
\(164\) 0 0
\(165\) 0.248539 0.946183i 0.0193487 0.0736603i
\(166\) 0 0
\(167\) 15.7658 11.4545i 1.21999 0.886375i 0.223892 0.974614i \(-0.428124\pi\)
0.996099 + 0.0882386i \(0.0281238\pi\)
\(168\) 0 0
\(169\) 6.96991 21.4512i 0.536147 1.65009i
\(170\) 0 0
\(171\) 18.1310 + 13.1730i 1.38651 + 1.00736i
\(172\) 0 0
\(173\) 2.93815 + 9.04269i 0.223383 + 0.687503i 0.998452 + 0.0556257i \(0.0177153\pi\)
−0.775068 + 0.631877i \(0.782285\pi\)
\(174\) 0 0
\(175\) −4.39026 −0.331872
\(176\) 0 0
\(177\) −3.31946 −0.249506
\(178\) 0 0
\(179\) 2.22879 + 6.85952i 0.166588 + 0.512705i 0.999150 0.0412273i \(-0.0131268\pi\)
−0.832562 + 0.553932i \(0.813127\pi\)
\(180\) 0 0
\(181\) 18.9225 + 13.7480i 1.40650 + 1.02188i 0.993820 + 0.111002i \(0.0354060\pi\)
0.412676 + 0.910878i \(0.364594\pi\)
\(182\) 0 0
\(183\) 1.20223 3.70009i 0.0888715 0.273518i
\(184\) 0 0
\(185\) 0.149648 0.108726i 0.0110024 0.00799369i
\(186\) 0 0
\(187\) 4.65400 + 2.98984i 0.340334 + 0.218639i
\(188\) 0 0
\(189\) −6.19473 + 4.50074i −0.450601 + 0.327380i
\(190\) 0 0
\(191\) −1.28728 + 3.96183i −0.0931441 + 0.286668i −0.986766 0.162153i \(-0.948156\pi\)
0.893621 + 0.448821i \(0.148156\pi\)
\(192\) 0 0
\(193\) 18.7417 + 13.6166i 1.34906 + 0.980148i 0.999058 + 0.0433979i \(0.0138183\pi\)
0.350000 + 0.936750i \(0.386182\pi\)
\(194\) 0 0
\(195\) 0.543502 + 1.67273i 0.0389210 + 0.119786i
\(196\) 0 0
\(197\) 10.1507 0.723209 0.361604 0.932332i \(-0.382229\pi\)
0.361604 + 0.932332i \(0.382229\pi\)
\(198\) 0 0
\(199\) −17.0131 −1.20603 −0.603014 0.797731i \(-0.706034\pi\)
−0.603014 + 0.797731i \(0.706034\pi\)
\(200\) 0 0
\(201\) −0.710917 2.18798i −0.0501442 0.154328i
\(202\) 0 0
\(203\) −16.8319 12.2291i −1.18137 0.858315i
\(204\) 0 0
\(205\) −0.810356 + 2.49402i −0.0565977 + 0.174190i
\(206\) 0 0
\(207\) −2.13209 + 1.54905i −0.148190 + 0.107667i
\(208\) 0 0
\(209\) 9.26156 + 23.7763i 0.640635 + 1.64464i
\(210\) 0 0
\(211\) 4.86721 3.53624i 0.335073 0.243445i −0.407507 0.913202i \(-0.633602\pi\)
0.742580 + 0.669757i \(0.233602\pi\)
\(212\) 0 0
\(213\) −0.635371 + 1.95547i −0.0435349 + 0.133987i
\(214\) 0 0
\(215\) −2.91102 2.11498i −0.198530 0.144240i
\(216\) 0 0
\(217\) 6.95437 + 21.4033i 0.472093 + 1.45295i
\(218\) 0 0
\(219\) 3.76197 0.254211
\(220\) 0 0
\(221\) −9.94506 −0.668977
\(222\) 0 0
\(223\) 0.770711 + 2.37201i 0.0516107 + 0.158841i 0.973540 0.228517i \(-0.0733876\pi\)
−0.921929 + 0.387358i \(0.873388\pi\)
\(224\) 0 0
\(225\) 2.35666 + 1.71222i 0.157111 + 0.114148i
\(226\) 0 0
\(227\) −7.72396 + 23.7719i −0.512657 + 1.57780i 0.274848 + 0.961488i \(0.411373\pi\)
−0.787505 + 0.616309i \(0.788627\pi\)
\(228\) 0 0
\(229\) 2.24164 1.62865i 0.148132 0.107624i −0.511251 0.859432i \(-0.670818\pi\)
0.659383 + 0.751807i \(0.270818\pi\)
\(230\) 0 0
\(231\) −4.28786 + 0.245909i −0.282121 + 0.0161796i
\(232\) 0 0
\(233\) 7.76676 5.64288i 0.508818 0.369678i −0.303557 0.952813i \(-0.598174\pi\)
0.812375 + 0.583136i \(0.198174\pi\)
\(234\) 0 0
\(235\) −0.239853 + 0.738191i −0.0156463 + 0.0481543i
\(236\) 0 0
\(237\) 2.39376 + 1.73917i 0.155492 + 0.112971i
\(238\) 0 0
\(239\) 4.56394 + 14.0464i 0.295217 + 0.908584i 0.983149 + 0.182808i \(0.0585188\pi\)
−0.687932 + 0.725775i \(0.741481\pi\)
\(240\) 0 0
\(241\) −10.4338 −0.672099 −0.336049 0.941844i \(-0.609091\pi\)
−0.336049 + 0.941844i \(0.609091\pi\)
\(242\) 0 0
\(243\) 7.65828 0.491279
\(244\) 0 0
\(245\) 3.79298 + 11.6736i 0.242325 + 0.745799i
\(246\) 0 0
\(247\) −37.1136 26.9646i −2.36148 1.71572i
\(248\) 0 0
\(249\) 0.373280 1.14884i 0.0236557 0.0728047i
\(250\) 0 0
\(251\) 5.44787 3.95811i 0.343866 0.249834i −0.402425 0.915453i \(-0.631833\pi\)
0.746291 + 0.665619i \(0.231833\pi\)
\(252\) 0 0
\(253\) −2.99565 + 0.171800i −0.188335 + 0.0108010i
\(254\) 0 0
\(255\) 0.397999 0.289163i 0.0249236 0.0181081i
\(256\) 0 0
\(257\) 2.39239 7.36301i 0.149233 0.459292i −0.848298 0.529519i \(-0.822372\pi\)
0.997531 + 0.0702272i \(0.0223724\pi\)
\(258\) 0 0
\(259\) −0.656995 0.477335i −0.0408237 0.0296601i
\(260\) 0 0
\(261\) 4.26588 + 13.1290i 0.264051 + 0.812666i
\(262\) 0 0
\(263\) 18.1618 1.11990 0.559952 0.828525i \(-0.310819\pi\)
0.559952 + 0.828525i \(0.310819\pi\)
\(264\) 0 0
\(265\) −9.59554 −0.589449
\(266\) 0 0
