Properties

Label 440.2.v.b.153.12
Level $440$
Weight $2$
Character 440.153
Analytic conductor $3.513$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [440,2,Mod(153,440)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("440.153"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(440, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 440.v (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.51341768894\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 153.12
Character \(\chi\) \(=\) 440.153
Dual form 440.2.v.b.417.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.395428 + 0.395428i) q^{3} +(-0.0577165 - 2.23532i) q^{5} +(2.57694 + 2.57694i) q^{7} -2.68727i q^{9} +(-2.35988 - 2.33045i) q^{11} +(1.81117 - 1.81117i) q^{13} +(0.861087 - 0.906733i) q^{15} +(2.63935 + 2.63935i) q^{17} +4.84582 q^{19} +2.03799i q^{21} +(-0.648703 - 0.648703i) q^{23} +(-4.99334 + 0.258030i) q^{25} +(2.24891 - 2.24891i) q^{27} -9.19512 q^{29} +9.88551 q^{31} +(-0.0116379 - 1.85469i) q^{33} +(5.61155 - 5.90901i) q^{35} +(7.37845 - 7.37845i) q^{37} +1.43238 q^{39} +5.37784i q^{41} +(-2.39070 + 2.39070i) q^{43} +(-6.00692 + 0.155100i) q^{45} +(-2.29033 + 2.29033i) q^{47} +6.28119i q^{49} +2.08734i q^{51} +(-3.34356 - 3.34356i) q^{53} +(-5.07310 + 5.40959i) q^{55} +(1.91618 + 1.91618i) q^{57} +11.1958i q^{59} +6.46922i q^{61} +(6.92493 - 6.92493i) q^{63} +(-4.15309 - 3.94402i) q^{65} +(-0.909029 + 0.909029i) q^{67} -0.513031i q^{69} -5.95422 q^{71} +(-1.99610 + 1.99610i) q^{73} +(-2.07654 - 1.87247i) q^{75} +(-0.0758421 - 12.0867i) q^{77} -7.61472 q^{79} -6.28326 q^{81} +(-4.50707 + 4.50707i) q^{83} +(5.74746 - 6.05212i) q^{85} +(-3.63601 - 3.63601i) q^{87} +2.85642i q^{89} +9.33455 q^{91} +(3.90901 + 3.90901i) q^{93} +(-0.279684 - 10.8320i) q^{95} +(-8.73192 + 8.73192i) q^{97} +(-6.26254 + 6.34163i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 4 q^{3} + 8 q^{5} - 8 q^{11} + 24 q^{15} - 28 q^{23} + 4 q^{25} - 4 q^{27} + 24 q^{31} - 12 q^{33} + 4 q^{37} - 28 q^{45} + 8 q^{47} + 24 q^{53} + 12 q^{55} - 52 q^{67} + 48 q^{71} - 24 q^{75} + 56 q^{77}+ \cdots - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/440\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(221\) \(321\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.395428 + 0.395428i 0.228301 + 0.228301i 0.811982 0.583682i \(-0.198388\pi\)
−0.583682 + 0.811982i \(0.698388\pi\)
\(4\) 0 0
\(5\) −0.0577165 2.23532i −0.0258116 0.999667i
\(6\) 0 0
\(7\) 2.57694 + 2.57694i 0.973990 + 0.973990i 0.999670 0.0256803i \(-0.00817518\pi\)
−0.0256803 + 0.999670i \(0.508175\pi\)
\(8\) 0 0
\(9\) 2.68727i 0.895758i
\(10\) 0 0
\(11\) −2.35988 2.33045i −0.711530 0.702656i
\(12\) 0 0
\(13\) 1.81117 1.81117i 0.502329 0.502329i −0.409832 0.912161i \(-0.634413\pi\)
0.912161 + 0.409832i \(0.134413\pi\)
\(14\) 0 0
\(15\) 0.861087 0.906733i 0.222332 0.234117i
\(16\) 0 0
\(17\) 2.63935 + 2.63935i 0.640135 + 0.640135i 0.950589 0.310453i \(-0.100481\pi\)
−0.310453 + 0.950589i \(0.600481\pi\)
\(18\) 0 0
\(19\) 4.84582 1.11171 0.555854 0.831280i \(-0.312391\pi\)
0.555854 + 0.831280i \(0.312391\pi\)
\(20\) 0 0
\(21\) 2.03799i 0.444725i
\(22\) 0 0
\(23\) −0.648703 0.648703i −0.135264 0.135264i 0.636233 0.771497i \(-0.280492\pi\)
−0.771497 + 0.636233i \(0.780492\pi\)
\(24\) 0 0
\(25\) −4.99334 + 0.258030i −0.998668 + 0.0516060i
\(26\) 0 0
\(27\) 2.24891 2.24891i 0.432803 0.432803i
\(28\) 0 0
\(29\) −9.19512 −1.70749 −0.853746 0.520690i \(-0.825675\pi\)
−0.853746 + 0.520690i \(0.825675\pi\)
\(30\) 0 0
\(31\) 9.88551 1.77549 0.887745 0.460335i \(-0.152271\pi\)
0.887745 + 0.460335i \(0.152271\pi\)
\(32\) 0 0
\(33\) −0.0116379 1.85469i −0.00202590 0.322859i
\(34\) 0 0
\(35\) 5.61155 5.90901i 0.948525 0.998806i
\(36\) 0 0
\(37\) 7.37845 7.37845i 1.21301 1.21301i 0.242978 0.970032i \(-0.421876\pi\)
0.970032 0.242978i \(-0.0781242\pi\)
\(38\) 0 0
\(39\) 1.43238 0.229364
\(40\) 0 0
\(41\) 5.37784i 0.839877i 0.907553 + 0.419939i \(0.137948\pi\)
−0.907553 + 0.419939i \(0.862052\pi\)
\(42\) 0 0
\(43\) −2.39070 + 2.39070i −0.364578 + 0.364578i −0.865495 0.500917i \(-0.832996\pi\)
0.500917 + 0.865495i \(0.332996\pi\)
\(44\) 0 0
\(45\) −6.00692 + 0.155100i −0.895459 + 0.0231209i
\(46\) 0 0
\(47\) −2.29033 + 2.29033i −0.334079 + 0.334079i −0.854133 0.520054i \(-0.825912\pi\)
0.520054 + 0.854133i \(0.325912\pi\)
\(48\) 0 0
\(49\) 6.28119i 0.897313i
\(50\) 0 0
\(51\) 2.08734i 0.292287i
\(52\) 0 0
\(53\) −3.34356 3.34356i −0.459274 0.459274i 0.439143 0.898417i \(-0.355282\pi\)
−0.898417 + 0.439143i \(0.855282\pi\)
\(54\) 0 0
\(55\) −5.07310 + 5.40959i −0.684056 + 0.729429i
\(56\) 0 0
\(57\) 1.91618 + 1.91618i 0.253804 + 0.253804i
\(58\) 0 0
\(59\) 11.1958i 1.45757i 0.684742 + 0.728786i \(0.259915\pi\)
−0.684742 + 0.728786i \(0.740085\pi\)
\(60\) 0 0
\(61\) 6.46922i 0.828299i 0.910209 + 0.414149i \(0.135921\pi\)
−0.910209 + 0.414149i \(0.864079\pi\)
\(62\) 0 0
\(63\) 6.92493 6.92493i 0.872459 0.872459i
\(64\) 0 0
\(65\) −4.15309 3.94402i −0.515128 0.489196i
\(66\) 0 0
\(67\) −0.909029 + 0.909029i −0.111056 + 0.111056i −0.760451 0.649395i \(-0.775022\pi\)
0.649395 + 0.760451i \(0.275022\pi\)
\(68\) 0 0
\(69\) 0.513031i 0.0617616i
\(70\) 0 0
\(71\) −5.95422 −0.706636 −0.353318 0.935503i \(-0.614947\pi\)
−0.353318 + 0.935503i \(0.614947\pi\)
\(72\) 0 0
\(73\) −1.99610 + 1.99610i −0.233626 + 0.233626i −0.814205 0.580578i \(-0.802827\pi\)
0.580578 + 0.814205i \(0.302827\pi\)
\(74\) 0 0
\(75\) −2.07654 1.87247i −0.239778 0.216215i
\(76\) 0 0
\(77\) −0.0758421 12.0867i −0.00864301 1.37740i
\(78\) 0 0
\(79\) −7.61472 −0.856723 −0.428361 0.903608i \(-0.640909\pi\)
−0.428361 + 0.903608i \(0.640909\pi\)
\(80\) 0 0
\(81\) −6.28326 −0.698139
\(82\) 0 0
\(83\) −4.50707 + 4.50707i −0.494716 + 0.494716i −0.909788 0.415073i \(-0.863756\pi\)
0.415073 + 0.909788i \(0.363756\pi\)
\(84\) 0 0
\(85\) 5.74746 6.05212i 0.623399 0.656445i
\(86\) 0 0
\(87\) −3.63601 3.63601i −0.389821 0.389821i
\(88\) 0 0
\(89\) 2.85642i 0.302780i 0.988474 + 0.151390i \(0.0483749\pi\)
−0.988474 + 0.151390i \(0.951625\pi\)
\(90\) 0 0
\(91\) 9.33455 0.978527
\(92\) 0 0
\(93\) 3.90901 + 3.90901i 0.405346 + 0.405346i
\(94\) 0 0
\(95\) −0.279684 10.8320i −0.0286949 1.11134i
\(96\) 0 0
\(97\) −8.73192 + 8.73192i −0.886592 + 0.886592i −0.994194 0.107602i \(-0.965683\pi\)
0.107602 + 0.994194i \(0.465683\pi\)
\(98\) 0 0
\(99\) −6.26254 + 6.34163i −0.629409 + 0.637358i
\(100\) 0 0
\(101\) 10.9116i 1.08574i −0.839816 0.542871i \(-0.817337\pi\)
0.839816 0.542871i \(-0.182663\pi\)
\(102\) 0 0
\(103\) −11.2923 11.2923i −1.11267 1.11267i −0.992789 0.119877i \(-0.961750\pi\)
−0.119877 0.992789i \(-0.538250\pi\)
\(104\) 0 0
\(105\) 4.55556 0.117625i 0.444577 0.0114791i
\(106\) 0 0
\(107\) 10.0693 + 10.0693i 0.973433 + 0.973433i 0.999656 0.0262235i \(-0.00834814\pi\)
−0.0262235 + 0.999656i \(0.508348\pi\)
\(108\) 0 0
\(109\) −20.1342 −1.92851 −0.964254 0.264979i \(-0.914635\pi\)
−0.964254 + 0.264979i \(0.914635\pi\)
\(110\) 0 0
\(111\) 5.83530 0.553862
\(112\) 0 0
\(113\) 1.80030 + 1.80030i 0.169358 + 0.169358i 0.786697 0.617339i \(-0.211789\pi\)
−0.617339 + 0.786697i \(0.711789\pi\)
\(114\) 0 0
\(115\) −1.41262 + 1.48750i −0.131727 + 0.138710i
\(116\) 0 0
\(117\) −4.86712 4.86712i −0.449965 0.449965i
\(118\) 0 0
\(119\) 13.6028i 1.24697i
\(120\) 0 0
\(121\) 0.138042 + 10.9991i 0.0125492 + 0.999921i
\(122\) 0 0
\(123\) −2.12655 + 2.12655i −0.191744 + 0.191744i
\(124\) 0 0
\(125\) 0.864978 + 11.1468i 0.0773660 + 0.997003i
\(126\) 0 0
\(127\) 6.52447 + 6.52447i 0.578953 + 0.578953i 0.934615 0.355662i \(-0.115744\pi\)
−0.355662 + 0.934615i \(0.615744\pi\)
\(128\) 0 0
\(129\) −1.89070 −0.166467
\(130\) 0 0
\(131\) 2.86084i 0.249952i −0.992160 0.124976i \(-0.960115\pi\)
0.992160 0.124976i \(-0.0398855\pi\)
\(132\) 0 0
\(133\) 12.4874 + 12.4874i 1.08279 + 1.08279i
\(134\) 0 0
\(135\) −5.15684 4.89724i −0.443830 0.421487i
\(136\) 0 0
\(137\) 0.844340 0.844340i 0.0721368 0.0721368i −0.670118 0.742255i \(-0.733756\pi\)
0.742255 + 0.670118i \(0.233756\pi\)
\(138\) 0 0
\(139\) −16.5684 −1.40532 −0.702658 0.711528i \(-0.748004\pi\)
−0.702658 + 0.711528i \(0.748004\pi\)
\(140\) 0 0
\(141\) −1.81132 −0.152541
\(142\) 0 0
\(143\) −8.49499 + 0.0533049i −0.710386 + 0.00445758i
\(144\) 0 0
\(145\) 0.530710 + 20.5541i 0.0440730 + 1.70692i
\(146\) 0 0
\(147\) −2.48376 + 2.48376i −0.204857 + 0.204857i
\(148\) 0 0
\(149\) 14.7385 1.20743 0.603713 0.797202i \(-0.293687\pi\)
0.603713 + 0.797202i \(0.293687\pi\)
\(150\) 0 0
\(151\) 14.5028i 1.18022i 0.807321 + 0.590112i \(0.200917\pi\)
−0.807321 + 0.590112i \(0.799083\pi\)
\(152\) 0 0
\(153\) 7.09264 7.09264i 0.573406 0.573406i
\(154\) 0 0
\(155\) −0.570557 22.0973i −0.0458282 1.77490i
\(156\) 0 0
\(157\) 9.02952 9.02952i 0.720634 0.720634i −0.248100 0.968734i \(-0.579806\pi\)
0.968734 + 0.248100i \(0.0798062\pi\)
\(158\) 0 0
\(159\) 2.64428i 0.209705i
\(160\) 0 0
\(161\) 3.34333i 0.263491i
\(162\) 0 0
\(163\) 5.48598 + 5.48598i 0.429695 + 0.429695i 0.888524 0.458829i \(-0.151731\pi\)
−0.458829 + 0.888524i \(0.651731\pi\)
\(164\) 0 0
\(165\) −4.14515 + 0.133060i −0.322700 + 0.0103587i
\(166\) 0 0
\(167\) 7.46180 + 7.46180i 0.577411 + 0.577411i 0.934189 0.356778i \(-0.116125\pi\)
−0.356778 + 0.934189i \(0.616125\pi\)
\(168\) 0 0
\(169\) 6.43931i 0.495331i
\(170\) 0 0
\(171\) 13.0221i 0.995821i
\(172\) 0 0
\(173\) 18.2946 18.2946i 1.39091 1.39091i 0.567624 0.823288i \(-0.307863\pi\)
0.823288 0.567624i \(-0.192137\pi\)
\(174\) 0 0
\(175\) −13.5324 12.2026i −1.02296 0.922428i
\(176\) 0 0
\(177\) −4.42714 + 4.42714i −0.332764 + 0.332764i
\(178\) 0 0
\(179\) 2.61564i 0.195502i 0.995211 + 0.0977510i \(0.0311649\pi\)
−0.995211 + 0.0977510i \(0.968835\pi\)
\(180\) 0 0
\(181\) 13.1841 0.979967 0.489983 0.871732i \(-0.337003\pi\)
0.489983 + 0.871732i \(0.337003\pi\)
\(182\) 0 0
\(183\) −2.55811 + 2.55811i −0.189101 + 0.189101i
\(184\) 0 0
\(185\) −16.9191 16.0674i −1.24392 1.18130i
\(186\) 0 0
\(187\) −0.0776789 12.3794i −0.00568045 0.905270i
\(188\) 0 0
\(189\) 11.5906 0.843091
\(190\) 0 0
\(191\) 6.10951 0.442069 0.221034 0.975266i \(-0.429057\pi\)
0.221034 + 0.975266i \(0.429057\pi\)
\(192\) 0 0
\(193\) 10.8980 10.8980i 0.784458 0.784458i −0.196122 0.980580i \(-0.562835\pi\)
0.980580 + 0.196122i \(0.0628347\pi\)
\(194\) 0 0
\(195\) −0.0826718 3.20183i −0.00592025 0.229288i
\(196\) 0 0