\(267\) −0.0425017 0.130807i −0.00260106 0.00800525i
\(268\) 0 0
\(269\) 8.67812 + 6.30502i 0.529114 + 0.384424i 0.820026 0.572326i \(-0.193959\pi\)
−0.290912 + 0.956750i \(0.593959\pi\)
\(270\) 0 0
\(271\) −5.80566 + 17.8680i −0.352669 + 1.08540i 0.604680 + 0.796469i \(0.293301\pi\)
−0.957349 + 0.288935i \(0.906699\pi\)
\(272\) 0 0
\(273\) 6.24692 4.53865i 0.378081 0.274692i
\(274\) 0 0
\(275\) 1.20381 + 3.09044i 0.0725927 + 0.186361i
\(276\) 0 0
\(277\) −23.3375 + 16.9557i −1.40221 + 1.01877i −0.407814 + 0.913065i \(0.633709\pi\)
−0.994398 + 0.105701i \(0.966291\pi\)
\(278\) 0 0
\(279\) 4.61432 14.2014i 0.276252 0.850217i
\(280\) 0 0
\(281\) −21.8873 15.9021i −1.30569 0.948637i −0.305693 0.952130i \(-0.598888\pi\)
−0.999994 + 0.00349313i \(0.998888\pi\)
\(282\) 0 0
\(283\) 3.97802 + 12.2431i 0.236468 + 0.727775i 0.996923 + 0.0783842i \(0.0249761\pi\)
−0.760455 + 0.649391i \(0.775024\pi\)
\(284\) 0 0
\(285\) 2.26930 0.134422
\(286\) 0 0
\(287\) 11.5129 0.679583
\(288\) 0 0
\(289\) −4.39369 13.5224i −0.258452 0.795435i
\(290\) 0 0
\(291\) −1.69418 1.23090i −0.0993148 0.0721565i
\(292\) 0 0
\(293\) 1.81972 5.60052i 0.106309 0.327186i −0.883726 0.468004i \(-0.844973\pi\)
0.990035 + 0.140818i \(0.0449733\pi\)
\(294\) 0 0
\(295\) 9.10453 6.61483i 0.530086 0.385130i
\(296\) 0 0
\(297\) 4.86682 + 3.12656i 0.282401 + 0.181422i
\(298\) 0 0
\(299\) 4.36432 3.17086i 0.252395 0.183376i
\(300\) 0 0
\(301\) −4.88157 + 15.0239i −0.281369 + 0.865965i
\(302\) 0 0
\(303\) 3.88611 + 2.82343i 0.223251 + 0.162202i
\(304\) 0 0
\(305\) 4.07587 + 12.5442i 0.233384 + 0.718281i
\(306\) 0 0
\(307\) 6.85844 0.391432 0.195716 0.980661i \(-0.437297\pi\)
0.195716 + 0.980661i \(0.437297\pi\)
\(308\) 0 0
\(309\) 0.941105 0.0535376
\(310\) 0 0
\(311\) −4.40946 13.5709i −0.250037 0.769536i −0.994767 0.102170i \(-0.967422\pi\)
0.744730 0.667366i \(-0.232578\pi\)
\(312\) 0 0
\(313\) −1.29421 0.940297i −0.0731529 0.0531487i 0.550608 0.834764i \(-0.314396\pi\)
−0.623761 + 0.781615i \(0.714396\pi\)
\(314\) 0 0
\(315\) 3.95196 12.1629i 0.222668 0.685300i
\(316\) 0 0
\(317\) 24.9627 18.1365i 1.40204 1.01864i 0.407624 0.913150i \(-0.366357\pi\)
0.994420 0.105495i \(-0.0336427\pi\)
\(318\) 0 0
\(319\) −3.99312 + 15.2018i −0.223572 + 0.851135i
\(320\) 0 0
\(321\) 3.14141 2.28237i 0.175337 0.127389i
\(322\) 0 0
\(323\) −3.96518 + 12.2036i −0.220629 + 0.679025i
\(324\) 0 0
\(325\) −4.82402 3.50485i −0.267588 0.194414i
\(326\) 0 0
\(327\) 0.121712 + 0.374592i 0.00673071 + 0.0207150i
\(328\) 0 0
\(329\) 3.40763 0.187869
\(330\) 0 0
\(331\) −1.16816 −0.0642079 −0.0321040 0.999485i \(-0.510221\pi\)
−0.0321040 + 0.999485i \(0.510221\pi\)
\(332\) 0 0
\(333\) 0.166509 + 0.512461i 0.00912462 + 0.0280827i
\(334\) 0 0
\(335\) 6.30996 + 4.58446i 0.344750 + 0.250476i
\(336\) 0 0
\(337\) 4.33522 13.3424i 0.236154 0.726809i −0.760812 0.648973i \(-0.775199\pi\)
0.996966 0.0778359i \(-0.0248010\pi\)
\(338\) 0 0
\(339\) 0.399582 0.290313i 0.0217023 0.0157677i
\(340\) 0 0
\(341\) 13.1596 10.7642i 0.712632 0.582916i
\(342\) 0 0
\(343\) 18.7334 13.6106i 1.01151 0.734905i
\(344\) 0 0
\(345\) −0.0824626 + 0.253794i −0.00443964 + 0.0136638i
\(346\) 0 0
\(347\) −26.9818 19.6034i −1.44846 1.05237i −0.986188 0.165630i \(-0.947034\pi\)
−0.462273 0.886738i \(-0.652966\pi\)
\(348\) 0 0
\(349\) −10.9166 33.5978i −0.584351 1.79845i −0.601862 0.798600i \(-0.705574\pi\)
0.0175108 0.999847i \(-0.494426\pi\)
\(350\) 0 0
\(351\) −10.3998 −0.555102
\(352\) 0 0
\(353\) 11.7558 0.625698 0.312849 0.949803i \(-0.398717\pi\)
0.312849 + 0.949803i \(0.398717\pi\)
\(354\) 0 0
\(355\) −2.15407 6.62955i −0.114326 0.351860i
\(356\) 0 0
\(357\) −1.74732 1.26950i −0.0924778 0.0671890i
\(358\) 0 0
\(359\) −0.840838 + 2.58783i −0.0443777 + 0.136581i −0.970790 0.239929i \(-0.922876\pi\)
0.926413 + 0.376510i \(0.122876\pi\)
\(360\) 0 0
\(361\) −32.5145 + 23.6232i −1.71129 + 1.24332i
\(362\) 0 0
\(363\) 1.34884 + 2.95093i 0.0707957 + 0.154884i
\(364\) 0 0
\(365\) −10.3183 + 7.49665i −0.540082 + 0.392393i
\(366\) 0 0
\(367\) 0.959060 2.95168i 0.0500625 0.154077i −0.922900 0.385040i \(-0.874188\pi\)
0.972962 + 0.230963i \(0.0741877\pi\)
\(368\) 0 0
\(369\) −6.18004 4.49006i −0.321720 0.233743i
\(370\) 0 0
\(371\) 13.0179 + 40.0650i 0.675857 + 2.08007i