\(197\) −3.06310 3.06310i −0.218237 0.218237i 0.589518 0.807755i \(-0.299318\pi\)
−0.807755 + 0.589518i \(0.799318\pi\)
\(198\) 0 0
\(199\) 7.73120i 0.548050i −0.961722 0.274025i \(-0.911645\pi\)
0.961722 0.274025i \(-0.0883552\pi\)
\(200\) 0 0
\(201\) −0.718911 −0.0507081
\(202\) 0 0
\(203\) −23.6952 23.6952i −1.66308 1.66308i
\(204\) 0 0
\(205\) 12.0212 0.310390i 0.839597 0.0216786i
\(206\) 0 0
\(207\) −1.74324 + 1.74324i −0.121164 + 0.121164i
\(208\) 0 0
\(209\) −11.4355 11.2929i −0.791014 0.781148i
\(210\) 0 0
\(211\) 10.1385i 0.697962i 0.937130 + 0.348981i \(0.113472\pi\)
−0.937130 + 0.348981i \(0.886528\pi\)
\(212\) 0 0
\(213\) −2.35447 2.35447i −0.161326 0.161326i
\(214\) 0 0
\(215\) 5.48197 + 5.20600i 0.373867 + 0.355046i
\(216\) 0 0
\(217\) 25.4743 + 25.4743i 1.72931 + 1.72931i
\(218\) 0 0
\(219\) −1.57863 −0.106674
\(220\) 0 0
\(221\) 9.56062 0.643117
\(222\) 0 0
\(223\) 4.06971 + 4.06971i 0.272528 + 0.272528i 0.830117 0.557589i \(-0.188274\pi\)
−0.557589 + 0.830117i \(0.688274\pi\)
\(224\) 0 0
\(225\) 0.693397 + 13.4185i 0.0462264 + 0.894564i
\(226\) 0 0
\(227\) 5.82126 + 5.82126i 0.386370 + 0.386370i 0.873391 0.487020i \(-0.161916\pi\)
−0.487020 + 0.873391i \(0.661916\pi\)
\(228\) 0 0
\(229\) 11.7765i 0.778212i −0.921193 0.389106i \(-0.872784\pi\)
0.921193 0.389106i \(-0.127216\pi\)
\(230\) 0 0
\(231\) 4.74942 4.80940i 0.312489 0.316435i
\(232\) 0 0
\(233\) −2.29149 + 2.29149i −0.150121 + 0.150121i −0.778172 0.628051i \(-0.783853\pi\)
0.628051 + 0.778172i \(0.283853\pi\)
\(234\) 0 0
\(235\) 5.25182 + 4.98744i 0.342591 + 0.325345i
\(236\) 0 0
\(237\) −3.01107 3.01107i −0.195590 0.195590i
\(238\) 0 0
\(239\) 17.2852 1.11809 0.559043 0.829138i \(-0.311169\pi\)
0.559043 + 0.829138i \(0.311169\pi\)
\(240\) 0 0
\(241\) 0.971908i 0.0626061i −0.999510 0.0313030i \(-0.990034\pi\)
0.999510 0.0313030i \(-0.00996570\pi\)
\(242\) 0 0
\(243\) −9.23130 9.23130i −0.592188 0.592188i
\(244\) 0 0
\(245\) 14.0405 0.362528i 0.897014 0.0231611i
\(246\) 0 0
\(247\) 8.77663 8.77663i 0.558443 0.558443i
\(248\) 0 0
\(249\) −3.56445 −0.225888
\(250\) 0 0
\(251\) −7.96516 −0.502756 −0.251378 0.967889i \(-0.580884\pi\)
−0.251378 + 0.967889i \(0.580884\pi\)
\(252\) 0 0
\(253\) 0.0190921 + 3.04263i 0.00120031 + 0.191288i
\(254\) 0 0
\(255\) 4.66589 0.120474i 0.292189 0.00754438i
\(256\) 0 0
\(257\) 7.86800 7.86800i 0.490792 0.490792i −0.417764 0.908556i \(-0.637186\pi\)
0.908556 + 0.417764i \(0.137186\pi\)
\(258\) 0 0
\(259\) 38.0276 2.36292
\(260\) 0 0
\(261\) 24.7098i 1.52950i
\(262\) 0 0
\(263\) −17.0117 + 17.0117i −1.04899 + 1.04899i −0.0502505 + 0.998737i \(0.516002\pi\)
−0.998737 + 0.0502505i \(0.983998\pi\)
\(264\) 0 0
\(265\) −7.28097 + 7.66692i −0.447266 + 0.470975i
\(266\) 0 0
\(267\) −1.12951 + 1.12951i −0.0691249 + 0.0691249i
\(268\) 0 0
\(269\) 8.80868i 0.537074i 0.963269 + 0.268537i \(0.0865402\pi\)
−0.963269 + 0.268537i \(0.913460\pi\)
\(270\) 0 0
\(271\) 6.56619i 0.398868i 0.979911 + 0.199434i \(0.0639103\pi\)
−0.979911 + 0.199434i \(0.936090\pi\)
\(272\) 0 0
\(273\) 3.69115 + 3.69115i 0.223398 + 0.223398i
\(274\) 0 0
\(275\) 12.3850 + 11.0278i 0.746843 + 0.665000i
\(276\) 0 0
\(277\) −20.8316 20.8316i −1.25165 1.25165i −0.954979 0.296673i \(-0.904123\pi\)
−0.296673 0.954979i \(-0.595877\pi\)
\(278\) 0 0
\(279\) 26.5651i 1.59041i
\(280\) 0 0
\(281\) 17.2721i 1.03037i −0.857080 0.515183i \(-0.827724\pi\)
0.857080 0.515183i \(-0.172276\pi\)
\(282\) 0 0
\(283\) −7.15505 + 7.15505i −0.425324 + 0.425324i −0.887032 0.461708i \(-0.847237\pi\)
0.461708 + 0.887032i \(0.347237\pi\)
\(284\) 0 0
\(285\) 4.17268 4.39387i 0.247168 0.260270i
\(286\) 0 0
\(287\) −13.8583 + 13.8583i −0.818032 + 0.818032i
\(288\) 0 0
\(289\) 3.06771i 0.180453i
\(290\) 0 0
\(291\) −6.90569 −0.404819
\(292\) 0 0
\(293\) 0.0672710 0.0672710i 0.00393001 0.00393001i −0.705139 0.709069i \(-0.749115\pi\)
0.709069 + 0.705139i \(0.249115\pi\)
\(294\) 0 0
\(295\) 25.0263 0.646183i 1.45709 0.0376222i
\(296\) 0 0
\(297\) −10.5481 + 0.0661879i −0.612063 + 0.00384061i
\(298\) 0 0
\(299\) −2.34983 −0.135894
\(300\) 0 0
\(301\) −12.3214 −0.710191
\(302\) 0 0
\(303\) 4.31475 4.31475i 0.247876 0.247876i
\(304\) 0 0
\(305\) 14.4608 0.373380i 0.828023 0.0213797i
\(306\) 0 0
\(307\) −17.5587 17.5587i −1.00213 1.00213i −0.999998 0.00212927i \(-0.999322\pi\)
−0.00212927 0.999998i \(-0.500678\pi\)
\(308\) 0 0
\(309\) 8.93061i 0.508045i
\(310\) 0 0
\(311\) −22.9373 −1.30065 −0.650326 0.759655i \(-0.725368\pi\)
−0.650326 + 0.759655i \(0.725368\pi\)
\(312\) 0 0
\(313\) 14.0106 + 14.0106i 0.791925 + 0.791925i 0.981807 0.189882i \(-0.0608106\pi\)
−0.189882 + 0.981807i \(0.560811\pi\)
\(314\) 0 0
\(315\) −15.8791 15.0798i −0.894688 0.849649i
\(316\) 0 0
\(317\) 19.1316 19.1316i 1.07454 1.07454i 0.0775510 0.996988i \(-0.475290\pi\)
0.996988 0.0775510i \(-0.0247101\pi\)
\(318\) 0 0
\(319\) 21.6994 + 21.4287i 1.21493 + 1.19978i
\(320\) 0 0
\(321\) 7.96334i 0.444471i
\(322\) 0 0
\(323\) 12.7898 + 12.7898i 0.711644 + 0.711644i
\(324\) 0 0
\(325\) −8.57646 + 9.51113i −0.475736 + 0.527583i
\(326\) 0 0
\(327\) −7.96164 7.96164i −0.440280 0.440280i
\(328\) 0 0
\(329\) −11.8041 −0.650779
\(330\) 0 0
\(331\) 2.47486 0.136031 0.0680153 0.997684i \(-0.478333\pi\)
0.0680153 + 0.997684i \(0.478333\pi\)
\(332\) 0 0
\(333\) −19.8279 19.8279i −1.08656 1.08656i
\(334\) 0 0
\(335\) 2.08444 + 1.97951i 0.113885 + 0.108152i
\(336\) 0 0
\(337\) 9.40834 + 9.40834i 0.512505 + 0.512505i 0.915293 0.402788i \(-0.131959\pi\)
−0.402788 + 0.915293i \(0.631959\pi\)
\(338\) 0 0
\(339\) 1.42378i 0.0773291i
\(340\) 0 0
\(341\) −23.3286 23.0377i −1.26331 1.24756i
\(342\) 0 0
\(343\) 1.85233 1.85233i 0.100016 0.100016i
\(344\) 0 0
\(345\) −1.14679 + 0.0296103i −0.0617411 + 0.00159417i
\(346\) 0 0
\(347\) 4.53292 + 4.53292i 0.243340 + 0.243340i 0.818230 0.574891i \(-0.194955\pi\)
−0.574891 + 0.818230i \(0.694955\pi\)
\(348\) 0 0
\(349\) −6.49260 −0.347541 −0.173770 0.984786i \(-0.555595\pi\)
−0.173770 + 0.984786i \(0.555595\pi\)
\(350\) 0 0
\(351\) 8.14632i 0.434819i
\(352\) 0 0
\(353\) 10.9322 + 10.9322i 0.581860 + 0.581860i 0.935414 0.353554i \(-0.115027\pi\)
−0.353554 + 0.935414i \(0.615027\pi\)
\(354\) 0 0
\(355\) 0.343657 + 13.3096i 0.0182394 + 0.706401i
\(356\) 0 0
\(357\) −5.37895 + 5.37895i −0.284684 + 0.284684i
\(358\) 0 0
\(359\) −28.2077 −1.48875 −0.744373 0.667764i \(-0.767251\pi\)
−0.744373 + 0.667764i \(0.767251\pi\)
\(360\) 0 0
\(361\) 4.48201 0.235895
\(362\) 0 0
\(363\) −4.29478 + 4.40395i −0.225418 + 0.231148i
\(364\) 0 0
\(365\) 4.57715 + 4.34673i 0.239579 + 0.227518i
\(366\) 0 0
\(367\) 2.28005 2.28005i 0.119018 0.119018i −0.645089 0.764107i \(-0.723180\pi\)
0.764107 + 0.645089i \(0.223180\pi\)
\(368\) 0 0
\(369\) 14.4517 0.752326
\(370\) 0 0
\(371\) 17.2323i 0.894656i
\(372\) 0 0
\(373\) −18.0890 + 18.0890i −0.936613 + 0.936613i −0.998107 0.0614946i \(-0.980413\pi\)
0.0614946 + 0.998107i \(0.480413\pi\)
\(374\) 0 0
\(375\) −4.06573 + 4.74981i −0.209954 + 0.245279i
\(376\) 0 0
\(377\) −16.6540 + 16.6540i −0.857722 + 0.857722i
\(378\) 0 0
\(379\) 17.3714i 0.892310i −0.894956 0.446155i \(-0.852793\pi\)
0.894956 0.446155i \(-0.147207\pi\)
\(380\) 0 0
\(381\) 5.15992i 0.264351i
\(382\) 0 0
\(383\) 19.3670 + 19.3670i 0.989607 + 0.989607i 0.999947 0.0103394i \(-0.00329118\pi\)
−0.0103394 + 0.999947i \(0.503291\pi\)
\(384\) 0 0
\(385\) −27.0132 + 0.867131i −1.37672 + 0.0441931i
\(386\) 0 0
\(387\) 6.42446 + 6.42446i 0.326574 + 0.326574i
\(388\) 0 0
\(389\) 2.40286i 0.121830i 0.998143 + 0.0609149i \(0.0194018\pi\)
−0.998143 + 0.0609149i \(0.980598\pi\)
\(390\) 0 0
\(391\) 3.42430i 0.173174i
\(392\) 0 0
\(393\) 1.13126 1.13126i 0.0570643 0.0570643i
\(394\) 0 0
\(395\) 0.439495 + 17.0214i 0.0221134 + 0.856437i
\(396\) 0 0
\(397\) −5.43031 + 5.43031i −0.272539 + 0.272539i −0.830122 0.557582i \(-0.811729\pi\)
0.557582 + 0.830122i \(0.311729\pi\)
\(398\) 0 0
\(399\) 9.87572i 0.494404i
\(400\) 0 0
\(401\) −5.18454 −0.258903 −0.129452 0.991586i \(-0.541322\pi\)
−0.129452 + 0.991586i \(0.541322\pi\)
\(402\) 0 0
\(403\) 17.9044 17.9044i 0.891880 0.891880i
\(404\) 0 0
\(405\) 0.362647 + 14.0451i 0.0180201 + 0.697907i
\(406\) 0 0
\(407\) −34.6073 + 0.217156i −1.71542 + 0.0107640i
\(408\) 0 0
\(409\) 8.58105 0.424306 0.212153 0.977237i \(-0.431953\pi\)
0.212153 + 0.977237i \(0.431953\pi\)
\(410\) 0 0
\(411\) 0.667752 0.0329378
\(412\) 0 0
\(413\) −28.8509 + 28.8509i −1.41966 + 1.41966i
\(414\) 0 0
\(415\) 10.3349 + 9.81463i 0.507320 + 0.481781i
\(416\) 0 0
\(417\) −6.55163 6.55163i −0.320835 0.320835i
\(418\) 0 0
\(419\) 6.16560i 0.301209i 0.988594 + 0.150605i \(0.0481220\pi\)
−0.988594 + 0.150605i \(0.951878\pi\)
\(420\) 0 0
\(421\) −15.5610 −0.758398 −0.379199 0.925315i \(-0.623800\pi\)
−0.379199 + 0.925315i \(0.623800\pi\)
\(422\) 0 0
\(423\) 6.15474 + 6.15474i 0.299254 + 0.299254i
\(424\) 0 0
\(425\) −13.8602 12.4981i −0.672317 0.606248i
\(426\) 0 0
\(427\) −16.6708 + 16.6708i −0.806755 + 0.806755i
\(428\) 0 0
\(429\) −3.38024 3.33808i −0.163199 0.161164i
\(430\) 0 0
\(431\) 23.0868i 1.11205i −0.831165 0.556026i \(-0.812325\pi\)
0.831165 0.556026i \(-0.187675\pi\)
\(432\) 0 0
\(433\) 9.07268 + 9.07268i 0.436005 + 0.436005i 0.890665 0.454660i \(-0.150239\pi\)
−0.454660 + 0.890665i \(0.650239\pi\)
\(434\) 0 0
\(435\) −7.91780 + 8.33752i −0.379630 + 0.399753i
\(436\) 0 0
\(437\) −3.14350 3.14350i −0.150374 0.150374i
\(438\) 0 0
\(439\) −1.80353 −0.0860779 −0.0430390 0.999073i \(-0.513704\pi\)
−0.0430390 + 0.999073i \(0.513704\pi\)
\(440\) 0 0
\(441\) 16.8793 0.803775
\(442\) 0 0
\(443\) 22.8468 + 22.8468i 1.08549 + 1.08549i 0.995987 + 0.0894981i \(0.0285263\pi\)
0.0894981 + 0.995987i \(0.471474\pi\)
\(444\) 0 0
\(445\) 6.38502 0.164862i 0.302679 0.00781523i
\(446\) 0 0
\(447\) 5.82802 + 5.82802i 0.275656 + 0.275656i
\(448\) 0 0
\(449\) 32.1905i 1.51916i −0.650413 0.759581i \(-0.725404\pi\)
0.650413 0.759581i \(-0.274596\pi\)
\(450\) 0 0
\(451\) 12.5328 12.6910i 0.590145 0.597598i
\(452\) 0 0
\(453\) −5.73483 + 5.73483i −0.269446 + 0.269446i
\(454\) 0 0
\(455\) −0.538757 20.8657i −0.0252573 0.978201i
\(456\) 0 0
\(457\) −10.7891 10.7891i −0.504691 0.504691i 0.408201 0.912892i \(-0.366156\pi\)
−0.912892 + 0.408201i \(0.866156\pi\)
\(458\) 0 0
\(459\) 11.8713 0.554105
\(460\) 0 0
\(461\) 0.553181i 0.0257642i −0.999917 0.0128821i \(-0.995899\pi\)