\(372\) 0 0
\(373\) −27.4604 −1.42185 −0.710924 0.703269i \(-0.751723\pi\)
−0.710924 + 0.703269i \(0.751723\pi\)
\(374\) 0 0
\(375\) 0.294963 0.0152318
\(376\) 0 0
\(377\) −8.73211 26.8747i −0.449727 1.38412i
\(378\) 0 0
\(379\) −11.2805 8.19577i −0.579441 0.420989i 0.259081 0.965855i \(-0.416580\pi\)
−0.838523 + 0.544867i \(0.816580\pi\)
\(380\) 0 0
\(381\) 0.0821677 0.252886i 0.00420958 0.0129558i
\(382\) 0 0
\(383\) −6.59841 + 4.79402i −0.337163 + 0.244963i −0.743464 0.668776i \(-0.766818\pi\)
0.406301 + 0.913739i \(0.366818\pi\)
\(384\) 0 0
\(385\) 11.2706 9.21908i 0.574403 0.469848i
\(386\) 0 0
\(387\) 8.47979 6.16093i 0.431052 0.313177i
\(388\) 0 0
\(389\) −0.958326 + 2.94942i −0.0485891 + 0.149542i −0.972407 0.233290i \(-0.925051\pi\)
0.923818 + 0.382831i \(0.125051\pi\)
\(390\) 0 0
\(391\) −1.22074 0.886916i −0.0617352 0.0448533i
\(392\) 0 0
\(393\) −1.32646 4.08243i −0.0669111 0.205931i
\(394\) 0 0
\(395\) −10.0313 −0.504728
\(396\) 0 0
\(397\) 23.1546 1.16209 0.581047 0.813870i \(-0.302643\pi\)
0.581047 + 0.813870i \(0.302643\pi\)
\(398\) 0 0
\(399\) −3.07868 9.47520i −0.154127 0.474353i
\(400\) 0 0
\(401\) 6.66933 + 4.84555i 0.333051 + 0.241975i 0.741724 0.670705i \(-0.234008\pi\)
−0.408673 + 0.912681i \(0.634008\pi\)
\(402\) 0 0
\(403\) −9.44537 + 29.0699i −0.470507 + 1.44807i
\(404\) 0 0
\(405\) −6.65379 + 4.83426i −0.330630 + 0.240217i
\(406\) 0 0
\(407\) −0.155862 + 0.593366i −0.00772581 + 0.0294120i
\(408\) 0 0
\(409\) −1.76891 + 1.28518i −0.0874667 + 0.0635483i −0.630659 0.776060i \(-0.717215\pi\)
0.543192 + 0.839608i \(0.317215\pi\)
\(410\) 0 0
\(411\) −1.87670 + 5.77590i −0.0925710 + 0.284904i
\(412\) 0 0
\(413\) −39.9712 29.0408i −1.96686 1.42900i
\(414\) 0 0
\(415\) 1.26552 + 3.89486i 0.0621217 + 0.191191i
\(416\) 0 0
\(417\) −4.41977 −0.216437
\(418\) 0 0
\(419\) 10.7348 0.524429 0.262215 0.965010i \(-0.415547\pi\)
0.262215 + 0.965010i \(0.415547\pi\)
\(420\) 0 0
\(421\) 5.80597 + 17.8689i 0.282966 + 0.870878i 0.987001 + 0.160714i \(0.0513795\pi\)
−0.704036 + 0.710165i \(0.748620\pi\)
\(422\) 0 0
\(423\) −1.82919 1.32899i −0.0889385 0.0646176i
\(424\) 0 0
\(425\) −0.515393 + 1.58622i −0.0250003 + 0.0769429i
\(426\) 0 0
\(427\) 46.8474 34.0366i 2.26711 1.64715i
\(428\) 0 0
\(429\) −4.90782 3.15290i −0.236952 0.152224i
\(430\) 0 0
\(431\) 7.26399 5.27760i 0.349894 0.254213i −0.398931 0.916981i \(-0.630619\pi\)
0.748825 + 0.662768i \(0.230619\pi\)
\(432\) 0 0
\(433\) 9.73586 29.9639i 0.467876 1.43997i −0.387454 0.921889i \(-0.626645\pi\)
0.855330 0.518084i \(-0.173355\pi\)
\(434\) 0 0
\(435\) 1.13087 + 0.821622i 0.0542208 + 0.0393937i
\(436\) 0 0
\(437\) −2.15087 6.61970i −0.102890 0.316663i
\(438\) 0 0
\(439\) 27.4750 1.31131 0.655655 0.755060i \(-0.272393\pi\)
0.655655 + 0.755060i \(0.272393\pi\)
\(440\) 0 0
\(441\) −35.7552 −1.70263
\(442\) 0 0
\(443\) −9.33108 28.7181i −0.443333 1.36444i −0.884301 0.466916i \(-0.845365\pi\)
0.440968 0.897523i \(-0.354635\pi\)
\(444\) 0 0
\(445\) 0.377237 + 0.274079i 0.0178827 + 0.0129926i
\(446\) 0 0
\(447\) 0.999223 3.07529i 0.0472616 0.145456i
\(448\) 0 0
\(449\) 22.1525 16.0947i 1.04544 0.759558i 0.0741012 0.997251i \(-0.476391\pi\)
0.971340 + 0.237693i \(0.0763912\pi\)
\(450\) 0 0
\(451\) −3.15684 8.10428i −0.148650 0.381615i
\(452\) 0 0
\(453\) 1.41071 1.02494i 0.0662811 0.0481560i
\(454\) 0 0
\(455\) −8.08953 + 24.8970i −0.379243 + 1.16719i
\(456\) 0 0
\(457\) −11.5596 8.39854i −0.540735 0.392867i 0.283623 0.958936i \(-0.408464\pi\)
−0.824358 + 0.566069i \(0.808464\pi\)
\(458\) 0 0
\(459\) 0.898905 + 2.76655i 0.0419573 + 0.129131i
\(460\) 0 0
\(461\) 8.78738 0.409269 0.204635 0.978838i \(-0.434399\pi\)
0.204635 + 0.978838i \(0.434399\pi\)
\(462\) 0 0
\(463\) −13.8394 −0.643172 −0.321586 0.946880i \(-0.604216\pi\)
−0.321586 + 0.946880i \(0.604216\pi\)
\(464\) 0 0
\(465\) −0.467235 1.43800i −0.0216675 0.0666857i
\(466\) 0 0
\(467\) −20.1359 14.6296i −0.931778 0.676976i 0.0146495 0.999893i \(-0.495337\pi\)
−0.946428 + 0.322916i \(0.895337\pi\)
\(468\) 0 0
\(469\) 10.5814 32.5661i 0.488602 1.50376i
\(470\) 0 0
\(471\) 1.05624 0.767405i 0.0486691 0.0353602i
\(472\) 0 0
\(473\) 11.9144 0.683288i 0.547823 0.0314176i
\(474\) 0 0