0.999917 0.0128821i \(-0.00410061\pi\)
\(462\) 0 0
\(463\) −17.8695 17.8695i −0.830468 0.830468i 0.157112 0.987581i \(-0.449782\pi\)
−0.987581 + 0.157112i \(0.949782\pi\)
\(464\) 0 0
\(465\) 8.51229 8.96352i 0.394748 0.415673i
\(466\) 0 0
\(467\) 3.56303 3.56303i 0.164877 0.164877i −0.619846 0.784723i \(-0.712805\pi\)
0.784723 + 0.619846i \(0.212805\pi\)
\(468\) 0 0
\(469\) −4.68502 −0.216334
\(470\) 0 0
\(471\) 7.14106 0.329043
\(472\) 0 0
\(473\) 11.2132 0.0703610i 0.515581 0.00323520i
\(474\) 0 0
\(475\) −24.1968 + 1.25037i −1.11023 + 0.0573708i
\(476\) 0 0
\(477\) −8.98507 + 8.98507i −0.411398 + 0.411398i
\(478\) 0 0
\(479\) 9.40996 0.429952 0.214976 0.976619i \(-0.431033\pi\)
0.214976 + 0.976619i \(0.431033\pi\)
\(480\) 0 0
\(481\) 26.7273i 1.21866i
\(482\) 0 0
\(483\) 1.32205 1.32205i 0.0601552 0.0601552i
\(484\) 0 0
\(485\) 20.0226 + 19.0147i 0.909181 + 0.863412i
\(486\) 0 0
\(487\) −1.73414 + 1.73414i −0.0785816 + 0.0785816i −0.745305 0.666724i \(-0.767696\pi\)
0.666724 + 0.745305i \(0.267696\pi\)
\(488\) 0 0
\(489\) 4.33862i 0.196199i
\(490\) 0 0
\(491\) 17.3458i 0.782807i 0.920219 + 0.391403i \(0.128010\pi\)
−0.920219 + 0.391403i \(0.871990\pi\)
\(492\) 0 0
\(493\) −24.2691 24.2691i −1.09303 1.09303i
\(494\) 0 0
\(495\) 14.5371 + 13.6328i 0.653392 + 0.612749i
\(496\) 0 0
\(497\) −15.3436 15.3436i −0.688257 0.688257i
\(498\) 0 0
\(499\) 10.3889i 0.465071i 0.972588 + 0.232536i \(0.0747023\pi\)
−0.972588 + 0.232536i \(0.925298\pi\)
\(500\) 0 0
\(501\) 5.90121i 0.263647i
\(502\) 0 0
\(503\) 3.91147 3.91147i 0.174404 0.174404i −0.614507 0.788911i \(-0.710645\pi\)
0.788911 + 0.614507i \(0.210645\pi\)
\(504\) 0 0
\(505\) −24.3909 + 0.629778i −1.08538 + 0.0280247i
\(506\) 0 0
\(507\) −2.54628 + 2.54628i −0.113084 + 0.113084i
\(508\) 0 0
\(509\) 2.44868i 0.108536i 0.998526 + 0.0542680i \(0.0172825\pi\)
−0.998526 + 0.0542680i \(0.982717\pi\)
\(510\) 0 0
\(511\) −10.2877 −0.455099
\(512\) 0 0
\(513\) 10.8978 10.8978i 0.481150 0.481150i
\(514\) 0 0
\(515\) −24.5902 + 25.8938i −1.08358 + 1.14102i
\(516\) 0 0
\(517\) 10.7424 0.0674070i 0.472450 0.00296456i
\(518\) 0 0
\(519\) 14.4684 0.635092
\(520\) 0 0
\(521\) −7.52889 −0.329847 −0.164923 0.986306i \(-0.552738\pi\)
−0.164923 + 0.986306i \(0.552738\pi\)
\(522\) 0 0
\(523\) −20.8756 + 20.8756i −0.912826 + 0.912826i −0.996494 0.0836673i \(-0.973337\pi\)
0.0836673 + 0.996494i \(0.473337\pi\)
\(524\) 0 0
\(525\) −0.525861 10.1764i −0.0229505 0.444132i
\(526\) 0 0
\(527\) 26.0913 + 26.0913i 1.13655 + 1.13655i
\(528\) 0 0
\(529\) 22.1584i 0.963407i
\(530\) 0 0
\(531\) 30.0862 1.30563
\(532\) 0 0
\(533\) 9.74020 + 9.74020i 0.421895 + 0.421895i
\(534\) 0 0
\(535\) 21.9269 23.0892i 0.947982 0.998234i
\(536\) 0 0
\(537\) −1.03430 + 1.03430i −0.0446332 + 0.0446332i
\(538\) 0 0
\(539\) 14.6380 14.8228i 0.630502 0.638465i
\(540\) 0 0
\(541\) 4.59976i 0.197759i 0.995099 + 0.0988795i \(0.0315258\pi\)
−0.995099 + 0.0988795i \(0.968474\pi\)
\(542\) 0 0
\(543\) 5.21337 + 5.21337i 0.223727 + 0.223727i
\(544\) 0 0
\(545\) 1.16208 + 45.0065i 0.0497778 + 1.92787i
\(546\) 0 0
\(547\) 2.64220 + 2.64220i 0.112972 + 0.112972i 0.761333 0.648361i \(-0.224545\pi\)
−0.648361 + 0.761333i \(0.724545\pi\)
\(548\) 0 0
\(549\) 17.3846 0.741955
\(550\) 0 0
\(551\) −44.5579 −1.89823
\(552\) 0 0
\(553\) −19.6226 19.6226i −0.834439 0.834439i
\(554\) 0 0
\(555\) −0.336793 13.0438i −0.0142960 0.553677i
\(556\) 0 0
\(557\) −4.66152 4.66152i −0.197515 0.197515i 0.601419 0.798934i \(-0.294602\pi\)
−0.798934 + 0.601419i \(0.794602\pi\)
\(558\) 0 0
\(559\) 8.65994i 0.366276i
\(560\) 0 0
\(561\) 4.86444 4.92588i 0.205377 0.207971i
\(562\) 0 0
\(563\) 25.8582 25.8582i 1.08979 1.08979i 0.0942459 0.995549i \(-0.469956\pi\)
0.995549 0.0942459i \(-0.0300440\pi\)
\(564\) 0 0
\(565\) 3.92035 4.12816i 0.164930 0.173673i
\(566\) 0 0
\(567\) −16.1915 16.1915i −0.679981 0.679981i
\(568\) 0 0
\(569\) −41.4277 −1.73674 −0.868369 0.495919i \(-0.834831\pi\)
−0.868369 + 0.495919i \(0.834831\pi\)
\(570\) 0 0
\(571\) 5.29324i 0.221515i −0.993847 0.110758i \(-0.964672\pi\)
0.993847 0.110758i \(-0.0353277\pi\)
\(572\) 0 0
\(573\) 2.41587 + 2.41587i 0.100925 + 0.100925i
\(574\) 0 0
\(575\) 3.40658 + 3.07181i 0.142064 + 0.128103i
\(576\) 0 0
\(577\) −30.6415 + 30.6415i −1.27562 + 1.27562i −0.332527 + 0.943094i \(0.607901\pi\)
−0.943094 + 0.332527i \(0.892099\pi\)
\(578\) 0 0
\(579\) 8.61878 0.358184
\(580\) 0 0
\(581\) −23.2289 −0.963696
\(582\) 0 0
\(583\) 0.0984049 + 15.6824i 0.00407551 + 0.649498i
\(584\) 0 0
\(585\) −10.5987 + 11.1605i −0.438201 + 0.461429i
\(586\) 0 0
\(587\) −18.3039 + 18.3039i −0.755485 + 0.755485i −0.975497 0.220012i \(-0.929390\pi\)
0.220012 + 0.975497i \(0.429390\pi\)
\(588\) 0 0
\(589\) 47.9034 1.97383
\(590\) 0 0
\(591\) 2.42248i 0.0996473i
\(592\) 0 0
\(593\) −1.46867 + 1.46867i −0.0603109 + 0.0603109i −0.736619 0.676308i \(-0.763579\pi\)
0.676308 + 0.736619i \(0.263579\pi\)
\(594\) 0 0
\(595\) 30.4068 0.785108i 1.24656 0.0321863i
\(596\) 0 0
\(597\) 3.05714 3.05714i 0.125120 0.125120i
\(598\) 0 0
\(599\) 33.2549i 1.35876i −0.733788 0.679378i \(-0.762250\pi\)
0.733788 0.679378i \(-0.237750\pi\)
\(600\) 0 0
\(601\) 16.2920i 0.664563i 0.943180 + 0.332282i \(0.107818\pi\)
−0.943180 + 0.332282i \(0.892182\pi\)
\(602\) 0 0
\(603\) 2.44281 + 2.44281i 0.0994789 + 0.0994789i
\(604\) 0 0
\(605\) 24.5786 0.943398i 0.999264 0.0383546i
\(606\) 0 0
\(607\) −17.8082 17.8082i −0.722814 0.722814i 0.246363 0.969178i \(-0.420764\pi\)
−0.969178 + 0.246363i \(0.920764\pi\)
\(608\) 0 0
\(609\) 18.7395i 0.759364i
\(610\) 0 0
\(611\) 8.29637i 0.335635i
\(612\) 0 0
\(613\) 2.71472 2.71472i 0.109647 0.109647i −0.650155 0.759802i \(-0.725296\pi\)
0.759802 + 0.650155i \(0.225296\pi\)
\(614\) 0 0
\(615\) 4.87626 + 4.63079i 0.196630 + 0.186731i
\(616\) 0 0
\(617\) 29.5807 29.5807i 1.19088 1.19088i 0.214053 0.976822i \(-0.431333\pi\)
0.976822 0.214053i \(-0.0686665\pi\)
\(618\) 0 0
\(619\) 36.8113i 1.47957i −0.672843 0.739786i \(-0.734927\pi\)
0.672843 0.739786i \(-0.265073\pi\)
\(620\) 0 0
\(621\) −2.91775 −0.117085
\(622\) 0 0
\(623\) −7.36081 + 7.36081i −0.294905 + 0.294905i
\(624\) 0 0
\(625\) 24.8668 2.57686i 0.994674 0.103074i
\(626\) 0 0
\(627\) −0.0563952 8.98748i −0.00225221 0.358926i
\(628\) 0 0
\(629\) 38.9486 1.55298
\(630\) 0 0
\(631\) 19.0420 0.758050 0.379025 0.925386i \(-0.376259\pi\)
0.379025 + 0.925386i \(0.376259\pi\)
\(632\) 0 0
\(633\) −4.00904 + 4.00904i −0.159345 + 0.159345i
\(634\) 0 0
\(635\) 14.2077 14.9609i 0.563817 0.593704i
\(636\) 0 0
\(637\) 11.3763 + 11.3763i 0.450746 + 0.450746i
\(638\) 0 0
\(639\) 16.0006i 0.632975i
\(640\) 0 0
\(641\) 34.0719 1.34576 0.672880 0.739751i \(-0.265057\pi\)
0.672880 + 0.739751i \(0.265057\pi\)
\(642\) 0 0
\(643\) 0.0858757 + 0.0858757i 0.00338661 + 0.00338661i 0.708798 0.705411i \(-0.249238\pi\)
−0.705411 + 0.708798i \(0.749238\pi\)
\(644\) 0 0
\(645\) 0.109124 + 4.22632i 0.00429677 + 0.166411i
\(646\) 0 0
\(647\) 25.7189 25.7189i 1.01111 1.01111i 0.0111757 0.999938i \(-0.496443\pi\)
0.999938 0.0111757i \(-0.00355741\pi\)
\(648\) 0 0
\(649\) 26.0913 26.4208i 1.02417 1.03711i
\(650\) 0 0
\(651\) 20.1465i 0.789605i
\(652\) 0 0
\(653\) 17.3115 + 17.3115i 0.677451 + 0.677451i 0.959423 0.281972i \(-0.0909885\pi\)
−0.281972 + 0.959423i \(0.590989\pi\)
\(654\) 0 0
\(655\) −6.39489 + 0.165117i −0.249869 + 0.00645167i
\(656\) 0 0
\(657\) 5.36408 + 5.36408i 0.209273 + 0.209273i
\(658\) 0 0
\(659\) −9.53243 −0.371331 −0.185665 0.982613i \(-0.559444\pi\)
−0.185665 + 0.982613i \(0.559444\pi\)
\(660\) 0 0
\(661\) −35.9333 −1.39764 −0.698821 0.715297i \(-0.746292\pi\)
−0.698821 + 0.715297i \(0.746292\pi\)
\(662\) 0 0
\(663\) 3.78054 + 3.78054i 0.146824 + 0.146824i
\(664\) 0 0
\(665\) 27.1926 28.6340i 1.05448 1.11038i
\(666\) 0 0
\(667\) 5.96490 + 5.96490i 0.230962 + 0.230962i
\(668\) 0 0
\(669\) 3.21855i 0.124436i
\(670\) 0 0
\(671\) 15.0762 15.2666i 0.582009 0.589359i
\(672\) 0 0
\(673\) 5.75533 5.75533i 0.221852 0.221852i −0.587426 0.809278i \(-0.699859\pi\)
0.809278 + 0.587426i \(0.199859\pi\)
\(674\) 0 0
\(675\) −10.6493 + 11.8098i −0.409891 + 0.454561i
\(676\) 0 0
\(677\) −8.65872 8.65872i −0.332782 0.332782i 0.520860 0.853642i \(-0.325611\pi\)
−0.853642 + 0.520860i \(0.825611\pi\)
\(678\) 0 0
\(679\) −45.0032 −1.72706
\(680\) 0 0
\(681\) 4.60378i 0.176417i
\(682\) 0 0
\(683\) −10.8306 10.8306i −0.414421 0.414421i 0.468855 0.883275i \(-0.344667\pi\)
−0.883275 + 0.468855i \(0.844667\pi\)
\(684\) 0 0
\(685\) −1.93610 1.83864i −0.0739748 0.0702508i
\(686\) 0 0
\(687\) 4.65675 4.65675i 0.177666 0.177666i
\(688\) 0 0
\(689\) −12.1115 −0.461413
\(690\) 0 0
\(691\) −25.8562 −0.983616 −0.491808 0.870704i \(-0.663664\pi\)
−0.491808 + 0.870704i \(0.663664\pi\)
\(692\) 0 0
\(693\) −32.4802 + 0.203809i −1.23382 + 0.00774205i
\(694\) 0 0
\(695\) 0.956271 + 37.0358i 0.0362734 + 1.40485i
\(696\) 0 0
\(697\) −14.1940 + 14.1940i −0.537635 + 0.537635i
\(698\) 0 0
\(699\) −1.81224 −0.0685453
\(700\) 0 0
\(701\) 38.7467i 1.46344i 0.681604 + 0.731721i \(0.261283\pi\)
−0.681604 + 0.731721i \(0.738717\pi\)
\(702\) 0 0
\(703\) 35.7547 35.7547i 1.34851 1.34851i
\(704\) 0 0
\(705\) 0.104543 + 4.04889i 0.00393732 + 0.152490i
\(706\) 0 0
\(707\) 28.1184 28.1184i 1.05750 1.05750i
\(708\) 0 0
\(709\) 26.5481i 0.997036i 0.866879 + 0.498518i \(0.166122\pi\)
−0.866879 + 0.498518i \(0.833878\pi\)
\(710\) 0 0
\(711\) 20.4628i 0.767416i
\(712\) 0 0
\(713\) −6.41276 6.41276i −0.240160 0.240160i
\(714\) 0 0
\(715\) 0.609454 + 18.9860i 0.0227923 + 0.710035i
\(716\) 0 0
\(717\) 6.83506 + 6.83506i 0.255260 + 0.255260i
\(718\) 0 0
\(719\) 9.68228i 0.361088i −0.983567 0.180544i \(-0.942214\pi\)
0.983567 0.180544i \(-0.0577859\pi\)
\(720\) 0 0
\(721\) 58.1992i 2.16745i
\(722\) 0 0
\(723\) 0.384320 0.384320i 0.0142930 0.0142930i
\(724\) 0 0
\(725\) 45.9143 2.37262i 1.70522 0.0881167i
\(726\) 0 0
\(727\) 37.2556 37.2556i 1.38173 1.38173i 0.540191 0.841542i \(-0.318352\pi\)
0.841542 0.540191i \(-0.181648\pi\)
\(728\) 0 0
\(729\) 11.5491i 0.427746i
\(730\) 0 0
\(731\) −12.6198 −0.466759
\(732\) 0 0
\(733\) 6.40249 6.40249i 0.236481 0.236481i −0.578910 0.815391i \(-0.696522\pi\)
0.815391 + 0.578910i \(0.196522\pi\)
\(734\) 0 0
\(735\) 5.69536 + 5.40865i 0.210076 + 0.199501i
\(736\) 0 0
\(737\) 4.26364 0.0267538i 0.157053 0.000985487i
\(738\) 0 0