\(475\) −6.22418 + 4.52213i −0.285585 + 0.207490i
\(476\) 0 0
\(477\) 8.63757 26.5837i 0.395487 1.21718i
\(478\) 0 0
\(479\) 23.1303 + 16.8051i 1.05685 + 0.767846i 0.973503 0.228674i \(-0.0734390\pi\)
0.0833469 + 0.996521i \(0.473439\pi\)
\(480\) 0 0
\(481\) −0.340838 1.04899i −0.0155409 0.0478299i
\(482\) 0 0
\(483\) 1.17156 0.0533079
\(484\) 0 0
\(485\) 7.09963 0.322377
\(486\) 0 0
\(487\) 1.43808 + 4.42594i 0.0651654 + 0.200559i 0.978338 0.207015i \(-0.0663749\pi\)
−0.913172 + 0.407574i \(0.866375\pi\)
\(488\) 0 0
\(489\) 1.76220 + 1.28031i 0.0796893 + 0.0578977i
\(490\) 0 0
\(491\) 7.70564 23.7155i 0.347751 1.07027i −0.612344 0.790592i \(-0.709773\pi\)
0.960095 0.279675i \(-0.0902268\pi\)
\(492\) 0 0
\(493\) −6.39440 + 4.64581i −0.287989 + 0.209237i
\(494\) 0 0
\(495\) −9.64547 + 0.553168i −0.433532 + 0.0248630i
\(496\) 0 0
\(497\) −24.7586 + 17.9882i −1.11057 + 0.806879i
\(498\) 0 0
\(499\) 4.75417 14.6318i 0.212826 0.655010i −0.786475 0.617622i \(-0.788096\pi\)
0.999301 0.0373883i \(-0.0119038\pi\)
\(500\) 0 0
\(501\) 4.65031 + 3.37865i 0.207761 + 0.150947i
\(502\) 0 0
\(503\) −10.1206 31.1481i −0.451257 1.38883i −0.875474 0.483265i \(-0.839451\pi\)
0.424217 0.905560i \(-0.360549\pi\)
\(504\) 0 0
\(505\) −16.2851 −0.724677
\(506\) 0 0
\(507\) 6.65292 0.295467
\(508\) 0 0
\(509\) 4.85208 + 14.9332i 0.215065 + 0.661901i 0.999149 + 0.0412466i \(0.0131329\pi\)
−0.784084 + 0.620654i \(0.786867\pi\)
\(510\) 0 0
\(511\) 45.2998 + 32.9122i 2.00394 + 1.45595i
\(512\) 0 0
\(513\) −4.14650 + 12.7616i −0.183073 + 0.563439i
\(514\) 0 0
\(515\) −2.58124 + 1.87538i −0.113743 + 0.0826391i
\(516\) 0 0
\(517\) −0.934376 2.39874i −0.0410938 0.105496i
\(518\) 0 0
\(519\) −2.26891 + 1.64846i −0.0995939 + 0.0723592i
\(520\) 0 0
\(521\) −10.3905 + 31.9786i −0.455215 + 1.40101i 0.415668 + 0.909516i \(0.363548\pi\)
−0.870883 + 0.491490i \(0.836452\pi\)
\(522\) 0 0
\(523\) 18.5729 + 13.4940i 0.812136 + 0.590051i 0.914449 0.404701i \(-0.132624\pi\)
−0.102313 + 0.994752i \(0.532624\pi\)
\(524\) 0 0
\(525\) −0.400166 1.23158i −0.0174647 0.0537507i
\(526\) 0 0
\(527\) 8.54952 0.372423
\(528\) 0 0
\(529\) −22.1815 −0.964413
\(530\) 0 0
\(531\) 10.1303 + 31.1779i 0.439617 + 1.35300i
\(532\) 0 0
\(533\) 12.6503 + 9.19101i 0.547947 + 0.398107i
\(534\) 0 0
\(535\) −4.06801 + 12.5201i −0.175876 + 0.541289i
\(536\) 0 0
\(537\) −1.72113 + 1.25047i −0.0742720 + 0.0539618i
\(538\) 0 0
\(539\) −34.2506 22.0034i −1.47528 0.947756i
\(540\) 0 0
\(541\) 15.1914 11.0372i 0.653131 0.474528i −0.211205 0.977442i \(-0.567739\pi\)
0.864336 + 0.502914i \(0.167739\pi\)
\(542\) 0 0
\(543\) −2.13192 + 6.56136i −0.0914893 + 0.281575i
\(544\) 0 0
\(545\) −1.08030 0.784881i −0.0462748 0.0336206i
\(546\) 0 0
\(547\) 5.95740 + 18.3350i 0.254720 + 0.783947i 0.993885 + 0.110423i \(0.0352205\pi\)
−0.739165 + 0.673525i \(0.764780\pi\)
\(548\) 0 0
\(549\) −38.4218 −1.63980
\(550\) 0 0
\(551\) −36.4595 −1.55323
\(552\) 0 0
\(553\) 13.6091 + 41.8844i 0.578717 + 1.78111i
\(554\) 0 0
\(555\) 0.0441407 + 0.0320701i 0.00187367 + 0.00136130i
\(556\) 0 0
\(557\) −5.54314 + 17.0600i −0.234870 + 0.722857i 0.762268 + 0.647261i \(0.224086\pi\)
−0.997139 + 0.0755955i \(0.975914\pi\)
\(558\) 0 0
\(559\) −17.3579 + 12.6112i −0.734159 + 0.533398i
\(560\) 0 0
\(561\) −0.414525 + 1.57809i −0.0175012 + 0.0666270i
\(562\) 0 0
\(563\) 1.46665 1.06558i 0.0618120 0.0449090i −0.556450 0.830881i \(-0.687837\pi\)
0.618262 + 0.785972i \(0.287837\pi\)
\(564\) 0 0
\(565\) −0.517444 + 1.59253i −0.0217690 + 0.0669982i
\(566\) 0 0
\(567\) 29.2119 + 21.2237i 1.22678 + 0.891310i
\(568\) 0 0
\(569\) 2.63761 + 8.11773i 0.110574 + 0.340313i 0.990998 0.133874i \(-0.0427419\pi\)
−0.880424 + 0.474187i \(0.842742\pi\)
\(570\) 0 0
\(571\) −32.2491 −1.34958 −0.674792 0.738008i \(-0.735767\pi\)
−0.674792 + 0.738008i \(0.735767\pi\)
\(572\) 0 0
\(573\) −1.22873 −0.0513310
\(574\) 0 0
\(575\) −0.279570 0.860427i −0.0116589 0.0358823i
\(576\) 0 0
\(577\) −24.2423 17.6131i −1.00922 0.733243i −0.0451763 0.998979i \(-0.514385\pi\)
−0.964046 + 0.265736i \(0.914385\pi\)
\(578\) 0 0
\(579\) −2.11155 + 6.49868i −0.0877530 + 0.270076i
\(580\) 0 0
\(581\) 14.5456 10.5680i 0.603455 0.438435i
\(582\) 0 0
\(583\) 24.6335 20.1496i 1.02022 0.834512i
\(584\) 0 0
\(585\) 14.0523 10.2096i 0.580993 0.422116i
\(586\) 0 0
\(587\) 3.02941 9.32357i 0.125037 0.384825i −0.868871 0.495039i \(-0.835154\pi\)
0.993908 + 0.110214i \(0.0351537\pi\)
\(588\) 0 0
\(589\) 31.9057 + 23.1808i 1.31465 + 0.955149i
\(590\) 0 0
\(591\) 0.925223 + 2.84754i 0.0380586 + 0.117132i
\(592\) 0 0
\(593\) 15.4666 0.635136 0.317568 0.948235i \(-0.397134\pi\)
0.317568 + 0.948235i \(0.397134\pi\)
\(594\) 0 0
\(595\) 7.32228 0.300184
\(596\) 0 0
\(597\) −1.55072 4.77263i −0.0634668 0.195331i
\(598\) 0 0
\(599\) 0.225061 + 0.163516i 0.00919574 + 0.00668110i 0.592374 0.805663i \(-0.298191\pi\)
−0.583178 + 0.812344i \(0.698191\pi\)
\(600\) 0 0
\(601\) 9.27220 28.5369i 0.378221 1.16404i −0.563059 0.826417i \(-0.690376\pi\)
0.941280 0.337628i \(-0.109624\pi\)
\(602\) 0 0
\(603\) −18.3809 + 13.3545i −0.748528 + 0.543837i
\(604\) 0 0
\(605\) −9.58002 5.40586i −0.389483 0.219779i
\(606\) 0 0
\(607\) 18.0387 13.1059i 0.732169 0.531952i −0.158080 0.987426i \(-0.550530\pi\)
0.890249 + 0.455474i \(0.150530\pi\)
\(608\) 0 0
\(609\) 1.89638 5.83646i 0.0768452 0.236505i
\(610\) 0 0
\(611\) 3.74430 + 2.72040i 0.151478 + 0.110055i
\(612\) 0 0
\(613\) −8.76829 26.9860i −0.354148 1.08996i −0.956502 0.291726i \(-0.905770\pi\)
0.602354 0.798229i \(-0.294230\pi\)
\(614\) 0 0
\(615\) −0.773501 −0.0311906
\(616\) 0 0
\(617\) −15.1603 −0.610332 −0.305166 0.952299i \(-0.598712\pi\)
−0.305166 + 0.952299i \(0.598712\pi\)
\(618\) 0 0
\(619\) −9.12336 28.0788i −0.366699 1.12858i −0.948910 0.315545i \(-0.897813\pi\)
0.582212 0.813037i \(-0.302187\pi\)
\(620\) 0 0
\(621\) −1.27656 0.927473i −0.0512265 0.0372182i
\(622\) 0 0
\(623\) 0.632600 1.94694i 0.0253446 0.0780026i
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 0 0
\(627\) −5.82572 + 4.76529i −0.232657 + 0.190307i
\(628\) 0 0
\(629\) −0.249591 + 0.181338i −0.00995184 + 0.00723043i
\(630\) 0 0
\(631\) −14.1188 + 43.4532i −0.562061 + 1.72985i 0.114466 + 0.993427i \(0.463484\pi\)
−0.676527 + 0.736418i \(0.736516\pi\)
\(632\) 0 0
\(633\) 1.43565 + 1.04306i 0.0570618 + 0.0414579i
\(634\) 0 0
\(635\) 0.278570 + 0.857349i 0.0110547 + 0.0340229i
\(636\) 0 0
\(637\) 73.1897 2.89988
\(638\) 0 0
\(639\) 20.3057 0.803281
\(640\) 0 0
\(641\) 11.1602 + 34.3475i 0.440801 + 1.35665i 0.887024 + 0.461724i \(0.152769\pi\)
−0.446223 + 0.894922i \(0.647231\pi\)
\(642\) 0 0
\(643\) 27.0998 + 19.6892i 1.06871 + 0.776465i 0.975680 0.219198i \(-0.0703442\pi\)
0.0930318 + 0.995663i \(0.470344\pi\)
\(644\) 0 0
\(645\) 0.327972 1.00939i 0.0129139 0.0397449i
\(646\) 0 0
\(647\) −31.7188 + 23.0451i −1.24700 + 0.905996i −0.998044 0.0625198i \(-0.980086\pi\)
−0.248953 + 0.968516i \(0.580086\pi\)
\(648\) 0 0
\(649\) −9.48258 + 36.1000i −0.372224 + 1.41705i
\(650\) 0 0
\(651\) −5.37032 + 3.90177i −0.210480 + 0.152922i
\(652\) 0 0
\(653\) 7.65109 23.5476i 0.299410 0.921491i −0.682294 0.731078i \(-0.739017\pi\)
0.981704 0.190412i \(-0.0609825\pi\)
\(654\) 0 0
\(655\) 11.7734 + 8.55388i 0.460025 + 0.334228i
\(656\) 0 0
\(657\) −11.4808 35.3342i −0.447907 1.37852i
\(658\) 0 0
\(659\) 24.8813 0.969238 0.484619 0.874725i \(-0.338958\pi\)
0.484619 + 0.874725i \(0.338958\pi\)
\(660\) 0 0
\(661\) −5.94396 −0.231193 −0.115597 0.993296i \(-0.536878\pi\)
−0.115597 + 0.993296i \(0.536878\pi\)
\(662\) 0 0
\(663\) −0.906478 2.78985i −0.0352047 0.108349i
\(664\) 0 0
\(665\) 27.3258 + 19.8533i 1.05965 + 0.769879i
\(666\) 0 0
\(667\) 1.32488 4.07755i 0.0512995 0.157883i
\(668\) 0 0
\(669\) −0.595161 + 0.432410i −0.0230103 + 0.0167179i
\(670\) 0 0
\(671\) −36.8051 23.6445i −1.42085 0.912786i
\(672\) 0 0
\(673\) −30.6213 + 22.2477i −1.18036 + 0.857585i −0.992213 0.124555i \(-0.960250\pi\)
−0.188152 + 0.982140i \(0.560250\pi\)
\(674\) 0 0
\(675\) −0.538961 + 1.65875i −0.0207446 + 0.0638454i
\(676\) 0 0
\(677\) −0.153794 0.111738i −0.00591078 0.00429443i 0.584826 0.811159i \(-0.301163\pi\)
−0.590737 + 0.806864i \(0.701163\pi\)
\(678\) 0 0
\(679\) −9.63181 29.6437i −0.369635 1.13762i
\(680\) 0 0
\(681\) −7.37267 −0.282521
\(682\) 0 0
\(683\) 23.0773 0.883030 0.441515 0.897254i \(-0.354441\pi\)
0.441515 + 0.897254i \(0.354441\pi\)
\(684\) 0 0
\(685\) −6.36251 19.5818i −0.243099 0.748182i
\(686\) 0 0
\(687\) 0.661201 + 0.480391i 0.0252264 + 0.0183281i