\(739\) 14.9922 0.551498 0.275749 0.961230i \(-0.411074\pi\)
0.275749 + 0.961230i \(0.411074\pi\)
\(740\) 0 0
\(741\) 6.94105 0.254986
\(742\) 0 0
\(743\) −10.3814 + 10.3814i −0.380858 + 0.380858i −0.871411 0.490553i \(-0.836795\pi\)
0.490553 + 0.871411i \(0.336795\pi\)
\(744\) 0 0
\(745\) −0.850654 32.9453i −0.0311656 1.20702i
\(746\) 0 0
\(747\) 12.1117 + 12.1117i 0.443145 + 0.443145i
\(748\) 0 0
\(749\) 51.8957i 1.89623i
\(750\) 0 0
\(751\) −17.5794 −0.641481 −0.320740 0.947167i \(-0.603932\pi\)
−0.320740 + 0.947167i \(0.603932\pi\)
\(752\) 0 0
\(753\) −3.14965 3.14965i −0.114780 0.114780i
\(754\) 0 0
\(755\) 32.4185 0.837053i 1.17983 0.0304635i
\(756\) 0 0
\(757\) −24.3374 + 24.3374i −0.884556 + 0.884556i −0.993994 0.109437i \(-0.965095\pi\)
0.109437 + 0.993994i \(0.465095\pi\)
\(758\) 0 0
\(759\) −1.19559 + 1.21069i −0.0433972 + 0.0439453i
\(760\) 0 0
\(761\) 49.2285i 1.78453i −0.451511 0.892265i \(-0.649115\pi\)
0.451511 0.892265i \(-0.350885\pi\)
\(762\) 0 0
\(763\) −51.8846 51.8846i −1.87835 1.87835i
\(764\) 0 0
\(765\) −16.2637 15.4450i −0.588016 0.558415i
\(766\) 0 0
\(767\) 20.2776 + 20.2776i 0.732180 + 0.732180i
\(768\) 0 0
\(769\) 35.1042 1.26589 0.632945 0.774197i \(-0.281846\pi\)
0.632945 + 0.774197i \(0.281846\pi\)
\(770\) 0 0
\(771\) 6.22246 0.224096
\(772\) 0 0
\(773\) −5.87447 5.87447i −0.211290 0.211290i 0.593525 0.804815i \(-0.297736\pi\)
−0.804815 + 0.593525i \(0.797736\pi\)
\(774\) 0 0
\(775\) −49.3617 + 2.55076i −1.77312 + 0.0916259i
\(776\) 0 0
\(777\) 15.0372 + 15.0372i 0.539456 + 0.539456i
\(778\) 0 0
\(779\) 26.0601i 0.933698i
\(780\) 0 0
\(781\) 14.0512 + 13.8760i 0.502793 + 0.496522i
\(782\) 0 0
\(783\) −20.6790 + 20.6790i −0.739007 + 0.739007i
\(784\) 0 0
\(785\) −20.7051 19.6627i −0.738995 0.701794i
\(786\) 0 0
\(787\) −38.2443 38.2443i −1.36326 1.36326i −0.869724 0.493538i \(-0.835703\pi\)
−0.493538 0.869724i \(-0.664297\pi\)
\(788\) 0 0
\(789\) −13.4538 −0.478969
\(790\) 0 0
\(791\) 9.27852i 0.329906i
\(792\) 0 0
\(793\) 11.7169 + 11.7169i 0.416078 + 0.416078i
\(794\) 0 0
\(795\) −5.91082 + 0.152618i −0.209635 + 0.00541282i
\(796\) 0 0
\(797\) 3.66253 3.66253i 0.129733 0.129733i −0.639258 0.768992i \(-0.720759\pi\)
0.768992 + 0.639258i \(0.220759\pi\)
\(798\) 0 0
\(799\) −12.0899 −0.427712
\(800\) 0 0
\(801\) 7.67598 0.271218
\(802\) 0 0
\(803\) 9.36238 0.0587476i 0.330391 0.00207316i
\(804\) 0 0
\(805\) −7.47342 + 0.192965i −0.263404 + 0.00680113i
\(806\) 0 0
\(807\) −3.48320 + 3.48320i −0.122614 + 0.122614i
\(808\) 0 0
\(809\) −11.9386 −0.419738 −0.209869 0.977730i \(-0.567304\pi\)
−0.209869 + 0.977730i \(0.567304\pi\)
\(810\) 0 0
\(811\) 20.8801i 0.733198i 0.930379 + 0.366599i \(0.119478\pi\)
−0.930379 + 0.366599i \(0.880522\pi\)
\(812\) 0 0
\(813\) −2.59646 + 2.59646i −0.0910618 + 0.0910618i
\(814\) 0 0
\(815\) 11.9463 12.5796i 0.418461 0.440643i
\(816\) 0 0
\(817\) −11.5849 + 11.5849i −0.405305 + 0.405305i
\(818\) 0 0
\(819\) 25.0845i 0.876523i
\(820\) 0 0
\(821\) 24.5208i 0.855782i 0.903830 + 0.427891i \(0.140743\pi\)
−0.903830 + 0.427891i \(0.859257\pi\)
\(822\) 0 0
\(823\) −20.7314 20.7314i −0.722653 0.722653i 0.246492 0.969145i \(-0.420722\pi\)
−0.969145 + 0.246492i \(0.920722\pi\)
\(824\) 0 0
\(825\) 0.536676 + 9.25807i 0.0186847 + 0.322325i
\(826\) 0 0
\(827\) −36.7933 36.7933i −1.27943 1.27943i −0.940988 0.338440i \(-0.890101\pi\)
−0.338440 0.940988i \(-0.609899\pi\)
\(828\) 0 0
\(829\) 1.29408i 0.0449452i 0.999747 + 0.0224726i \(0.00715385\pi\)
−0.999747 + 0.0224726i \(0.992846\pi\)
\(830\) 0 0
\(831\) 16.4748i 0.571506i
\(832\) 0 0
\(833\) −16.5782 + 16.5782i −0.574402 + 0.574402i
\(834\) 0 0
\(835\) 16.2489 17.1102i 0.562315 0.592123i
\(836\) 0 0
\(837\) 22.2316 22.2316i 0.768437 0.768437i
\(838\) 0 0
\(839\) 6.91488i 0.238728i −0.992851 0.119364i \(-0.961914\pi\)
0.992851 0.119364i \(-0.0380856\pi\)
\(840\) 0 0
\(841\) 55.5503 1.91553
\(842\) 0 0
\(843\) 6.82987 6.82987i 0.235233 0.235233i
\(844\) 0 0
\(845\) 14.3939 0.371654i 0.495166 0.0127853i
\(846\) 0 0
\(847\) −27.9883 + 28.6998i −0.961690 + 0.986136i
\(848\) 0 0
\(849\) −5.65862 −0.194203
\(850\) 0 0
\(851\) −9.57284 −0.328153
\(852\) 0 0
\(853\) 20.7065 20.7065i 0.708976 0.708976i −0.257344 0.966320i \(-0.582847\pi\)
0.966320 + 0.257344i \(0.0828472\pi\)
\(854\) 0 0
\(855\) −29.1085 + 0.751587i −0.995489 + 0.0257037i
\(856\) 0 0
\(857\) 18.9902 + 18.9902i 0.648692 + 0.648692i 0.952677 0.303985i \(-0.0983171\pi\)
−0.303985 + 0.952677i \(0.598317\pi\)
\(858\) 0 0
\(859\) 7.39810i 0.252420i −0.992004 0.126210i \(-0.959719\pi\)
0.992004 0.126210i \(-0.0402813\pi\)
\(860\) 0 0
\(861\) −10.9600 −0.373514
\(862\) 0 0
\(863\) 37.1731 + 37.1731i 1.26539 + 1.26539i 0.948445 + 0.316942i \(0.102656\pi\)
0.316942 + 0.948445i \(0.397344\pi\)
\(864\) 0 0
\(865\) −41.9502 39.8384i −1.42635 1.35455i
\(866\) 0 0
\(867\) 1.21306 1.21306i 0.0411976 0.0411976i
\(868\) 0 0
\(869\) 17.9698 + 17.7457i 0.609584 + 0.601981i
\(870\) 0 0
\(871\) 3.29282i 0.111573i
\(872\) 0 0
\(873\) 23.4650 + 23.4650i 0.794171 + 0.794171i
\(874\) 0 0
\(875\) −26.4957 + 30.9536i −0.895717 + 1.04642i
\(876\) 0 0
\(877\) −15.8146 15.8146i −0.534020 0.534020i 0.387746 0.921766i \(-0.373254\pi\)