\(688\) 0 0
\(689\) −17.6808 + 54.4160i −0.673586 + 2.07308i
\(690\) 0 0
\(691\) −37.7877 + 27.4544i −1.43751 + 1.04441i −0.448958 + 0.893553i \(0.648205\pi\)
−0.988555 + 0.150862i \(0.951795\pi\)
\(692\) 0 0
\(693\) 15.3953 + 39.5231i 0.584821 + 1.50136i
\(694\) 0 0
\(695\) 12.1224 8.80746i 0.459830 0.334086i
\(696\) 0 0
\(697\) 1.35155 4.15965i 0.0511936 0.157558i
\(698\) 0 0
\(699\) 2.29091 + 1.66444i 0.0866501 + 0.0629550i
\(700\) 0 0
\(701\) 1.28934 + 3.96818i 0.0486977 + 0.149876i 0.972448 0.233118i \(-0.0748929\pi\)
−0.923751 + 0.382994i \(0.874893\pi\)
\(702\) 0 0
\(703\) −1.42311 −0.0536737
\(704\) 0 0
\(705\) −0.228944 −0.00862254
\(706\) 0 0
\(707\) 22.0934 + 67.9965i 0.830908 + 2.55727i
\(708\) 0 0
\(709\) 7.07305 + 5.13887i 0.265634 + 0.192994i 0.712627 0.701543i \(-0.247505\pi\)
−0.446993 + 0.894537i \(0.647505\pi\)
\(710\) 0 0
\(711\) 9.02981 27.7909i 0.338644 1.04224i
\(712\) 0 0
\(713\) −3.75189 + 2.72591i −0.140510 + 0.102086i
\(714\) 0 0
\(715\) 19.7440 1.13232i 0.738382 0.0423462i
\(716\) 0 0
\(717\) −3.52438 + 2.56061i −0.131620 + 0.0956278i
\(718\) 0 0
\(719\) −2.28722 + 7.03934i −0.0852990 + 0.262523i −0.984604 0.174798i \(-0.944073\pi\)
0.899305 + 0.437321i \(0.144073\pi\)
\(720\) 0 0
\(721\) 11.3323 + 8.23340i 0.422037 + 0.306628i
\(722\) 0 0
\(723\) −0.951024 2.92695i −0.0353690 0.108854i
\(724\) 0 0
\(725\) −4.73899 −0.176002
\(726\) 0 0
\(727\) 18.0187 0.668275 0.334137 0.942524i \(-0.391555\pi\)
0.334137 + 0.942524i \(0.391555\pi\)
\(728\) 0 0
\(729\) −6.92653 21.3177i −0.256538 0.789543i
\(730\) 0 0
\(731\) 4.85514 + 3.52746i 0.179574 + 0.130468i
\(732\) 0 0
\(733\) −11.2463 + 34.6127i −0.415393 + 1.27845i 0.496506 + 0.868033i \(0.334616\pi\)
−0.911899 + 0.410415i \(0.865384\pi\)
\(734\) 0 0
\(735\) −2.92903 + 2.12806i −0.108039 + 0.0784948i
\(736\) 0 0
\(737\) −25.8257 + 1.48110i −0.951302 + 0.0545572i
\(738\) 0 0
\(739\) 10.0576 7.30726i 0.369974 0.268802i −0.387226 0.921985i \(-0.626567\pi\)
0.757200 + 0.653183i \(0.226567\pi\)
\(740\) 0 0
\(741\) 4.18144 12.8691i 0.153609 0.472759i
\(742\) 0 0
\(743\) −30.2327 21.9653i −1.10913 0.805829i −0.126602 0.991954i \(-0.540407\pi\)
−0.982526 + 0.186125i \(0.940407\pi\)
\(744\) 0 0
\(745\) 3.38762 + 10.4260i 0.124113 + 0.381980i
\(746\) 0 0
\(747\) −11.9296 −0.436480
\(748\) 0 0
\(749\) 57.7950 2.11178
\(750\) 0 0
\(751\) −2.44111 7.51295i −0.0890772 0.274151i 0.896588 0.442866i \(-0.146038\pi\)
−0.985665 + 0.168715i \(0.946038\pi\)
\(752\) 0 0
\(753\) 1.60692 + 1.16749i 0.0585594 + 0.0425459i
\(754\) 0 0
\(755\) −1.82682 + 5.62238i −0.0664848 + 0.204619i
\(756\) 0 0
\(757\) 2.56487 1.86349i 0.0932219 0.0677297i −0.540198 0.841538i \(-0.681651\pi\)
0.633420 + 0.773808i \(0.281651\pi\)
\(758\) 0 0
\(759\) −0.321244 0.824699i −0.0116604 0.0299347i
\(760\) 0 0
\(761\) −37.8368 + 27.4901i −1.37158 + 0.996514i −0.373972 + 0.927440i \(0.622004\pi\)
−0.997612 + 0.0690739i \(0.977996\pi\)
\(762\) 0 0
\(763\) −1.81158 + 5.57547i −0.0655836 + 0.201845i
\(764\) 0 0
\(765\) −3.93056 2.85572i −0.142110 0.103249i
\(766\) 0 0
\(767\) −20.7364 63.8201i −0.748748 2.30441i
\(768\) 0 0
\(769\) −1.95610 −0.0705388 −0.0352694 0.999378i \(-0.511229\pi\)
−0.0352694 + 0.999378i \(0.511229\pi\)
\(770\) 0 0
\(771\) 2.28358 0.0822411
\(772\) 0 0
\(773\) −6.31718 19.4423i −0.227213 0.699290i −0.998059 0.0622690i \(-0.980166\pi\)
0.770846 0.637021i \(-0.219834\pi\)
\(774\) 0 0
\(775\) 4.14709 + 3.01303i 0.148968 + 0.108231i
\(776\) 0 0
\(777\) 0.0740209 0.227813i 0.00265548 0.00817274i
\(778\) 0 0
\(779\) 16.3221 11.8587i 0.584800 0.424882i
\(780\) 0 0
\(781\) 19.4513 + 12.4960i 0.696021 + 0.447141i
\(782\) 0 0
\(783\) −6.68680 + 4.85825i −0.238967 + 0.173620i
\(784\) 0 0
\(785\) −1.36780 + 4.20964i −0.0488187 + 0.150249i
\(786\) 0 0
\(787\) 2.09694 + 1.52351i 0.0747478 + 0.0543074i 0.624532 0.781000i \(-0.285290\pi\)
−0.549784 + 0.835307i \(0.685290\pi\)
\(788\) 0 0
\(789\) 1.65542 + 5.09486i 0.0589346 + 0.181382i
\(790\) 0 0
\(791\) 7.35141 0.261386
\(792\) 0 0
\(793\) 78.6483 2.79288
\(794\) 0 0
\(795\) −0.874619 2.69180i −0.0310196 0.0954684i
\(796\) 0 0
\(797\) −18.1112 13.1586i −0.641532 0.466100i 0.218844 0.975760i \(-0.429771\pi\)
−0.860376 + 0.509660i \(0.829771\pi\)
\(798\) 0 0
\(799\) 0.400038 1.23119i 0.0141523 0.0435564i
\(800\) 0 0
\(801\) −1.09889 + 0.798390i −0.0388274 + 0.0282097i
\(802\) 0 0
\(803\) 10.7467 40.9125i 0.379243 1.44377i
\(804\) 0 0
\(805\) −3.21333 + 2.33462i −0.113255 + 0.0822845i
\(806\) 0 0
\(807\) −0.977727 + 3.00913i −0.0344176 + 0.105927i
\(808\) 0 0
\(809\) −9.67269 7.02762i −0.340074 0.247078i 0.404619 0.914485i \(-0.367404\pi\)
−0.744693 + 0.667407i \(0.767404\pi\)
\(810\) 0 0
\(811\) 5.70741 + 17.5656i 0.200414 + 0.616812i 0.999871 + 0.0160875i \(0.00512103\pi\)
−0.799456 + 0.600724i \(0.794879\pi\)
\(812\) 0 0
\(813\) −5.54162 −0.194353
\(814\) 0 0
\(815\) −7.38464 −0.258673
\(816\) 0 0
\(817\) 8.55449 + 26.3280i 0.299284 + 0.921101i
\(818\) 0 0
\(819\) −61.6934 44.8229i −2.15574 1.56624i
\(820\) 0 0
\(821\) 17.1422 52.7584i 0.598268 1.84128i 0.0605325 0.998166i \(-0.480720\pi\)
0.537736 0.843114i \(-0.319280\pi\)
\(822\) 0 0
\(823\) −35.3648 + 25.6940i −1.23274 + 0.895637i −0.997092 0.0762021i \(-0.975721\pi\)
−0.235646 + 0.971839i \(0.575721\pi\)
\(824\) 0 0
\(825\) −0.757225 + 0.619391i −0.0263632 + 0.0215644i
\(826\) 0 0
\(827\) −25.6778 + 18.6560i −0.892906 + 0.648734i −0.936634 0.350309i \(-0.886076\pi\)
0.0437281 + 0.999043i \(0.486076\pi\)
\(828\) 0 0
\(829\) −10.8249 + 33.3157i −0.375966 + 1.15710i 0.566859 + 0.823815i \(0.308158\pi\)
−0.942825 + 0.333289i \(0.891842\pi\)
\(830\) 0 0
\(831\) −6.88368 5.00129i −0.238792 0.173493i
\(832\) 0 0
\(833\) −6.32612 19.4698i −0.219187 0.674589i
\(834\) 0 0
\(835\) −19.4876 −0.674394
\(836\) 0 0
\(837\) 8.94047 0.309028
\(838\) 0 0
\(839\) −4.89922 15.0783i −0.169140 0.520559i 0.830177 0.557499i \(-0.188239\pi\)
−0.999317 + 0.0369398i \(0.988239\pi\)
\(840\) 0 0
\(841\) 5.29256 + 3.84527i 0.182502 + 0.132596i
\(842\) 0 0
\(843\) 2.46595 7.58941i 0.0849318 0.261393i
\(844\) 0 0
\(845\) −18.2475 + 13.2576i −0.627732 + 0.456074i
\(846\) 0 0
\(847\) −9.57465 + 47.3342i −0.328989 + 1.62642i
\(848\) 0 0
\(849\) −3.07191 + 2.23188i −0.105428 + 0.0765978i
\(850\) 0 0
\(851\) 0.0517136 0.159158i 0.00177272 0.00545586i
\(852\) 0 0
\(853\) 18.2728 + 13.2760i 0.625650 + 0.454561i 0.854890 0.518809i \(-0.173624\pi\)
−0.229241 + 0.973370i \(0.573624\pi\)
\(854\) 0 0
\(855\) −6.92543 21.3143i −0.236845 0.728933i
\(856\) 0 0
\(857\) 40.9108 1.39749 0.698744 0.715372i \(-0.253743\pi\)
0.698744 + 0.715372i \(0.253743\pi\)
\(858\) 0 0
\(859\) 15.9523 0.544284 0.272142 0.962257i \(-0.412268\pi\)
0.272142 + 0.962257i \(0.412268\pi\)
\(860\) 0 0
\(861\) 1.04938 + 3.22966i 0.0357628 + 0.110067i
\(862\) 0 0
\(863\) −5.89687 4.28433i −0.200732 0.145840i 0.482879 0.875687i \(-0.339591\pi\)
−0.683610 + 0.729847i \(0.739591\pi\)
\(864\) 0 0
\(865\) 2.93815 9.04269i 0.0999000 0.307461i
\(866\) 0 0
\(867\) 3.39291 2.46509i 0.115229 0.0837189i
\(868\) 0 0
\(869\) 25.7521 21.0646i 0.873582 0.714568i
\(870\) 0 0
\(871\) 37.6251 27.3362i 1.27488 0.926253i
\(872\) 0 0
\(873\) −6.39084 + 19.6690i −0.216297 + 0.665694i
\(874\) 0 0
\(875\) 3.55179 + 2.58053i 0.120072 + 0.0872378i
\(876\) 0 0
\(877\) 2.20860 + 6.79737i 0.0745791 + 0.229531i 0.981396 0.191993i \(-0.0614952\pi\)
−0.906817 + 0.421524i \(0.861495\pi\)
\(878\) 0 0
\(879\) 1.73696 0.0585861
\(880\) 0 0
\(881\) −17.5763 −0.592160 −0.296080 0.955163i \(-0.595680\pi\)
−0.296080 + 0.955163i \(0.595680\pi\)
\(882\) 0 0
\(883\) −1.93709 5.96175i −0.0651882 0.200629i 0.913157 0.407608i \(-0.133637\pi\)
−0.978345 + 0.206979i \(0.933637\pi\)
\(884\) 0 0
\(885\) 2.68550 + 1.95113i 0.0902720 + 0.0655865i
\(886\) 0 0
\(887\) −7.62945 + 23.4810i −0.256172 + 0.788416i 0.737425 + 0.675429i \(0.236042\pi\)
−0.993597 + 0.112986i \(0.963958\pi\)
\(888\) 0 0
\(889\) 3.20184 2.32627i 0.107386 0.0780206i
\(890\) 0 0
\(891\) 6.93008 26.3827i 0.232166 0.883854i
\(892\) 0 0
\(893\) 4.83108 3.50999i 0.161666 0.117457i
\(894\) 0 0
\(895\) 2.22879 6.85952i 0.0745003 0.229288i
\(896\) 0 0
\(897\) 1.28731 + 0.935286i 0.0429821 + 0.0312283i
\(898\) 0 0
\(899\) 7.50678 + 23.1035i 0.250365 + 0.770545i
\(900\) 0 0
\(901\) 16.0039 0.533167
\(902\) 0 0
\(903\) −4.65956 −0.155060
\(904\) 0 0
\(905\) −7.22774 22.2447i −0.240258 0.739439i
\(906\) 0 0
\(907\) −20.5798 14.9521i −0.683340 0.496476i 0.191124 0.981566i \(-0.438787\pi\)