−0.921766 + 0.387746i \(0.873254\pi\)
\(878\) 0 0
\(879\) 0.0532017 0.00179445
\(880\) 0 0
\(881\) −19.4528 −0.655380 −0.327690 0.944785i \(-0.606270\pi\)
−0.327690 + 0.944785i \(0.606270\pi\)
\(882\) 0 0
\(883\) 37.2824 + 37.2824i 1.25465 + 1.25465i 0.953612 + 0.301040i \(0.0973336\pi\)
0.301040 + 0.953612i \(0.402666\pi\)
\(884\) 0 0
\(885\) 10.1516 + 9.64058i 0.341243 + 0.324064i
\(886\) 0 0
\(887\) 24.4254 + 24.4254i 0.820123 + 0.820123i 0.986125 0.166002i \(-0.0530858\pi\)
−0.166002 + 0.986125i \(0.553086\pi\)
\(888\) 0 0
\(889\) 33.6263i 1.12779i
\(890\) 0 0
\(891\) 14.8277 + 14.6428i 0.496747 + 0.490552i
\(892\) 0 0
\(893\) −11.0985 + 11.0985i −0.371398 + 0.371398i
\(894\) 0 0
\(895\) 5.84680 0.150965i 0.195437 0.00504622i
\(896\) 0 0
\(897\) −0.929187 0.929187i −0.0310247 0.0310247i
\(898\) 0 0
\(899\) −90.8985 −3.03163
\(900\) 0 0
\(901\) 17.6496i 0.587995i
\(902\) 0 0
\(903\) −4.87221 4.87221i −0.162137 0.162137i
\(904\) 0 0
\(905\) −0.760940 29.4707i −0.0252945 0.979640i
\(906\) 0 0
\(907\) −15.6361 + 15.6361i −0.519189 + 0.519189i −0.917326 0.398137i \(-0.869657\pi\)
0.398137 + 0.917326i \(0.369657\pi\)
\(908\) 0 0
\(909\) −29.3224 −0.972562
\(910\) 0 0
\(911\) 12.4412 0.412194 0.206097 0.978532i \(-0.433924\pi\)
0.206097 + 0.978532i \(0.433924\pi\)
\(912\) 0 0
\(913\) 21.1396 0.132648i 0.699620 0.00439002i
\(914\) 0 0
\(915\) 5.86585 + 5.57056i 0.193919 + 0.184157i
\(916\) 0 0
\(917\) 7.37219 7.37219i 0.243451 0.243451i
\(918\) 0 0
\(919\) −12.7375 −0.420173 −0.210086 0.977683i \(-0.567374\pi\)
−0.210086 + 0.977683i \(0.567374\pi\)
\(920\) 0 0
\(921\) 13.8864i 0.457572i
\(922\) 0 0
\(923\) −10.7841 + 10.7841i −0.354964 + 0.354964i
\(924\) 0 0
\(925\) −34.9392 + 38.7470i −1.14879 + 1.27399i
\(926\) 0 0
\(927\) −30.3456 + 30.3456i −0.996679 + 0.996679i
\(928\) 0 0
\(929\) 47.3644i 1.55398i 0.629515 + 0.776988i \(0.283253\pi\)
−0.629515 + 0.776988i \(0.716747\pi\)
\(930\) 0 0
\(931\) 30.4375i 0.997550i
\(932\) 0 0
\(933\) −9.07004 9.07004i −0.296940 0.296940i
\(934\) 0 0
\(935\) −27.6674 + 0.888132i −0.904822 + 0.0290450i
\(936\) 0 0
\(937\) 27.9413 + 27.9413i 0.912802 + 0.912802i 0.996492 0.0836899i \(-0.0266705\pi\)
−0.0836899 + 0.996492i \(0.526671\pi\)
\(938\) 0 0
\(939\) 11.0804i 0.361594i
\(940\) 0 0
\(941\) 10.6469i 0.347078i −0.984827 0.173539i \(-0.944480\pi\)
0.984827 0.173539i \(-0.0555203\pi\)
\(942\) 0 0
\(943\) 3.48862 3.48862i 0.113605 0.113605i
\(944\) 0 0
\(945\) −0.668967 25.9087i −0.0217615 0.842810i
\(946\) 0 0
\(947\) −2.81620 + 2.81620i −0.0915143 + 0.0915143i −0.751382 0.659868i \(-0.770612\pi\)
0.659868 + 0.751382i \(0.270612\pi\)
\(948\) 0 0
\(949\) 7.23058i 0.234715i
\(950\) 0 0
\(951\) 15.1304 0.490636
\(952\) 0 0
\(953\) 13.4300 13.4300i 0.435041 0.435041i −0.455298 0.890339i \(-0.650467\pi\)
0.890339 + 0.455298i \(0.150467\pi\)
\(954\) 0 0
\(955\) −0.352619 13.6567i −0.0114105 0.441922i
\(956\) 0 0
\(957\) 0.107012 + 17.0541i 0.00345920 + 0.551280i
\(958\) 0 0
\(959\) 4.35162 0.140521
\(960\) 0 0
\(961\) 66.7233 2.15237
\(962\) 0 0
\(963\) 27.0589 27.0589i 0.871960 0.871960i
\(964\) 0 0
\(965\) −24.9896 23.7316i −0.804445 0.763948i
\(966\) 0 0
\(967\) −8.75445 8.75445i −0.281524 0.281524i 0.552192 0.833717i \(-0.313791\pi\)
−0.833717 + 0.552192i \(0.813791\pi\)
\(968\) 0 0
\(969\) 10.1149i 0.324937i
\(970\) 0 0
\(971\) −31.5322 −1.01192 −0.505959 0.862558i \(-0.668861\pi\)
−0.505959 + 0.862558i \(0.668861\pi\)
\(972\) 0 0
\(973\) −42.6958 42.6958i −1.36876 1.36876i
\(974\) 0 0
\(975\) −7.15235 + 0.369596i −0.229058 + 0.0118366i
\(976\) 0 0
\(977\) 14.7311 14.7311i 0.471289 0.471289i −0.431043 0.902332i \(-0.641854\pi\)
0.902332 + 0.431043i \(0.141854\pi\)
\(978\) 0 0
\(979\) 6.65674 6.74080i 0.212750 0.215437i
\(980\) 0 0
\(981\) 54.1061i 1.72748i
\(982\) 0 0
\(983\) 20.1070 + 20.1070i 0.641314 + 0.641314i 0.950878 0.309564i \(-0.100183\pi\)
−0.309564 + 0.950878i \(0.600183\pi\)
\(984\) 0 0
\(985\) −6.67024 + 7.02382i −0.212531 + 0.223797i
\(986\) 0 0
\(987\) −4.66766 4.66766i −0.148573 0.148573i
\(988\) 0 0
\(989\) 3.10171 0.0986285
\(990\) 0 0
\(991\) −18.4167 −0.585026 −0.292513 0.956262i \(-0.594491\pi\)
−0.292513 + 0.956262i \(0.594491\pi\)
\(992\) 0 0
\(993\) 0.978630 + 0.978630i 0.0310559 + 0.0310559i
\(994\) 0 0
\(995\) −17.2817 + 0.446218i −0.547868 + 0.0141461i
\(996\) 0 0
\(997\) 39.4630 + 39.4630i 1.24981 + 1.24981i 0.955805 + 0.294002i \(0.0949872\pi\)
0.294002 + 0.955805i \(0.405013\pi\)
\(998\) 0 0
\(999\) 33.1869i 1.04999i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 440.2.v.b.153.12 yes 32
4.3 odd 2 880.2.bd.i.593.5 32
5.2 odd 4 inner 440.2.v.b.417.11 yes 32
11.10 odd 2 inner 440.2.v.b.153.11 32
20.7 even 4 880.2.bd.i.417.6 32
44.43 even 2 880.2.bd.i.593.6 32
55.32 even 4 inner 440.2.v.b.417.12 yes 32
220.87 odd 4 880.2.bd.i.417.5 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.v.b.153.11 32 11.10 odd 2 inner
440.2.v.b.153.12 yes 32 1.1 even 1 trivial
440.2.v.b.417.11 yes 32 5.2 odd 4 inner
440.2.v.b.417.12 yes 32 55.32 even 4 inner
880.2.bd.i.417.5 32 220.87 odd 4
880.2.bd.i.417.6 32 20.7 even 4
880.2.bd.i.593.5 32 4.3 odd 2
880.2.bd.i.593.6 32 44.43 even 2