−0.874464 + 0.485090i \(0.838787\pi\)
\(908\) 0 0
\(909\) 14.6593 45.1166i 0.486218 1.49642i
\(910\) 0 0
\(911\) 19.8448 14.4181i 0.657489 0.477694i −0.208325 0.978060i \(-0.566801\pi\)
0.865814 + 0.500366i \(0.166801\pi\)
\(912\) 0 0
\(913\) −11.4276 7.34137i −0.378198 0.242964i
\(914\) 0 0
\(915\) −3.14748 + 2.28678i −0.104053 + 0.0755986i
\(916\) 0 0
\(917\) 19.7432 60.7632i 0.651977 2.00658i
\(918\) 0 0
\(919\) −17.1714 12.4757i −0.566432 0.411537i 0.267376 0.963592i \(-0.413844\pi\)
−0.833807 + 0.552056i \(0.813844\pi\)
\(920\) 0 0
\(921\) 0.625136 + 1.92397i 0.0205989 + 0.0633970i
\(922\) 0 0
\(923\) −41.5651 −1.36813
\(924\) 0 0
\(925\) −0.184976 −0.00608196
\(926\) 0 0
\(927\) −2.87206 8.83928i −0.0943307 0.290320i
\(928\) 0 0
\(929\) −27.7116 20.1337i −0.909190 0.660565i 0.0316201 0.999500i \(-0.489933\pi\)
−0.940810 + 0.338935i \(0.889933\pi\)
\(930\) 0 0
\(931\) 29.1814 89.8110i 0.956381 2.94344i
\(932\) 0 0
\(933\) 3.40508 2.47394i 0.111477 0.0809931i
\(934\) 0 0
\(935\) −2.00778 5.15439i −0.0656614 0.168566i
\(936\) 0 0
\(937\) −28.2608 + 20.5326i −0.923239 + 0.670772i −0.944328 0.329005i \(-0.893287\pi\)
0.0210892 + 0.999778i \(0.493287\pi\)
\(938\) 0 0
\(939\) 0.145813 0.448766i 0.00475842 0.0146449i
\(940\) 0 0
\(941\) 15.1298 + 10.9924i 0.493216 + 0.358343i 0.806420 0.591343i \(-0.201402\pi\)
−0.313203 + 0.949686i \(0.601402\pi\)
\(942\) 0 0
\(943\) 0.733134 + 2.25636i 0.0238741 + 0.0734770i
\(944\) 0 0
\(945\) 7.65711 0.249086
\(946\) 0 0
\(947\) 12.7418 0.414052 0.207026 0.978335i \(-0.433621\pi\)
0.207026 + 0.978335i \(0.433621\pi\)
\(948\) 0 0
\(949\) 23.5008 + 72.3279i 0.762867 + 2.34786i
\(950\) 0 0
\(951\) 7.36307 + 5.34958i 0.238764 + 0.173472i
\(952\) 0 0
\(953\) 1.78515 5.49412i 0.0578266 0.177972i −0.917971 0.396647i \(-0.870174\pi\)
0.975798 + 0.218675i \(0.0701736\pi\)
\(954\) 0 0
\(955\) 3.37013 2.44855i 0.109055 0.0792331i
\(956\) 0 0
\(957\) −4.62846 + 0.265442i −0.149617 + 0.00858053i
\(958\) 0 0
\(959\) −73.1297 + 53.1318i −2.36148 + 1.71572i
\(960\) 0 0
\(961\) −1.45958 + 4.49212i −0.0470832 + 0.144907i
\(962\) 0 0
\(963\) −31.0240 22.5402i −0.999734 0.726349i
\(964\) 0 0
\(965\) −7.15870 22.0322i −0.230447 0.709242i
\(966\) 0 0
\(967\) −36.2900 −1.16701 −0.583504 0.812110i \(-0.698319\pi\)
−0.583504 + 0.812110i \(0.698319\pi\)
\(968\) 0 0
\(969\) −3.78485 −0.121587
\(970\) 0 0
\(971\) −2.15967 6.64677i −0.0693070 0.213305i 0.910404 0.413720i \(-0.135771\pi\)
−0.979711 + 0.200415i \(0.935771\pi\)
\(972\) 0 0
\(973\) −53.2206 38.6670i −1.70617 1.23961i
\(974\) 0 0
\(975\) 0.543502 1.67273i 0.0174060 0.0535701i
\(976\) 0 0
\(977\) −21.0340 + 15.2821i −0.672936 + 0.488917i −0.871007 0.491271i \(-0.836532\pi\)
0.198071 + 0.980188i \(0.436532\pi\)
\(978\) 0 0
\(979\) −1.54397 + 0.0885469i −0.0493456 + 0.00282997i
\(980\) 0 0
\(981\) 3.14690 2.28636i 0.100473 0.0729977i
\(982\) 0 0
\(983\) 8.85213 27.2441i 0.282339 0.868951i −0.704844 0.709362i \(-0.748983\pi\)
0.987184 0.159589i \(-0.0510168\pi\)
\(984\) 0 0
\(985\) −8.21211 5.96644i −0.261659 0.190107i
\(986\) 0 0
\(987\) 0.310600 + 0.955930i 0.00988652 + 0.0304276i
\(988\) 0 0
\(989\) −3.25533 −0.103513
\(990\) 0 0
\(991\) 27.9673 0.888409 0.444205 0.895925i \(-0.353486\pi\)
0.444205 + 0.895925i \(0.353486\pi\)
\(992\) 0 0
\(993\) −0.106476 0.327700i −0.00337892 0.0103992i
\(994\) 0 0
\(995\) 13.7639 + 10.0001i 0.436345 + 0.317023i
\(996\) 0 0
\(997\) 4.03510 12.4188i 0.127793 0.393307i −0.866607 0.498992i \(-0.833704\pi\)
0.994400 + 0.105686i \(0.0337037\pi\)
\(998\) 0 0
\(999\) −0.261004 + 0.189631i −0.00825780 + 0.00599964i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 440.2.y.a.201.2 yes 8
4.3 odd 2 880.2.bo.d.641.1 8
11.2 odd 10 4840.2.a.z.1.3 4
11.4 even 5 inner 440.2.y.a.81.2 8
11.9 even 5 4840.2.a.y.1.3 4
44.15 odd 10 880.2.bo.d.81.1 8
44.31 odd 10 9680.2.a.cu.1.2 4
44.35 even 10 9680.2.a.ct.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.y.a.81.2 8 11.4 even 5 inner
440.2.y.a.201.2 yes 8 1.1 even 1 trivial
880.2.bo.d.81.1 8 44.15 odd 10
880.2.bo.d.641.1 8 4.3 odd 2
4840.2.a.y.1.3 4 11.9 even 5
4840.2.a.z.1.3 4 11.2 odd 10
9680.2.a.ct.1.2 4 44.35 even 10
9680.2.a.cu.1.2 4 44.31 odd 10